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Abstract. A geometric quantization of a Kähler manifold, viewed as a symplectic manifold,
depends on the complex structure compatible with the symplectic form. The quantizations form
a vector bundle over the space of such complex structures. Having a canonical quantization would
amount to finding a natural (projectively) flat connection on this vector bundle. We prove that
for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such
connection does not exist. This is a consequence of a “no-go” theorem claiming that the entire
Lie algebra of smooth functions on a compact symplectic manifold cannot be quantized, i.e., it
has no essentially nontrivial finite-dimensional representations.

1. Introduction. The quantization of a classical mechanical system is, in its most
ambitious form, a representation R of some subalgebra A of the Lie algebra of smooth
functions by self-adjoint operators on a Hilbert space Q. The Lie algebra structure on
the space of functions is given by the Poisson bracket and the representation is usually
assumed to satisfy some extra conditions which we will discuss later. It is generally
accepted, however, that such a quantization does not exist when the algebra A is too
large. (See, e.g., [Atk, Av1, Av2], and also [GGT, GGG] for a detailed discussion. We
will return to this subject later.) In other words, the quantization problem in the strict
form stated above has no solution. Results claiming that there are no such quantizations
are often referred to as no-go theorems.

Thus, one often tries either to just construct the Hilbert space Q, without quantizing
the functions, or to only find the algebra of “operators” representing A without a Hilbert
space on which they would act. The latter program, which can successfully be carried
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out on symplectic manifolds, is called deformation quantization (see [We] for a review)
and we are not concerned with it here. The former question, addressed by geometric
quantization (see, e.g., [Wo]), is the subject of the present paper.

One of the main problems with geometric quantization, arising already for nice sym-
plectic manifolds such as S2, is that the construction of the geometric quantization space
inevitably involves an extra structure (polarization). This leads to the question of whether
the quantization spaces constructed for different polarizations can be naturally identified.
(Under rather weak additional hypotheses the spaces are isomorphic.) In this paper we
show that the answer to this question is negative for a broad class of manifolds including
S2. The problem of geometric quantization has no solution either!

Before we recall what geometric quantization is and outline our proof, let us return
to the no-go theorems. The first such theorem is a classical result due to Groenewold and
Van Hove stating that the algebra of polynomials on R2n has no representation that would
restrict to the Schrödinger representation of the Heisenberg algebra, i.e., the algebra of
linear functions. (The Schrödinger representation is the unique unitary representation of
the Heisenberg group; see, e.g., [LV] for more details and further references.) This result
lies at the foundation of the general principle that a sufficiently large algebra of functions
A cannot be quantized. (See [Atk, Av1, Av2, Gr, GGH, GGT, GGG], and also Section 3
for more details.)

The self-adjoint representations of A are required to satisfy certain extra conditions
to warrant the title “quantizations”. Although there is no consensus on what the condi-
tions are, their main goal is to ensure that the representation is “small”. For instance, in
the majority of examples, the conditions include that the representation of the constant
unit function is constI, where const 6= 0. (This is the case with the Groenewold–Van
Hove theorem.) Such conditions exclude representations like the one arising from the
natural action of the group of symplectomorphisms on the space of L2-functions. When
the symplectic manifold M in question is compact (and connected), its quantization is
usually assumed to be finite–dimensional with the dimension equal to the Riemann–Roch
number RR(M). A sufficiently large Lie algebra A of functions on M has no “essentially
non-trivial” finite–dimensional representations, i.e., each such representation factors thro-
ugh a representation of R = A/{A,A}. This rather well-known fact alone is sufficient to
conclude that under some natural hypotheses about the manifold, M cannot be quanti-
zed in a canonical way. In other words, the geometric quantization spaces obtained for
different polarizations cannot be naturally identified. (See Section 3).

We now return to the question of naturally identifying various quantization spaces.
Our approach is inspired by recent results on quantization of moduli spaces of flat con-
nections. (See, e.g., [ADPW, Ati, Hi] and references therein.) Given an integral compact
symplectic manifold (M,ω), we consider the space J of all complex structures com-
patible with ω (i.e., complex polarizations). Then, for every J ∈ J , the quantization
QJ(M,k) is defined to be the space of J-holomorphic sections of the pre-quantum line
bundle Lk. We take k sufficiently large to ensure that a vanishing theorem applies, so
that dimQJ(M,k) = RR(M,kω). (By definition, L is a line bundle with a connection ∇
whose curvature is ω. The pair, ∇ and J , gives rise to the structure of a holomorphic line
bundle on L, and so on Lk.)
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Fix k, and consider the collection {QJ(M,k)}j∈J as a vector bundle E over J . Here we
ignore the fact that the lower bound on k necessary for the vanishing theorem may depend
on J . (This leaves open the interesting question: Is there a universal J-independent
bound?) An identification of quantizations (or their projectivizations) is the same as a
(projectively) flat connection on E. The identification is natural if it is equivariant with
respect to the group of symplectomorphisms Ham. Strictly speaking this group does not
act on E, but it has a central extension Cont0 which acts. The Lie algebra of Cont0 is
the algebra A = C∞(M) with respect to the Poisson bracket { , }. (The group Cont0 is a
subgroup of the group of contactomorphisms of the unit circle bundle associated with L.)

If it existed, a (projectively) flat Cont0-invariant connection would give rise to a
projective representation R of A on the fiber of E. Since this fiber is finite–dimensional,
the representation R must factor through A/{A,A} = R as we pointed out above. On the
other hand, such a representation R cannot exist if for some J0 ∈ J , the Kähler manifold
(M,ω, J0) has a continuous group G of Hamiltonian symmetries. For R would restrict
to a non-trivial representation of the Lie algebra of G on QJ0(M,k). This contradicts
the fact that R factors through A/{A,A}. Hence, a Cont0-invariant (projectively) flat
connection does not exist for a broad class of manifolds M including homogeneous spaces
and, in particular, S2. The details are given in Section 2.

Of course, it may well happen that J is empty. In this case, instead of working with
holomorphic sections of Lk, one considers the index of the SpinC-Dirac operator D or
of the rolled-up ∂̄ operator, [Du]. The index is a virtual space, which still has the right
dimension RR(M,kω). For ∂̄ and D there are again vanishing theorems (see [GU] and
[BU]), ensuring that the index is a genuine vector space QJ(M,k). This space is equal to
H0(M,O(Lk)) when the manifold is Kähler and k is large enough. Both of the operators
depend on a certain extra structure on M , e.g., an almost complex structure for ∂̄. These
extra structures form a space serving, similarly to J , as the base of the index vector
bundle E, and the above argument applies word-for-word. (This can be viewed as an
answer to the question asked in [Fr].)
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tal, Victor Guillemin, Leonid Polterovich, and Jean-Claude Sikorav for useful discussions.
The first author would like to thank the Tel Aviv University for its hospitality during
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2. Natural flat connections on the vector bundle of quantizations. Let M
be a compact Kähler manifold with symplectic form ω, which is assumed throughout this
section to represent an integral cohomology class. As usual in geometric quantization, fix
a Hermitian line bundle L over M with c1(L) = [ω] (the prequantization line bundle) and
a Hermitian connection on L whose curvature is ω. Consider the space J of all complex
structures J on M which are compatible with ω in the sense that ω(·, J ·) is a Riemannian
metric on M . For every J ∈ J , the connection on L gives rise to the structure of a
holomorphic line bundle on L. Then, given a sufficiently large k, the vanishing theorem
applies to the line bundle Lk for a fixed J ∈ J . In other words, Hq(M,O(Lk)) = 0 when
q > 0 and k ≥ k0, where k0 depends on J . Thus, we can take the space of J-holomorphic
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sections H0(M,O(Lk)), k ≥ k0, of Lk as the quantization of M . Denote it by QJ(M,k)
or just QJ(M) when k is fixed or irrelevant.

Let J0 be a C1-small neighborhood of a fixed complex structure J0 ∈ J . It is not
difficult to see that one can take the same k0 for all J ∈ J0. Note that sometimes the
same is true for the entire space J . For example, this is the case when dimRM = 2.
Fixing k ≥ k0, we obtain a vector bundle E over J0 whose fiber over J is QJ(M,k).

Let Ham be the group of Hamiltonian symplectomorphisms of M . The elements of
Ham are symplectomorphisms which can be given as time-one flows of time-dependent
Hamiltonians. It is clear that Ham acts (locally) on J0.

To lift this action to E, consider the group Cont of diffeomorphisms of the unit circle
bundle U of L which preserve the connection form θ. Clearly, θ is a contact form on U .
Thus, Cont consists of those contact transformations which preserve the contact form θ

itself (not just the contact field), and which, as a consequence, are also bundle automor-
phisms. Let Cont0 be the identity connected component in Cont , i.e., the elements of
Cont0 are isotopic to id in Cont . Every element of Cont0 naturally covers a symplecto-
morphism of M , which belongs to Ham. The projection Cont0 → Ham is surjective, and
it makes Cont0 into a one-dimensional central extension of Ham by U(1). The Lie algebra
of Cont0 is just C∞(M). Since Cont0 acts on L, and so on Lk, it also acts (locally) on
E and the latter action is a lift of the Ham-action on J0. A connection on E is said to
be natural if it is invariant under the Cont0-action.

Now we are in a position to state our main observation, which will be proved in the
next section:

Theorem 1. Assume that the stabilizer G of J0 in Ham has positive dimension and
that the infinitesimal representation of G on QJ0(M) is non-trivial. Then there is no
natural (projectively) flat connection on E.

When M is two-dimensional, the theorem applies to M = S2 only, showing that the
geometric quantizations of S2 for different complex structures cannot be identified. Note
that there are many (projectively) flat connections on E, for J and J0 are contractible,
and many natural connections on E, but there is no connection which is simultaneously
flat and natural.

Remark 1. 1. As mentioned above, Theorem 1 extends word-for-word to compact
symplectic, not necessarily Kähler, manifolds. In this case, J is the space of almost-
complex structures compatible with the symplectic structure and J0 is a neighborhood
of a given structure J0 in J . The quantization bundle E over J0 is defined using the
vanishing theorems for either the SpinC-Dirac operator D or the rolled-up ∂̄ operator
(see [GU, BU]). Note also that in this case J is a contractible Fréchet manifold.

2. What makes this theorem somewhat surprising is a recent collection of constructions
of projectively flat connections related to topological quantum field theory. Axelrod–Della
Pietra–Witten [ADPW], and following them Atiyah [Ati] and Hitchin [Hi], constructed
quantizations QJ of the moduli spaceMΣ of flat vector bundles over a Riemann surface
Σ. Here the additional polarization data is a complex structure on Σ. Their connections
are natural with respect to transformations of MΣ induced by those of Σ, and not with
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respect to all of Cont0(MΣ). Note also that our Theorem 1 seems to contradict what is
said in [Ati], page 34–35.

3. Hodge theory for a compact manifold X associates the vector space Hp
g of g-

harmonic p-forms on X to each Riemannian metric g on X. This space is canonically
isomorphic to the p-th real cohomology of X. Consequently, Hodge theory defines a flat
connection on the vector bundle Hp →M over the space M of Riemannian metrics on
X. This connection is Diff (X) invariant. As a result, we have an induced representation
of Diff (X) on each Hp

g . Of course, this representation is trivial on the identity component
Diff 0(X) of X. Consequently, this induces the usual representation of the mapping class
group Diff (X)/Diff 0(X) on cohomology.

4. When the local action of Ham on J0 is free, it induces a projectively flat connection
along the orbit of Ham. This connection is natural but does not seem to be of any interest
for quantization.

3. No-go Theorems. Theorem 1 is an easy consequence of the general no-go the-
orems discussed in this section. Let (M,ω) be a connected symplectic manifold. Now ω

is not assumed to be integral and M need not be compact. Let A = C∞c (M) be the
Lie algebra of smooth compactly supported functions on M with respect to the Poisson
bracket. Denote by A0 the commutant A0 = {A,A} of A. In fact, A0 is just the algebra
of functions with zero mean and, therefore, A0 is a maximal ideal of codimension one.

Theorem 2. The commutant A0 is the only ideal of finite codimension in the Lie
algebra A.

This theorem has a long history. For a compact manifold, it is due to Avez, [Av2], who
proposed a very interesting proof relying on the properties of the symplectic Laplacian. An
algebraic version of Theorem 2, which applies to a broad class of Poisson algebras, has
been obtained by Atkin [Atk]. This class includes the algebra of compactly supported
functions and the algebra of (real) analytic functions when (M,ω) is (real) analytic.
Furthermore, it appears that the reasoning and the key results of [Atk] (see Theorem 6.9
and Section 9) apply to the Poisson algebra of polynomial functions on a coadjoint orbit
for a compact semisimple Lie algebra, which would give a generalization of the no-go
theorem of [GGH]. A simple direct proof of Theorem 2 can be obtained by adapting the
methods of [Om] (Chapter X), which, in turn, go back to Shanks and Pursell [SP].

Remark 2. Theorem 2 is just a reflection of the general fact that the algebra A,
like many infinite-dimensional algebras of vector fields, is in a certain sense “simple”.
This assertion should not be taken literally – A has many ideals of infinite codimension
(functions supported within a given set) – but the Lie group of A is already simple in
the algebraic sense [Ba]. (For more details see [Av1, Av2, ADL, Om, Atk], and references
therein.)

In many of the papers quoted above, in varying generality, the following description of
maximal ideals in A is given. For any x ∈M , let Ix be the ideal of A formed by functions
vanishing at x together with all their partial derivatives. It is well known and easy to see
that Ix is a maximal ideal. In other words, the Lie algebra of formal power series with
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Poisson bracket is simple. These and A0 are the only maximal ideals in A, i.e., every
maximal ideal is either A0 or Ix for some x.

Corollary 3. Any nontrivial finite-dimensional representation of A factors through
a representation of A/A0 = R.

Thus, if a quantization of A is to be understood as just a finite-dimensional rep-
resentation, we conclude that there are no “non-trivial” quantizations. It is also worth
noticing that the corollary still holds for representations R in a Hilbert space by bounded
operators, provided that when M is compact R(1) is a scalar operator [Av2].

Now we are in a position to prove Theorem 1 by reducing it to the no-go theorem
(Theorem 2).

Proof. Arguing by contradiction, assume that there is a natural projectively flat
connection on E. This connection will be thought of as a flat connection on the projecti-
vization bundle PE of E. Our goal is to construct, using this connection, a representation
of A = C∞(M), the Lie algebra of Cont0, on the fiber PQ = PQJ0(M) whose existence
would contradict Theorem 2.

For f ∈ A, denote by φ̃tf the (local) flow on E generated by f in time t and by φtf the
(local) flow on J0 induced by the Hamiltonian flow of f on M in time t. (In fact, φ̃tf is
induced by the contact flow of f on the unit circle bundle.) Let Π(J1, J2) be the parallel
transport from the fiber of PE over J1 to the fiber over J2. Since the connection on PE is
flat, this operator is well defined. Finally, define a linear homomorphism R(f):PQ→ PQ

as

R(f)(v) =
d

dt
Π

(
φtf (J0), J0

)
φ̃tf (v)

∣∣∣∣
t=0

,

where v ∈ PQ. In other words, v is moved to the fiber over φtf (J0) using the group action
and then transported back to PQ by means of the connection. We claim that R is a
(projective) representation of A in Q, i.e.,

R({f, g}) = [R(f), R(g)]

in the Lie algebra of the group of projective transformations of Q.
To see this, recall that

φ̃τ
2

{f,g} = φ̃τf φ̃
τ
g φ̃
−τ
f φ̃−τg +O(τ3).

Furthermore, Π(φτ
2

{f,g}(J0), J0) is equal, up to O(τ3), to the parallel transport from the
fiber over φτfφ

τ
gφ
−τ
f φ−τg (J0) to PQ. Thus,

R({f, g}) = lim
τ→0

1
τ2

Π
(
φτfφ

τ
gφ
−τ
f φ−τg (J0), J0

)
φ̃τf φ̃

τ
g φ̃
−τ
f φ̃−τg .

Let us now focus on [R(f), R(g)]. By definition,

[R(f), R(g)] = lim
τ→0

1
τ2

(commutator),

where

commutator = {(Π(φτf (J0), J0)φ̃τf )(Π(φτg(J0), J0)φ̃τg)

×(Π(φτf (J0), J0)φ̃τf )−1(Π(φτg(J0), J0)φ̃τg)−1}.
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To calculate the commutator, we use the assumption that the connection is natural, i.e.,
Cont0-invariant. Explicitly, this assumption means that

Π(J1, J2)φ̃th = φ̃thΠ(φthJ1, φ
t
hJ2)

for any h ∈ A and t ∈ R. Observing also that Π(J1, J2)−1 = Π(J2, J1), we transform the
commutator on the right hand side of the expression for [R(f), R(g)] as follows:

commutator = Π
(
φτf (J0), J0

)
φ̃τfΠ

(
φτg(J0), J0

)
φ̃τg

×φ̃−τf Π
(
J0, φ

τ
f (J0)

)
φ̃−τg Π

(
J0, φ

τ
g(J0)

)
= Π

(
φτf (J0), J0

)
Π

(
φτfφ

τ
g(J0), φτf (J0)

)
φ̃τf φ̃

τ
g

×φ̃−τf Π
(
J0, φ

τ
f (J0)

)
φ̃−τg Π

(
J0, φ

τ
g(J0)

)
= Π

(
φτf (J0), J0

)
Π

(
φτfφ

τ
g(J0), φτf (J0)

)
×Π

(
φτfφ

τ
gφ
−τ
f (J0), φτfφ

τ
g(J0)

)
φ̃τf φ̃

τ
g φ̃
−τ
f φ̃−τg

×Π
(
J0, φ

τ
g(J0)

)
= Π

(
φτf (J0), J0

)
Π

(
φτfφ

τ
g(J0), φτf (J0)

)
×Π

(
φτfφ

τ
gφ
−τ
f (J0), φτfφ

τ
g(J0)

)
×Π

(
φτfφ

τ
gφ
−τ
f φ−τg (J0), φτfφ

τ
gφ
−τ
f (J0)

)
×φ̃τf φ̃τg φ̃−τf φ̃−τg

= Π
(
φτfφ

τ
gφ
−τ
f φ−τg (J0), J0

)
φ̃τf φ̃

τ
g φ̃
−τ
f φ̃−τg .

Comparing this with the formula for R({f, g}), we see that R is indeed a representation.

4. Concluding remarks. One natural connection on E seems to be of a particular
interest. For the sake of simplicity, we describe it for the case when M is a Kähler manifold
and, thus, J0 is the space of complex structures compatible with a fixed symplectic form.

Let s be a section of E and J(t) a path in J0. Observe that every fiber EJ is a linear
subspace in the linear space C∞(M ;L) of smooth sections of the prequantization line
bundle L over M . We set

∇J̇(0)s(0) = Ps′(0),

where s′(0) ∈ C∞(M ;L) is the derivative of s(J(t)) with respect to t at t = 0 and P is
the orthogonal projection to EJ(0), the space of holomorphic sections of L for J(0). It is
easy to check that ∇ is indeed a connection. (A similar connection can be defined for the
vector bundle of quantizations in the almost complex case.) The following two questions
on the properties of ∇ appear interesting already for M = S2:

• Is there an explicit expression for the curvature of ∇?

The curvature of ∇ evaluated on the vectors ∂/∂t1 and ∂/∂t2 tangent to a two-parameter
family J(t1, t2) is equal, as is easy to see, to −[∂P/∂t1, ∂P/∂t2] where P = P (t1, t2) is
the orthogonal projection to EJ(t1,t2). (This holds only when M is Kähler.) By an explicit
expression we mean a formula which can be used, for example, to see directly that the
curvature is nonzero. From a different perspective Theorem 1 shows that the vector bundle



76 V. L. GINZBURG AND R. MONTGOMERY

E → J0 is not Cont0-equivariantly trivial. Then an explicit expression for the curvature
may yield some information on the Cont0-equivariant Chern classes of E.

To state the second question, inspired to some extend by the results of [Gu], consider
the curvature for E with fiber QJ(M,k) over J as a function of k.

• Is it true that the curvature of ∇ goes to zero as k →∞?
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