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Abstract. Nonlinear nonlocal parabolic equations modeling the evolution of density of mutu-
ally interacting particles are considered. The inertial type nonlinearity is quadratic and nonlocal
while the diffusive term, also nonlocal, is anomalous and fractal, i.e., represented by a fractional
power of the Laplacian. Conditions for global in time existence versus finite time blow-up are
studied. Self-similar solutions are constructed for certain homogeneous initial data. Monte Carlo
approximation schemes by interacting particle systems are also mentioned.

1. Introduction. This paper is an extended version of the lecture given by the
first-named author during the conference “Evolution Equations” at Banach Center in
Warsaw, in October 1998. The presentation is partly based on [BW] and [BFW2].

We consider global and exploding solutions for equations of the form

(1.1) ut = −(−∆)α/2u+∇ · (uB(u)).

Here u : Ω × (0, T ) ⊂ IRd × IR+ → IR, (−∆)α/2 is a fractional power of the minus
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Laplacian in IRd, 0 < α ≤ 2, and

B(u)(x) =
∫
IRd

b(x, y)u(y) dy

is a linear IRd-valued integral operator with the kernel b : IRd×IRd → IRd. The dimension
is restricted to the physically interesting cases d = 1, 2, or 3.

Equations (1.1) describe various physical phenomena involving diffusion and interac-
tion of pairs of particles when suitable assumptions are made on the possibly singular
integral operator B. Since our main interest is in u as a description of the density of
particles in IRd, we will consider nonnegative solutions to (1.1), except for the case of
self-similar solutions in Section 4.

In the case of classical Brownian diffusion, i.e., α = 2, a deterministic study of these
models in [BN] was initially motivated by the Fokker–Planck type parabolic equations
with nonlocal nonlinearity and we studied them mostly in bounded domains of IRd,
supplemented with suitable (nonlinear) boundary conditions. For instance, if

(1.2) b(x, y) = c(x− y)|x− y|−d,

then the equation (1.1) models the diffusion of charge carriers (c < 0) in electrolytes,
semiconductors or plasmas interacting via Coulomb forces. If c > 0, it describes gravita-
tional interaction of particles in a cloud, or galaxies in a nebula.

Related equations and parabolic systems appear in mathematical biology where they
are used to model chemotaxis phenomena, see [B3]. There, we have been mainly interested
in the possibility of the continuation of local in time solutions of (1.1) up to T = +∞.
The answer to this question depends strongly on the type of interaction. For instance, for
Newtonian attraction of particles or chemotactic attraction of cells, finite time collapse of
solutions is possible, see [B1], [B3], while for the Coulomb forces global in time existence
of solutions is guaranteed, cf. [BHN].

Further, for the Biot–Savart kernel

(1.3) b(x, y) = (2π)−1(x2 − y2, y1 − x1)|x− y|−2

in IR2, the equation (1.1) with α = 2 is equivalent to the vorticity formulation of the
Navier–Stokes equations. Its solutions are global in time. Also, formally, the singular
kernel b(x, y) = cδ(x− y) leads to the classical Burgers equation

(1.4) ut = uxx + c(u2)x.

A new important ingredient of a more general class of model problems (1.1) in [BW],
studied in the whole space IRd, was the anomalous Lévy α-stable diffusion described
by a fractional power of the Laplace operator in IRd. In the physical literature such
fractal diffusions have been vigorously studied in the context of statistical mechanics,
hydrodynamics, acoustics, relaxation phenomena and biology, see e.g. [BPFS] and [SZF].
In probabilistic terms, replacing the Laplacian by its fractional power leads to interesting
questions of extension of results for Brownian motion driven stochastic equations to those
driven by Lévy α-stable flights; the latter, of course, having discontinuous sample paths.

In fact, the probabilistic theory of interacting particle systems and theory of McKean’s
diffusions have been our immediate theoretical inspiration for [BW]. McKean’s processes
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and “propagation of chaos” results connect the detailed Liouvillean picture of the evo-
lution of diffusing and interacting particles and the reduced hydrodynamic description.
In that context equations like (1.1) appear as “laboratory” models with diffusion and
two-particle interactions leading to bilinear nonlinearities. We cite only a few of refer-
ences that deal with different aspects of this connection in the case of classical Brownian
diffusion: [BT], [GK], [KO], [McK], [O], [Sz].

A direct numerical approach to equations like (1.1) is hopelessly difficult because of
the nonlocal character of the higher order term (−∆)α/2u and/or the nonlinearity uB(u).
However, if the “propagation of chaos” property were established for (1.1), an efficient
numerical analysis of these equations via Lévy α-stable Monte Carlo simulations would
be available, see e.g., [G], [O], [Sz] for this practical aspect of interacting particle systems
with Brownian diffusion.

The analogous interacting particle system approximation questions for the “fractal”
Burgers equation with α-stable processes

(1.5) ut = −(−∆)α/2u+ a · ∇(ur)

have been dealt with in [FW] for d = 1 and r = 2. Based on various estimates of solutions
to the deterministic Burgers equation with fractal diffusion in [BFW1], theorems in the
“propagation of chaos” spirit have been recently proved in [FW]. The paper [BFW2]
relates to [BW] as [FW] to [BFW1]. For a survey of related more classical issues, see
also [W].

Notation. |u|p stands for the Lebesgue Lp(IRd)-norm of the function u, and ‖u‖k
is the Sobolev Hk ≡ W k,2-norm. Inessential constants will be denoted generically by C,
even if they vary from line to line.

2. Local and global existence of solutions. In this section we provide existence
results for the local and global in time (weak) solutions of the initial value problem for
(1.1). We consider in the sequel only the simplest case of Ω = IRd, although most of
results in this section extends to u defined on an open subset Ω of IRd and satisfying
suitable boundary conditions on ∂Ω.

We restrict ourselves to the most important in the aplications case of convolution
operators B in (1.1), so that from now on b(x, y) = b(x− y). Moreover, we assume that
b satisfies potential estimates like either

(2.1) |b(x)| ≤ C|x|β−d

or

(2.2) |Db(x)| ≤ C|x|γ−d

for some 0 < β < d, 0 < γ < d, which is motivated by the examples (1.2), (1.3).
Formally, (1.4) corresponds to the limit case β = 0 but, of course, the operator B(u) = cu,
0 6= c ∈ IRd, is not an integral one. In fact, assumptions (2.1), (2.2) can be weakened
as, e.g., in [BW, Sec. 2] but we prefer to keep the potential character and smoothing
properties of B clear. By the fractional power of the minus Laplacian in IRd we mean the
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Fourier multiplier

(−∆)α/2v(x) ≡ Dαv(x) = F−1 (|ξ|αv̂(ξ)) (x).

Now, we recall and extend results from [BW] on the local in time existence of solutions
to (1.1) with the initial condition

(2.3) u(x, 0) = u0(x),

under assumptions (2.1) or (2.2) specified to the case d ≤ 3, in order to use the framework
of Hilbertian Sobolev spaces Hk(IRd). By a solution we mean a weak one, i.e. a function
u ∈ L2((0, T );Hα/2(IRd)) such that the integral identity∫

IRd
u(x, t)η(x, t) dx−

∫ t

0

ds

∫
IRd

uηs dx+
∫ t

0

ds

∫
IRd

(
Dα/2uDα/2η + uB(u) · ∇η

)
dx

=
∫
IRd

u0(x)η(x, 0) dx

holds for every test function η ∈ H1(IRd × (0, T )), cf. [BW, Sec. 2].

Theorem 2.1. Suppose that α+β > d/2+1 in (2.1), α ∈ (0, 2], β ∈ (0, d), d = 1, 2, 3,
and the initial condition is 0 ≤ u0 ∈ L2(IRd) ∩ L1(IRd). Then there exist T > 0 and
a weak solution u ≥ 0 of the Cauchy problem (1.1), (2.3). Moreover, |u(t)|1 = |u0|1 for
all t ∈ (0, T ).

The above theorem is related to Theorems 2.1 and 2.2 in [BW], and improves over
those results for some 0 < β < 1 and for d = 1 not considered there.

Proof. We give only a crucial a priori estimate of u(t) in L2 referring to [BW] for
a description of the construction of u. Observe that

(2.4)
d

dt
|u|22 + 2|Dα/2u|22 = −2

∫
IRd

uB(u) · ∇u dx

and the right hand side of (2.4) can be transformed into

−
∫
IRd
∇(u2) ·B(u) dx =

∫
IRd

u2∇ · B(u) dx.

Then we estimate, from the Schwarz inequality and the condition (2.1) which assure
smoothing properties of B,

(2.5)
∣∣∣∣∫
IRd

u2∇ ·B(u) dx
∣∣∣∣ ≤ |u2|2‖B(u)‖1 ≤ C|u|24‖u‖1−β .

Note that the assumptions (2.1)–(2.2) on the potential nature of the kernel b are stricter
than those imposed in [BW], thus permitting stronger estimates than Lp estimates in
that paper.

Next, by interpolation we get

(2.6)

∣∣∣∣∫
IRd

u2∇ ·B(u) dx
∣∣∣∣ ≤ C‖u‖d/α+2(1−β)/α

α/2 |u|3−d/α−2(1−β)/α
2

≤ ‖u‖2α/2 + C|u|m2
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for some m > 0 if 1 − β ≤ α/2 and d/α + 2(1 − β)/α < 2 which is the assumption in
Theorem 2.1. Now, (2.4) and (2.6) lead to the differential inequality

(2.7)
d

dt
|u|22 + |Dα/2u|22 ≤ C(|u|22 + |u|m2 )

which implies a local bound |u(t)|2 ≤ C(T ) < ∞ for some T = T (|u0|2) > 0 and all
t ∈ (0, T ). Note that for β ≥ 1 the proof of Th. 2.2 in [BW] involved another reasoning
based on the Hardy–Littlewood–Sobolev inequality.

The positivity and total mass preserving properties of (1.1) are the consequences of
those properties of Lévy and Gauss semigroups exp(−t(−∆)α/2) = F−1(exp(−t|ξ|α)F)
of probability measures corresponding to the cases 0 < α < 2 and α = 2, respectively.
Moreover, weak solutions to (1.1) enjoy some supplementary regularity properties, due
to parabolic smoothing by (−∆)α/2, see [BN, Sec. 2], [BHN, Sec. 2, 3], [BW].

Remark 2.1. Although the calculations above are not directly applicable to the
Burgers equation (1.5), the assumption α + β > d/2 + 1 gives a correct result. This
guarantees even the global existence of solutions if d = 1, β = 0, u0 ∈ H1(IR), so that
α > 3/2, see [BFW1, Th. 2.1]. Concerning the higher dimensional quadratic Burgers
equation (1.5) with r = 2, the condition α + β > d/2 + 1 may suggest that no weak
solutions exist for d ≥ 2 and α ∈ (0, 2]. This can serve as an heuristic motivation for the
study of another kind of solutions, namely mild ones in [BFW1, Sec. 6].

The theorem below recalls sufficient conditions for the global in time existence of
solutions, see [BW, Sec. 3].

Theorem 2.2. Suppose that α+ β > d+ 1 in (2.1), α ∈ (0, 2], β ∈ (0, d), d = 1, 2, 3.
Then any local solution to the Cauchy problem (1.1), (2.3) with u0 ∈ L2(IRd) ∩ L1(IRd)
can be continued to the whole half-line (0,∞).

Proof. The right hand side of the energy identity (2.4) can be estimated as in (2.5)
for 0 < β ≤ 1. After interpolation of norms this quantity is bounded by

C‖u‖3d/(α+d)+(d+2−2β)/(α+d)
α/2 |u|m1

with some m > 0. Our assumption shows that the exponent of ‖u‖α/2 above is strictly
less than 2. Hence, (2.4) implies that

d

dt
|u|22 + |Dα/2u|22 ≤ C(|u|22 + |u|M1 ),

so a locally uniform estimate of |u(t)|2 follows, and by the results of Th. 2.1 u(t) has
a continuation to (0,∞).

For β > 1 we apply to the second factor on the right hand side of (2.7) the Hardy–
Littlewood–Sobolev inequality, and then the interpolation to obtain

‖B(u)‖1 ≤ C|u|q ≤ C‖u‖kα/2|u|
1−k
1

with 1/2 = 1/q− (β − 1)/d and k = (d+ 2β − 2)/(α+ d). The conclusion follows now as
before when 0 < β ≤ 1.

For α = 2 we recover Theorem 3.1 in [BW] where β > d− 1.
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Note that under essentially the same growth assumption γ > d − α in (2.2) (since
β = γ − 1 for smooth kernels b satisfying (2.2)) Theorem 2.2 for 0 < α < 2 has been
proved in [BW, Th. 3.2].

Example 2.1. The Biot–Savart kernel (1.3). In this example (borrowed from [Sz,
Ch. I.1, c)] and studied in, e.g., [GMO], [G], [O]) global solutions exist under weaker
growth assumptions on b than those in Theorem 2.2, but even local in time existence
needs a more delicate argument than that in Theorem 2.1 because of a specific structure
of b. Here, of course, ∇ · B(u) = 0, so the continuation argument would follow from
1
2
d
dt |u|

2
2 + |∇u|22 = 0, if the local existence were proved for (2.1) with u0 ∈ L2(IR2) (which

is much subtler than the arguments in Theorem 2.1).

3. Finite time blow-up of solutions. The existence result for classical Brownian
diffusion in Theorem 2.2 is sharp in the sense that there exists a two-dimensional kernel
b satisfying (2.1) with β = d− 1 = 1 and such that certain solutions of (1.1) with α = 2
blow up in finite time. This is the content of

Proposition 3.1. Suppose that d = 2, α = 2, and that the linear operator B is defined
by the potential kernel

(3.1) b(x, y) = +(x− y)|x− y|−2 = +∇(log |x− y|)

corresponding to the gravitational interaction of the particles. If a compactly supported
initial condition (density) u0 ≥ 0 has a sufficiently big integral (total mass) M =

∫
u0,

then the solution to the Cauchy problem (1.1), (2.3) cannot be global in time.

Proof. We repeat essentially the reasoning in [B1], where the method of moments
has been employed. The assumption on u0, used in the construction of solution with good
decay properties, can be relaxed to u0 ∈ L1(IR2, (1 + |x|2) dx). Indeed, a weak solution
u(t) constructed as the limit of solutions with compactly supported initial conditions,
satisfies u(t) ∈ L1(IR2, (1 + |x|2) dx) whenever u(x, t) is finite a.e. Consider now the
function

(3.2) w(t) =
∫
|x|2u(x, t) dx ≥ 0.

Using the equation (1.1), after some integrations by parts we arrive at

(3.3)
dw

dt
= 2dM − 2

∫∫
b(x, y) · xu(y, t)u(x, t) dy dx

(remember that
∫
|x|2∆u = 2d

∫
u). After the symmetrization of the double integral we

have
dw

dt
= 2dM −

∫∫
(b(x, y) · x+ b(y, x) · y)u(x, t)u(y, t) dx dy

= 2dM −
∫∫

((x− y) · x+ (y − x) · y)|x− y|−2u(x, t)u(y, t) dx dy

= 2dM −M2

for our particular kernel b. It is now obvious that for M =
∫
u0 =

∫
u(x, t) dx > 2d = 4

the moment function w(t) becomes negative in a finite time, a contradiction.
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Remark 3.1. Notice that in the case of electrostatic repulsion (d = 2, − sign in (3.1)
instead of +) the local solutions can be continued to the global ones for arbitrarily large
initial data u0 ∈ L2(IR2)∩L1(IR2). The proof can be obtained by a suitable modification
of that in [BHN, Th. 3], using some supplementary a priori estimates. For the Biot–Savart
kernel in Example 2.1 the global in time existence of solutions for u0 ∈ L2(IR2)∩L1(IR2)
holds, but the reasons for this are quite different (here ∇ ·B(u) = 0, while for the above
two examples ∇ ·B(u) 6≡ 0).

The conclusion of Proposition 3.1 extends to more general situations.

Proposition 3.2. Suppose that d ≥ 2, α = 2, and that the linear operator B is defined
by the potential kernel b(x, y) = (x − y)|x − y|−d+β−1 with 0 < β ≤ d − 1. Then there
exists u0 ≥ 0 such that the solution to (1.1), (2.3) blows up in a finite time.

The above indirect proof of the nonexistence of global solutions gives no quantitative
information about the character of the blow-up in the neighborhood of the critical point
t = T < ∞. Actually, it can be proved that limt→T− |u(t)|p = ∞ for each p > 1 and
even limt→T−

∫
u(x, t) log u(x, t) dx = ∞ for some u0’s. For related parabolic systems

of chemotaxis (arising in mathematical biology) the solutions can blow up either with
u converging to a point mass (d ≥ 2), or without the concentration of mass (d = 3).
Particular radially symmetric solutions that display this chemotactic collapse behavior
have been constructed in [HMV]. Propositions 3.1 and 3.2 give rather general conditions
on the initial data that guarantee blow-up of solutions to (1.1), (2.3). We do not know
how to solve an analogous problem of blowing up solutions to the fractal (0 < α < 2)
nonlinear equation (1.1).

4. Self-similar solutions. In this section we consider self-similar (automorphic)
solutions of the equation (1.1) with 1 < α ≤ 2 and

(4.1) b(x, y) = ±(x− y)|x− y|−d+β−1, β > 0.

Due to the homogeneity of the kernel b, if a function u (not necessarily positive in this
section) solves (1.1), then the rescaled function uλ(x, t) = λγu(λx, λαt) with γ = α+β−1
also verifies (1.1) for each λ > 0. The self-similar solutions are those satisfying uλ ≡ u

for each λ > 0.
These solutions also determine the generic asymptotic behavior as t tends to +∞ of

other globally defined solutions. They are expected to be the leading terms in asymptotic
(as t → +∞) expansions of global solutions because if limλ→∞ λγu(λx, λαt) = U(x, t)
exists in a suitable sense, then tγ/αu(xt1/α, t)→ U(x, 1) as t→∞, and Uλ ≡ U . So U is
a self-similar solution and

(4.2) U(x, t) = t−γ/αU(xt−1/α, 1)

is determined by a function of d variables U(y) ≡ U(y, 1). Moreover, if

u0(x) = lim
t→0

t−γ/αU(xt−1/α)

is the initial value corresponding to a self-similar solution, then u0 is necessarily homo-
geneous of degree −γ, where γ = α+ β − 1.
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Solutions (4.2) are called forward self-similar, while solutions of the form v(x, t) =
(T − t)−γ/αV (xt−1/α) for some T > 0 are backward self-similar ones. They would be the
simplest solutions that blow up at t = T . However, the problem of their existence seem
to be open. Note that blowing up solutions to chemotactic systems constructed in [HMV]
are not self-similar but only close to them.

We formulate below two results on the existence of self-similar solutions which extend
those in [B2, Sec. 3] and [BFW1, Sec. 7]. Their proofs are obtained by suitable modifica-
tions of demonstrations in these references, where the cases α = 2, β = 1, and 1 < α < 2,
β = 0 have been considered. Note that we cannot pose directly β = 0 in (4.1), as this leads
to divergent integrals in (1.1), but formally this corresponds to b(x, y) = cδ(x−y), c ∈ IRd.
In such a case the nonlinear term in (1.1) has the differential (not integro-differential)
form u∇u · a with some a ∈ IRd like in (1.5), see also Example (1.9) b) in [Sz]. Thus,
Theorems 4.1, 4.2 below will be obtained via “interpolation” and “extrapolation” of the
range of β’s and α’s, and employing Banach spaces that we denote generically by B,
which will be specified for each theorem separately.

Our first result is expressed in terms of the homogeneous Besov space

(4.3) B = Ḃs2∞(IRd) ≡
{
v : ‖v; Ḃs2∞‖ ≡ sup

k∈ZZ
2ks|φk ∗ v|2 <∞

}
.

with s = d/2 − γ. The family of functions (φk)k∈ZZ generates a smooth decomposition
into dyadic annuli on the space IRdξ of Fourier variables, i.e., for ψ with ψ̂ ∈ C∞0 (IRd),
0 ≤ ψ̂ ≤ 1, ψ̂(ξ) = 1 if |ξ| ≤ 1, ψ̂(ξ) = 0 for |ξ| ≥ 2, φk are defined by φ̂k(ξ) = ψ̂(2−kξ)−
ψ̂(2−(k+1)ξ), k ∈ ZZ. Thus, supp φ̂k ⊂ Ak ≡ {ξ : 2k−1 ≤ |ξ| ≤ 2k+1},

∑
k φ̂k(ξ) = 1

for each ξ 6= 0, with at most two nonzero terms in the series. B defined as above is
a nonseparable Banach space, with s = (d/2) − γ the space B ⊂ S ′(IRd) is contained
in the space of tempered distributions. It is fairly easy to check that, for 0 < γ < d,
|x|−γ ∈ B, because F(|x|−γ) = cγ,d|ξ|γ−d. Moreover, if a function u0 homogeneous of
degree −γ is sufficiently smooth on the unit sphere in IRd, then u0 belongs to B.

Theorem 4.1. Let α ∈ (1, 2], β > 0, and d > 2γ = 2(α + β − 1). Suppose that
the linear operator B is defined by the potential kernel (4.1). If u0 ∈ B = Ḃ

d/2−γ
2∞ (IRd)

is homogeneous of degree −γ and its norm ‖u0‖B is sufficiently small, then there exists
a self-similar mild solution U of the equation (1.1) with u0 as the initial data.

Our second result is expressed in terms of the functional space

(4.4) B = Eγ,m(IRd) ≡
{
v ∈ Cm(IRd) : |Dζv(x)| ≤ C(1 + |x|)−γ−|ζ|, |ζ| ≤ m

}
,

m being a nonnegative integer, which consists of smooth functions of polynomial decay
at infinity, and its homogeneous version

Ėγ,m(IRd) ≡
{
v ∈ Cm(IRd \ {0}) : |Dζv(x)| ≤ C|x|−γ−|ζ|, |ζ| ≤ m

}
,

whose elements admit some singularity at the origin. The norms of v are the least con-
stants satisfying the aforementioned conditions.
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Theorem 4.2. Let α ∈ (1, 2], β > 0, γ = α+β−1, m+γ < d. Suppose that the linear
operator B is defined by the potential kernel (4.1). If u0 ∈ Ėγ,m(IRd) is homogeneous of
degree −γ and has a sufficiently small norm, then there exists a self-similar mild solution
t−γ/αU(xt−1/α) of the equation (1.1) with U ∈ B = Eγ,m(IRd).

The concept of a mild solution replaces the original formulation (1.1) by an integral
equation

(4.5) U(t) = e−t(−∆)α/2u0 +
∫ t

0

(
∇e−(t−s)(−∆)α/2

)
· (U(s)B(U(s))) ds,

a consequence of the variation of parameters formula. Here exp(−t(−∆)α/2) is the Lévy
semigroup of linear operators generated by −(−∆)α/2, so

∂

∂t
e−t(−∆)α/2 = −(−∆)α/2e−t(−∆)α/2 ,

and exp(−t(−∆)α/2) commutes with ∇. A solution U of (4.5) is looked for in the space
of (weakly) continuous functions C([0,∞);B) with values in B.

The difference between the two theorems is the range of parameters for which they
apply and, more importantly, the dramatically different nature of the solution spaces,
(4.3) Ḃs2∞ and (4.4) Eγ,m. The former is the space of distributions enjoying, in general,
no significant pointwise regularity, while the latter consists of smooth functions.

The observation crucial for the proofs is that if u0 is homogeneous of degree −γ, then
exp(−t(−∆)α/2)u0 is of the self-similar form (4.2). Moreover, if U of the form (4.2) is put
into the nonlinear integral operator on the right-hand side of (4.5), then the result is again
of the form (4.2). Hence, the equation (4.5) has a reproducing property of the self-similar
form (4.2). Thus, it can be studied for t = 1 only, which reduces all the considerations to
the spaces B. Moreover, it is suitable to be solved by iterative methods and the contraction
theorem. These arguments can be applied when the integral in (4.5) defines a quadratic
form continuous on B. And this is indeed the case under the assumptions of Theorems 4.1,
4.2. These ideas have been originally applied to the Navier–Stokes system by M. Cannone,
Y. Meyer and F. Planchon, cf. [C]. We skip the details of rather technical proofs, referring
to [BW].

5. Nonlinear Markov processes and approximating particle systems. We
sketch in this section the construction of a nonlinear Markov process for which the equa-
tion (1.1) serves as the Fokker–Planck–Kolmogorov equation. The assumption α ∈ (1, 2)
permits us to freely use the expectations of the α-stable processes involved in the con-
struction.

Let u ≥ 0 be a (local in time) solution of (1.1) with u0 regular enough. Without loss
of generality we can assume that u is bounded, i.e.

(5.1) sup
x∈IRd,t∈[0,T ]

|u(x, t)| <∞,

and, since we are working with (L1 ∩ L∞)-solutions, supx∈IRd,t∈[0,T ] |B(u(t))(x)| < ∞,
which follows from the potential estimate (2.1), Sobolev embedding theorem and (5.1).
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This is a property similar to that in Th. 2.1(iii) in [BW] where the case α = 2
was considered. Whenever a local solution u can be defined, the parabolic regularization
property of (−∆)α/2, α ∈ (1, 2], leads to an instantaneous smoothing of u to a locally
bounded function, see [BFW2].

Consider a solution X(t) of the stochastic differential equation

(5.2) dX(t) = dS(t)−B(u(t))(X(t)) dt,

where u is a given (bounded) solution of (1.1), X(0) ∼ u(x, 0) dx in law, and S(t) is
a standard α-stable spherically symmetric process with its values in IRd. Since the coef-
ficient B(u) in (5.2) is bounded, we infer that the stochastic differential equation (5.2)
has a unique solution X. The measure-valued function v(dx, t) ≡ P (X(t) ∈ dx) satisfies
the weak forward equation

(5.3)
d

dt
〈v(t), η〉 = 〈v(t),Lu(t)η〉,

for all η ∈ S(IRd), the Schwartz class of functions on IRd, with the initial condition
v(0) = u(x, 0) dx and the operator Lu = −(−∆)α/2 −B(u) · ∇, u = u(x, t).

Proposition 5.1. Let 1 < α < 2 and u be a solution of (1.1) satisfying (5.1). The
process X(t) in (5.2) is the McKean process (nonlinear Markov process) corresponding
to (1.1), that is, it satisfies the relation P (X(t) ∈ dx) = u(x, t) dx.

Proof. The following two statements are equivalent:
• The martingale problem for the operator Lu(t) is well posed, and
• The existence and uniqueness theorem holds for the corresponding linear weak forward

equation (5.3).
Here, the martingale problem associated with (5.2) is well posed. However, u(dx, t) ≡

u(x, t) dx is also a solution of (5.3) since d
dt 〈u(t), η〉 = 〈−(−∆)α/2u +∇ · (uB(u)), η〉 =

〈u, (−(−∆)α/2−B(u) ·∇)η〉. Since the coefficients of the linear equation (5.3) are regular
(B(u) ∈ L∞), the problem wt = −(−∆)α/2w − B(u) · ∇w, w(0) = 0, has the unique
solution w ≡ 0. This can be easily seen from the energy estimates as in the proof of
Theorem 2.1. Now, the uniqueness for (5.3) implies that v(dx, t) = u(dx, t), which yields
Proposition 5.1.

The classical “propagation of chaos” result for the partial differential equation (1.1)
would show that the empirical distribution

(5.4) X̃n(t) =
1
n

n∑
i=1

δ(Xi,n(t))

of n interacting particles with positions {Xi,n(t)}i=1,...,n, whose dynamics is described
by the system of stochastic differential equations

(5.5) dXi,n(t) = dSi(t)− 1
n

∑
j 6=i

b(Xi,n(t), Xj,n(t)) dt,

is close to the distribution of the McKean process X(t) in the sense that

(5.6) X̃n(t)⇒ u(x, t) dx, in probability, as n→∞,
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where ⇒ denotes the weak convergence of measures. In our situation {Si(t)}i=1,...,n are
independent copies of symmetric Lévy α-stable processes with the common infinitesimal
generator −(−∆)α/2.

Results in this spirit, when S is replaced by a more familiar Wiener process, have
been proved in various situations after the pioneering work [McK]. We have chosen some
classical as well as new references containing reformulations, extensions and generaliza-
tions of the above scheme for various evolution problems of physical origin: [GK], [KO],
[O], [G], [Sz], [BT]. Besides a purely mathematical interest, they give also reasonably well
working tools for the numerical approximation of solutions, especially when convergence
rates can be found.

The recent paper [FW] deals with the first, to the best of our knowledge, interacting
particle system approximation result for Lévy α-stable processes driven stochastic dif-
ferential equations associated with the fractal Burgers equation (1.5). Because of rather
weak parabolic regularization effect of (−∆)α/2, a preliminary step involving the replace-
ment of Xi,n by solutions of regularized stochastic differential equations ((5.7) below)
seems to be necessary in order to have an analogue of (5.6).

Let us consider a standard smoothing kernel δε(x) = (2πε)−d/2 exp(−|x|2/(2ε)), ε > 0,
and the system of regularized equations (5.5)

(5.7) dXi,n,ε(t) = dSi(t)− 1
n

∑
j 6=i

bε
(
Xi,n,ε(t)−Xj,n,ε(t)

)
dt,

where b(x, y) = b(x− y), bε = b ∗ δε. Then define random empirical measures

Y n,ε(t) =
1
n

n∑
i=1

δ(Xi,n,ε(t)),

instead of previously considered X̃n in (5.4).
First, we prove propagation of chaos property for a regularized version ((5.9) be-

low) of equation (1.1), including an error estimate. Then we prove a weaker property
“propagation of chaos in a wide sense” for the original equation (1.1), which is, however,
a satisfactory basis for an approximation scheme for numerical solving of that equation.
The extension will rely on purely analytic estimates of solutions uε of (5.9).

Theorem 5.1. Let the conditions of Theorem 2.1 ensuring the local in time existence of
solutions to (1.1) on IRd×(0, T ) be satisfied. Moreover, assume that |b̂(ξ)| ≤ C(1+ |ξ|−β)
(which is, of course, compatible with the potential estimate (2.1)) and that the initial
conditions {Xi,n,ε(0)}i=1,...,n satisfy

sup
n

sup
λ∈IRd

n1−1/α(1 + |λ|a)−1E [〈Y n,ε(0)− uε(x, 0), χλ〉] <∞

for some a ≥ 0 and all the characters χλ(x) = eiλx. Then:
(i) For each ε > 0 the empirical process is weakly convergent

(5.8) Y n,ε(t)⇒ uε(x, t) dx, in probability , as n→∞.
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The limit density uε = uε(x, t), x ∈ IRd, t ∈ (0, T ), solves the regularized equ-
ation (1.1)

(5.9) uεt = −(−∆)α/2uε +∇ · (uεBε(uε))

with Bε = δε ∗B defined by the kernel bε = δε ∗ b.
(ii) For each ε > 0, there exists a constant Cε such that for any φ ∈ S(IRd)

(5.10) E |〈Y n,ε(t)− uε(t), φ〉| ≤ Cεn1/α−1

∫
IRd

(1 + |λ|a)|φ̂(λ)| dλ.

(iii) Under the assumptions of Theorem 2.2 guaranteeing the global in time existence of
solutions to (1.1), the conclusions (i), (ii) are valid for all t ∈ (0,∞).

The proof of above theorem involves some delicate probabilistic methods, see [BFW2].

By “propagation of chaos in a wide sense” property for equation (1.1) we mean that gi-
ven any sequence of regularizations (5.9) with ε→ 0, the family of empirical distributions
{Y n,ε(t)} contains a subsequence weakly convergent to a solution u(t) of (1.1).

Theorem 5.2. Let the general conditions of Theorem 5.1 be satisfied. Assume that
uε(t) are solutions of the regularized equation (5.9) such that their initial conditions satisfy
|uε(0)− u(0)|2 → 0 as ε → 0 for some u(0) ∈ L2(IRd). Then given any sequence εk → 0
as k → ∞, there exists a sequence nk → ∞ and a weak solution u(t) of (1.1) such that
for each φ ∈ C∞0 (IRd)

(5.11) E |〈Y nk,εk(t)− u(t), φ〉| → 0.

Moreover, under the assumptions of Theorem 5.1 (iii), (5.11) can be strengthened to the
global in time convergence for all t ∈ (0,∞).

The proof requires only the following purely analytic weak convergence result

(5.12) |〈uεk(t)− u(t), φ〉| → 0,

as εk → 0 for each φ in a suitable function class containing C∞0 (IRd). Indeed, (5.10)
combined with (5.12) shows that E [|〈Y nk,εk(t)− u(t), φ〉|]→ 0 for some sequence εk → 0
and suitably large nk →∞ as k →∞, see [BFW2].

Remark 5.1. Under fairly general assumptions of Th. 5.1 (i)–(ii), when only local in
time solutions exist (and it may actually happen that they blow up in a finite time), (5.12)
is a rather weak result. When stronger assumptions in Th. 5.1 (iii) guarantee the global
in time existence of solutions, convergence of solutions of regularized equations (5.9) to
those of the original one (1.1) will be, of course, stronger. To obtain those convergence
properties, we show compactness of the family of approximating solutions using either
the Aubin–Lions or the Ascoli–Arzelà criteria for vector-valued functions.

Remark 5.2. Note that so far the issue of uniqueness of solutions to (1.1) was
not addressed in this paper. For α = 2 the uniqueness of weak solutions holds true, see
[BW]. For 1 < α < 2, we can only prove the uniqueness of more regular solutions in
L∞((0, T );H1(IRd)). However, we do not develop this issue here because, although the
convergence in (5.12) would then be improved to all ε→ 0, in (5.11) we still would need
to select a subsequence nk → ∞. We suspect that solutions to (1.1) with sufficiently
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regular initial data are unique, but they are not necessarily unique in general. In such
a case our interacting particle approximation selects a solution of (1.1) similarly to the
way the viscosity method selects a unique, so-called viscosity, solution of conservation
laws.

Remark 5.3. Unlike the case of the one-dimensional fractal Burgers equation in
[FW], the estimates of uε leading to (5.12) (gaining extra information from the degree of
approximation of δε ∗ uε − uε) will be similar to those of u in the existence Theorems 2.1
and 2.2. It seems that in the higher dimensional case, d ≥ 2, we cannot obtain results in
the same spirit for the fractal Burgers equation (1.5) with r > 1, because the diffusion
operator (−∆)α/2, α < 2, is too weak compared to the nonlinear term.

Remark 5.4. The case α = 2 is substantially different (and easier to treat) than
that of α < 2. Namely, the global in time solutions to (1.1) are expected (by e.g. [BW])
to satisfy a Gaussian bound in the space variable. However, we cannot expect such an
exponential decay of solutions to (1.1) if α < 2. Even for linear equations, in particular
for the Lévy semigroup, the best we can obtain is an algebraic decay rate |x|−d−α. This
is an heuristic explanation of seemingly very weak convergence properties obtained in
Theorem 5.1.
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