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1. Introduction. We study the behaviour as p → +∞ of the non-negative and
integrable solution up to the Cauchy problem

up,t −∆up + |∇up|p = 0 in (0,+∞)× IRN , (1)

up(0) = u0 in IRN , (2)

where u0 is a non-negative function in L1(IRN )∩W 1,∞(IRN ). To explain in a formal way
our result let us assume for the moment that the sequence (up)p>1 converges to some
u∞ as p → +∞ and try to obtain some information about u∞. We first observe that
the non-negativity and integrability of up entail that the sequence (|∇up|p) is bounded
in L1((0,+∞)× IRN ). The Fatou lemma then implies that

|∇u∞| ≤ 1 a.e. in (0,+∞)× IRN . (3)

We will actually prove a stronger assertion, namely that (|∇up|p) converges to zero in
L1
loc(0,+∞;L1(IRN )), from which we deduce that u∞ is a solution to the linear heat

equation. It remains to identify u∞(0). Recalling (3) we expect that |∇u∞(0)| ≤ 1 a.e. in
IRN . Consequently u∞(0) does not coincide with u0 = limp→+∞ up(0) if ‖∇u0‖L∞ > 1.
Also, up being a non-negative subsolution to the heat equation we expect that 0 ≤
u∞(0) ≤ u0. Summarizing, a possible limit u∞ of (up)p>1 as p → +∞ would be a
solution to the linear heat equation with an initial datum u∞(0) satisfying

0 ≤ u∞(0) ≤ u0 and |∇u∞(0)| ≤ 1 a.e. in IRN . (4)

We will in fact prove that u∞(0) is a suitably defined projection of u0 on the convex
subset of L1(IRN ) defined by the constraints (4).

Before stating precisely our result we first recall the well-posedness of the Cauchy
problem (1)-(2) in L1(IRN ) ∩W 1,∞(IRN ).
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Proposition 1. Let p ∈ (1,+∞) and u0 be a non-negative function in L1(IRN ) ∩
W 1,∞(IRN ). There is a unique non-negative function

u ∈ C([0,+∞);L1(IRN )) ∩ L∞(0,+∞;W 1,∞(IRN ))

satisfying

u(t) = G(t)u0 −
∫ t

0

G(t− s)|∇u(s)|p ds, t ∈ [0,+∞). (5)

Here G(t) denotes the linear heat semigroup. In addition, for each t ∈ [0,+∞) we have

0 ≤ u(t) ≤ G(t)u0, (6)

‖u(t)‖L1 ≤ ‖u0‖L1 , (7)

‖∇u(t)‖L∞ ≤ ‖∇u0‖L∞ . (8)

We next consider a non-negative function u0 in L1(IRN ) and define a convex subset
C(u0) of L1(IRN ) by

C(u0) =
{
w ∈ L1(IRN ) ∩W 1,∞(IRN ), 0 ≤ w ≤ u0 and |∇w| ≤ 1 a.e. in IRN

}
. (9)

A crucial step in our analysis is the existence of a projection from L1(IRN ) on C(u0) with
suitable properties and is given by [3, Proposition 5.3].

Proposition 2. Let u0 be a non-negative function in L1(IRN ). For each v ∈ L1(IRN )
there is a unique IPv ∈ C(u0) such that∫

j (w − IPv) dx ≤
∫
j (w − IPv + λ (IPv − v)) dx (10)

for every w ∈ C(u0), λ ∈ [0,+∞) and j ∈ J0, where

J0 = {convex lower semicontinuous maps j : IR→ [0,+∞] satisfying j(0) = 0} .

The mapping IP : L1(IRN )→ C(u0) satisfies IPv = v if v ∈ C(u0) and∫
j (IPv − IPv̂) dx ≤

∫
j (v − v̂) dx (11)

for every v ∈ L1(IRN ), v̂ ∈ L1(IRN ) and j ∈ J0.

We may now state our main result.

Theorem 3. Let u0 be a non-negative function in L1(IRN )∩W 1,∞(IRN ) and denote
by IPu0 the projection of u0 on the convex set C(u0) defined by (9). For p ∈ (1,+∞) we
denote by up the unique solution to (1)-(2) given by Proposition 1. For every t1 ∈ (0,+∞)
and t2 ∈ (t1,+∞) we have

lim
p→+∞

sup
t∈[t1,t2]

‖up(t)−G(t)IPu0‖L1 = 0. (12)

Let us mention at this point that related results have been obtained for the solutions
to the equation

ut −∆u+ up = 0

and its generalisations in [4] and [5].
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An interesting consequence of Theorem 3 is that it allows to identify the behaviour of

lim
t→+∞

‖up(t)‖L1

as p→ +∞. More precisely we have the following result.

Corollary 4. With the assumptions and notations of Theorem 3 we define

Ip(u0) = lim
t→+∞

‖up(t)‖L1 , (13)

(which exists as t 7→ ‖up(t)‖L1 is non-increasing and bounded from below). We have

lim
p→+∞

Ip(u0) = ‖IPu0‖L1 . (14)

We now briefly describe the remainder of the paper: in the next section we sketch the
proof of Proposition 1 and derive some bounds on the gradients of solutions to (1)-(2). In
Section 3 we check that the convex set C(u0) defined by (9) enjoys the desired properties
which allow us to apply [3, Proposition 5.3]. The proof of Theorem 3 is done in Section 4
while the last section is devoted to the proof of Corollary 4.

2. Preliminaries. We first briefly recall some arguments towards the proof of Propo-
sition 1. If u0 is a non-negative function in D(IRN ) there exists a unique non-negative
classical solution to (1)-(2) (see, e.g., [7] or [1]) and (6), (8) follow from the compari-
son principle while (7) follows from (1) and the non-negativity of u. For a non-negative
function u0 in L1(IRN ) ∩W 1,∞(IRN ) the existence part of Proposition 1 and (6)-(8) are
obtained by approximation and weak compactness arguments while the uniqueness is a
consequence of the Gronwall lemma and the Duhamel formula.

We now fix a non-negative function u0 in L1(IRN ) ∩W 1,∞(IRN ) and for p ∈ (1,+∞)
we denote by up the unique non-negative solution to (1)-(2) given by Proposition 1. The
next result is a consequence of [2, Theorem 1].

Lemma 5. For p ∈ (1,+∞) we have

|∇up(t, x)|p ≤ up(t, x)
(p− 1)t

, (t, x) ∈ (0,+∞)× IRN . (15)

Proof. It follows from [2, Theorem 1] that

‖∇u(p−1)/p
p (t)‖L∞ ≤ (p− 1)(p−1)/p p−1 t−1/p, t ∈ (0,+∞).

As

∇up(t, x) =
p

p− 1
up(t, x)1/p ∇u(p−1)/p

p (t, x),

we easily deduce (15).

We next study the behaviour of up for large values of x ∈ IRN .

Lemma 6. For each t ∈ [0,+∞) we have

lim
R→+∞

sup
p∈(1,+∞)

sup
s∈[0,t]

∫
{|x|≥R}

up(s, x) dx = 0, (16)

lim
R→+∞

sup
p∈(1,+∞)

∫ t

0

∫
{|x|≥R}

|∇up(s, x)|p dxds = 0. (17)
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Proof. Let ϑ be a C∞-smooth function such that 0 ≤ ϑ ≤ 1 and

ϑ(x) = 0 if |x| ≤ 1/2 and ϑ(x) = 1 if |x| ≥ 1.

For R ≥ 1 we put ϑR(x) = ϑ(x/R), x ∈ IRN . It follows from (1) and (7) that∫
up(t, x) ϑR(x) dx+

∫ t

0

∫
|∇up(s, x)|p ϑR(x) dxds

≤
∫
u0(x) ϑR(x) dx+

‖ϑ‖W 2,∞

R2

∫ t

0

∫
up(s, x) dxds

≤
∫
u0(x) ϑR(x) dx+

t ‖ϑ‖W 2,∞ ‖u0‖L1

R2
.

The function u0 being integrable, (16) and (17) follow from the above inequality by letting
R→ +∞.

3. The convex set C(u0). Consider a non-negative function u0 in L1(IRN ). The set
C(u0) defined by

C(u0) = {w ∈ L1(IRN ) ∩W 1,∞(IRN ), 0 ≤ w ≤ u0 and |∇w| ≤ 1 a.e. in IRN} (18)

is a closed and convex subset of L1(IRN ) which is non-empty (as 0 ∈ C(u0)). The following
additional property is enjoyed by the set C(u0).

Lemma 7. Consider w ∈ C(u0), ŵ ∈ C(u0) and a function ξ ∈W 1,∞(IR) satisfying

ξ(0) = 0 and 0 ≤ ξ′ ≤ 1 a.e. in IR. (19)

Then
w + ξ (ŵ − w) ∈ C(u0). (20)

Proof. We first notice that (19) ensures that

min (w, ŵ) ≤ w + ξ (ŵ − w) ≤ max (w, ŵ),

from which we deduce that

0 ≤ w + ξ (ŵ − w) ≤ u0 a.e.

We next have

∇ (w + ξ (ŵ − w)) = ξ′ (ŵ − w) ∇ŵ + (1− ξ′ (ŵ − w)) ∇w.
We then infer from (19) and the convexity of the euclidean norm in IRN that

|∇ (w + ξ (ŵ − w))| ≤ 1.

We have thus proved that w + ξ (ŵ − w) belongs to C(u0).

Thanks to Lemma 7, Proposition 2 is a straightforward consequence of [3, Proposi-
tion 5.3].

4. Convergence. In this section we prove Theorem 3. Let u0 be a non-negative
function in L1(IRN ) ∩W 1,∞(IRN ) and, for p ∈ (1,+∞), denote by up the unique non-
negative solution to (1)-(2) given by Proposition 1. We next define the set C(u0) by (9)
and denote by IP the projection on C(u0) given by Proposition 2. We first notice the
following consequence of (8) and (15).



BEHAVIOUR OF SOLUTIONS 157

Lemma 8. For every t1 ∈ (0,+∞) and t2 ∈ (t1,+∞) we have

lim
p→+∞

∫ t2

t1

∫
|∇up(s, x)|p dxds = 0. (21)

Assume further that
‖∇u0‖L∞ < 1. (22)

Then for every T ∈ (0,+∞) we have

lim
p→+∞

∫ T

0

∫
|∇up(s, x)|p dxds = 0. (23)

Proof. By (15) and (7) we have∫ t2

t1

∫
|∇up(s, x)|p dxds ≤ 1

p− 1

∫ t2

t1

s−1

∫
up(s, x) dxds

≤ ‖u0‖L1

(p− 1)
ln
(
t2
t1

)
,

hence (21).
Assuming now that u0 fulfils (22) we deduce from (8) and (22) that

lim
p→+∞

|∇up(t, x)|p = 0 for a.e. (t, x) ∈ (0,+∞)× IRN . (24)

Owing to (8), (17), (22) and (24) we may apply the Vitali convergence theorem (see, e.g.,
[6, p. 13]) and obtain (23).

The next result is a straightforward consequence of Lemma 8 and states that Theo-
rem 3 is valid when u0 fulfils (22). Note that in that case IPu0 = u0.

Proposition 9. If u0 satisfies the additional assumption (22) we have for each T ∈
(0,+∞)

lim
p→+∞

sup
t∈[0,T ]

‖up(t)−G(t)u0‖L1 = 0.

Proof. By the Duhamel formula (5) we have for t ∈ [0, T ]

‖up(t)−G(t)u0‖L1 ≤
∫ t

0

‖G(t− s)|∇up(s)|p‖L1 ds,

≤
∫ T

0

∫
|∇up(s, x)|p dxds,

and Proposition 9 follows at once from (23) and the above inequality.

We now turn to the general case. Consider t1 ∈ (0,+∞) and t2 ∈ (t1,+∞). By (6)-(8)
and (15) the sequence (up)p>1 is bounded in L∞(t1, t2;L1(IRN ) ∩W 1,∞(IRN )). We may
then proceed as in [2, Section 3] to prove that the sequence (up)p>1 is relatively compact
in C(K) for every compact subset K of (0,+∞) × IRN . Therefore there is a sequence
(pj)j≥1, pj → +∞ and a function u∞ ∈ C((0,+∞)× IRN ) such that

lim
j→+∞

‖upj
− u∞‖C(K) = 0 (25)

for every compact subset K of (0,+∞) × IRN . Clearly u∞ is a non-negative function as
the limit of non-negative functions. Observe next that, owing to (25) and (16) we may
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apply the Vitali convergence theorem and obtain

lim
j→+∞

‖upj
(t)− u∞(t)‖L1 = 0, t ∈ (0,+∞). (26)

Recalling (21) we may then let pj → +∞ in the Duhamel formula (5) and obtain

u∞(t2) = G(t2 − t1)u∞(t1), 0 < t1 < t2. (27)

Thanks to (5), (21), (26) and (27) we may improve (26) to

lim
j→+∞

sup
t∈[t1,t2]

‖upj
(t)− u∞(t)‖L1 = 0, 0 < t1 < t2. (28)

We next derive some further properties of u∞. First notice that (6) and (28) entail

0 ≤ u∞(t) ≤ G(t)u0, t ∈ (0,+∞). (29)

In addition it follows from (6) and (15) that, for t ∈ (0,+∞)

lim sup
p→+∞

‖∇up(t)‖L∞ ≤ 1,

and (26) and a weak compactness argument yield

‖∇u∞(t)‖L∞ ≤ 1, t ∈ (0,+∞). (30)

In particular we infer from (29) and (30) that (u∞(t))t∈(0,1) is bounded in L1(IRN ) and
in W 1,∞(IRN ). This fact, (27) and (29) allow us to conclude that there is a non-negative
function

ū0 ∈ L1(IRN ) ∩W 1,∞(IRN )

such that

u∞(t) = G(t)ū0, t ∈ (0,+∞). (31)

Moreover (29) and (30) yield

0 ≤ ū0 ≤ u0 and |∇ū0| ≤ 1 a.e. in IRN .

In other words

ū0 ∈ C(u0). (32)

We now proceed to show that in fact ū0 = IPu0. For that purpose we first notice that
(32) ensures that IPū0 = ū0 while (11) with j(r) = r+ = max (r, 0) yields∫

(IPū0 − IPu0)+ dx ≤
∫

(ū0 − u0)+ dx = 0,

as ū0 ≤ u0 by (32). We thus conclude that

ū0 = IPū0 ≤ IPu0 a.e. in IRN . (33)

We next consider ε ∈ (0, 1) and put

uε0 =
IPu0

1 + ε
=

1
1 + ε

. IPu0 +
(

1− 1
1 + ε

)
. 0 ∈ C(u0).

Note that, since IPu0 ∈ C(u0),

‖∇uε0‖L∞ ≤
1

1 + ε
< 1. (34)
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For p ∈ (1,+∞) we denote by uεp the solution to (1) with initial datum uε0. On the
one hand we infer from (34) and Proposition 9 that

lim
p→+∞

∥∥uεp(t)−G(t)uε0
∥∥
L1 = 0, t ∈ [0,+∞). (35)

On the other hand we have uε0 ≤ u0 as uε0 ∈ C(u0) and the comparison principle entails

uεpj
(t, x) ≤ upj

(t, x), (t, x) ∈ (0,+∞)× IRN . (36)

Combining (28), (35) and (36) yields

G(t)uε0 ≤ u∞(t), t ∈ (0,+∞).

Letting t→ 0 in the above inequality we deduce from (31) that

uε0 ≤ ū0 a.e. in IRN .

This inequality being valid for each ε ∈ (0, 1) we finally obtain

IPu0 ≤ ū0.

Recalling (33) we have proved that ū0 = IPu0. Thus (31) reads

u∞(t) = G(t)IPu0, t ∈ [0,+∞),

while (28) becomes

lim
j→+∞

sup
t∈[t1,t2]

‖upj
(t)−G(t)IPu0‖L1 = 0, 0 < t1 < t2. (37)

Finally, owing to the uniqueness of the cluster points of the sequence (up)p>1 a stan-
dard argument ensures that the convergence (37) actually holds for the whole sequence
(up)p>1, which completes the proof of Theorem 3.

Remark 1. Since the sequence (up)p>1 is bounded in L∞(0,+∞;W 1,∞(IRN )) it is
easy to deduce from Theorem 3 that the convergence (12) also holds in Lq(IRN ) for
q ∈ (1,∞].

5. Behaviour of Ip(u0) as p → +∞. We now prove Corollary 4. Recall that the
assumptions and the notations used are those of Theorem 3 and Corollary 4. For technical
reasons we further assume that p > (N + 2)/(N + 1). Integrating (1) on (t,+∞) × IRN

yields

Ip(u0) +
∫ ∞
t

∫
|∇up(s, x)|p dxds = ‖up(t)‖L1 , t ∈ [0,+∞). (38)

We define

τp =
1
π

(
π ‖u0‖2L1 (p− 1)

)p/(p(N+1)−(N+2))
,

and introduce

J1,p(t) =
∫ τp

t

∫
|∇up(s, x)|p dxds, t ∈ (0, τp),

J2,p =
∫ ∞
τp

∫
|∇up(s, x)|p dxds.

With these notations (38) reads

Ip(u0) = ‖up(t)‖L1 − J1,p(t)− J2,p, t ∈ (0, τp). (39)



160 PH. LAURENÇOT

We first estimate J2,p. For that purpose we use an upper bound on ‖∇u(p−1)/p
p ‖L∞

obtained in [2, Theorem 1], namely

‖∇u(p−1)/p
p (s)‖L∞ ≤ (p− 1)1/2 π1/2 ‖u0‖(p−1)/p

L1 (πs)−(p(N+1)−N)/2p, s ∈ (0,+∞).

Therefore for (s, x) ∈ (0,+∞)× IRN we have

|∇up(s, x)| ≤ p (p− 1)−1/2 π1/2 ‖u0‖(p−1)/p
L1 (πs)−(p(N+1)−N)/2p up(s, x)1/p.

Plugging this estimate in J2,p and using (7) yield

J2,p ≤
(

p

p− 1

)p
(π(p− 1))p/2 ‖u0‖p−1

L1

∫ ∞
τp

(πs)−(p(N+1)−N)/2

∫
up(s, x) dx ds

≤
(

p

p− 1

)p (
π(p− 1)‖u0‖2L1

)p/2 2 (πτp)
−(p(N+1)−(N+2))/2

π (p(N + 1)− (N + 2))

J2,p ≤
(

p

p− 1

)p 2
π (p(N + 1)− (N + 2))

(recall that p > (N + 2)/(N + 1)). Consequently

lim
p→+∞

J2,p = 0. (40)

Next, by (7) and (15) we have

J1,p(t) ≤
‖u0‖L1

p− 1

∫ τp

t

s−1 ds

≤ ‖u0‖L1

p− 1

(
ln
(

1
πt

)
+

p

p(N + 1)− (N + 2)
ln
(
π ‖u0‖2L1 (p− 1)

))
,

hence

lim
p→+∞

J1,p(t) = 0, t ∈ (0, τp). (41)

As τp → +∞ we may choose t > 0 such that t ∈ (0, τp) for p large enough and we
may let p→ +∞ in (39) and use (40), (41) and Theorem 3 to obtain

lim
p→+∞

Ip(u0) = ‖G(t)IPu0‖L1 = ‖IPu0‖L1 .
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