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1. Introduction. Poisson tensors in dimension 2 have the local form f(x, y)∂/∂x ∧
∂/∂y. So the study of their singularities reduces to the study of singularities of the
function of two variables f. In that direction the essential of the work was done by V.I.
Arnol’d ([A]).

The task becomes more difficult in dimension 3, where Jacobi’s identity begins to give
non trivial constraints. Fortunately, in that dimension, we can use what I will call the Ω
trick : choose a volume form Ω (in this paper we always work locally); then we consider
the isomorphism

[ : A 7→ iAΩ, Vp → Λn−p,

where Vp is the set of p-vectors (contravariant skew-symmetric tensors of order p) and
Λn−p is the set of (n− p)-forms on our manifold. When the dimension n of the manifold
is 3, it is well known that [ exchanges Poisson vectors and integrable 1-forms, i.e. 1-forms
ω such that ω ∧ dω = 0. Moreover the symplectic foliation of the Poisson tensor Π is
exactly the foliation associated with [(Π). So, in that case, the study of singularities of
Poisson structures is equivalent to the study of singularities of integrable 1-forms. For
the latter a considerable litterature is available: see, for example, [W-R], [Ku], [C-LN],
[C-C]. . .

For higher dimensions the Ω trick doesn’t work any more for general Poisson tensors.
However it still works if we replace Poisson tensor by their generalizations: Nambu tensors.

In the following paragraph we will recall the Nambu formalism. In [D-N] we had shown
that, by the Ω trick, Nambu tensors correspond to what was called by different authors
integrable p-forms. We had also given a classification of linear Nambu tensors which are
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not Poisson and some linearization results. In this paper we will extend these results to
Poisson structures with maximal rank 2. We will also give a more general “normal form”
result for Nambu tensors with “type 2” linear part.

2. Nambu structures. Following an idea of Y. Nambu ([Na]), L. Takhtajan gave in
1994 ([T]) a formalism which generalizes the Poisson bracket: let M be a manifold and
A the algebra of smooth functions on M ; he defines a Nambu structure of order r on M
as a r-linear skew-symetric map

A× · · · ×A→ A, (f1, . . . , fr) 7→ {f1, · · · , fr},

which satisfies properties

{f1, . . . , fr−1, gh} = {f1, . . . , fr−1, g}h+ g{f1, . . . , fr−1, h} (L)

{f1, . . . , fr−1, {g1, . . . , gr}} =
r∑
i=1

{g1, . . . , gi−1, {f1, . . . , fr−1, gi}, gi+1, . . . , gr} (FI)

for every f1,. . . ,fr−1, g, h, g1,. . . ,gr in A.

In the above definition (L) stands for Leibniz property, (FI) stands for fundamental
identity or for Filippov identity (see [M-V-V]). For r = 2, (FI) is nothing but Jacobi
identity, so a Nambu structure of order 2 is a Poisson structure.

Identity (L) implies that Xf1···fr−1 : g 7→ {f1, . . . , fr−1, g} is a dervivation of A,
hence a vector field on M : it is, by definition, the Hamiltonian vector field associated to
f1 · · · fr−1.

Identity (L) implies also that there is a r−vector Λ such that

{f1, . . . , fr} = Λ(df1, . . . , dfr).

This Λ is called a Nambu tensor.

3. Foliation. Identity (FI) implies that Hamiltonian vector fields give an integrable
distribution, like in the Poisson’s case. So we have on M a singular foliation which gener-
alizes symplectic foliations of Poisson manifolds. This work is essentially devoted to the
study of the singularities of such foliations.

In 1996 appeared three (independent) proofs of the following surprising result.

Local Triviality Theorem ([G], [A-G], [N]). Let Λ be a Nambu tensor of order
r > 2. Near every point where Λ doesn’t vanish there are local coordinates x1, . . . , xn such
that

Λ =
∂

∂x1
∧ . . . ∧ ∂

∂xr
.

In particular this theorem shows that there are only two types of leaf for the foliation
associated to Λ: either it reduces to a point (zero of Λ) or it is r-dimensional.

This leads to the idea that Nambu structures of order r > 2 are, in fact, generalization
of Poisson structures of maximum rank 2.
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Vocabulary. In the following a Nambu structure (resp. tensor) of order r will be
simply a Nambu structure (resp. tensor) for r > 2 and a Poisson structure (resp. tensor)
of maximal rank 2 for r = 2.

4. Ω trick: covariant characterization of Nambu structures. Here we suppose
that we have a volume form Ω on our manifold M. We put ω := iΛΩ and we have the
following result ([D-N]).

Theorem 2. Suppose Λ is a r-vector on M such that either r > 2 or r = 2 but, in
this case, maximal rank of Λ is 2. If r is equal to the dimension n of M , then Λ is always
a Nambu tensor. When r < n, Λ is a Nambu tensor if and only if we have

iAω ∧ ω = 0, iAω ∧ dω = 0

for every (n− r − 1)-vector A.

The first relation in this theorem says that ω is decomposable at each point, the second
is an “integrability” condition. In the case r = n−1, ω is nothing but an integrable 1-form.
In the case r < n−1, ω is what was called an integrable (n−r)-form by different authors
(see e.g. [Me]). Roughly speaking, this theorem 2 says that a Nambu structure (or a
Poisson structure of maximal rank 2) is exactly the “dual” of an integrable p−form.

The idea of the proof of the last theorem is as follows. First we remark that Λ is
Nambu if, and only if, it is Nambu when restricted to the open set U where it is different
from zero. Then apply local triviality theorem near each point of U to obtain the “only
if” part. For the “if” part, use the relations to obtain ω = θ1 ∧ · · · ∧ θr where θ1, . . . , θr
is an integrable system of 1-forms near any point of U. Then apply Frobenius theorem.

As a corollary all classical results concerning these integrable forms pass to Nambu
structures.

5. Normal form problem. Suppose m is a zero of the Nambu tensor Λ. In a system
of local coordinates (vanishing at m) we have a Taylor expansion

Λ = Λ(1) + Λ(2) + · · ·

where Λ(k) consists of the terms of order k. Using the covariant characterization of Nambu
tensors, we can show that Λ(1) is a linear Nambu tensor (it gives a Nambu structure such
that bracket of linear functions is a linear function). It is uniquely determined up to linear
isomorphism and is called the linear part of Λ at m.

The linearization problem is: is it possible to find local coordinates which kill higher
order terms Λ(2), Λ(3),. . . ? More generally, when we cannot linearize, we can try to find
normal forms like in the theory of vector fields (which can be considered as Nambu
tensors of order 1).

Before giving results for that problem we must understand better what is a linear
Nambu structure.

6. Linear Nambu structures. For r = 2 there is a 1-1 correspondance between
linear Poisson structures and Lie algebras: each linear Poisson structure { , } on a vector
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space V corresponds to the Lie algebra structure [ , ] on V ∗ given simply by [α, β] :=
{α, β}.

Similarly we can define a Nambu-gebra structure (or a Filippov algebra structure) of
order r on the vector space E as an r-linear skew-symmetric map

(v1, . . . , vr) 7→ [v1, . . . , vr], E × · · · × E → E

which satisfies

[v1, . . . , vr−1, [u1, . . . , ur]] =
r∑
i=1

[u1, . . . , ui−1, [v1, . . . , vr−1, ui], ui+1, . . . , ur]

for every v1,. . . ,vr−1, u1,. . . ,ur in E.

A linear Nambu structure is a Nambu structure on a vector space V such that the
bracket of linear functions is always linear. So, exactly as in the Poisson’s case, a linear
Nambu structure on V determines a Nambu-gebra structure on V ∗.

The strange thing is that the converse is false for r > 2.
For example, given two Nambu-gebra structures of order r, [ , . . . , ]′ on V ′ and

[ , . . . , ]′′ on V ′′, we can construct their direct product:

[(v′1, v
′′
1 ), . . . , (v′r, v

′′
r )] := ([v′1, . . . , v

′
r]
′, [v′′1 , . . . , v

′′
r ]′′).

But the corresponding operation is forbidden for linear Nambu structures because, as a
result of the local triviality theorem, a Nambu tensor must be decomposable (the sum of
two decomposable tensors is, in general, not decomposable).

There is another interesting construction of Nambu-gebras: suppose [. . .]0 is a Nambu-
gebra structure of order r on the linear space V ; we construct a Nambu-gebra structure
[. . .] of order r + 1 on V ⊕Ke0 (K is the scalar field) if we impose

[v1, . . . , vr, e0] := [v1, . . . , vr]0, [v1, . . . , vr+1] := 0,

the vi being in V. Using this construction, we can start with a Lie algebra, for example,
to obtain Nambu-gebras of order 3. If this Lie algebra corresponds to a non-decompos-
able Poisson tensor, the linear tensor corresponding to this Nambu-gebra is also non-
decomposable: This gives examples of Nambu-gebras (in dimension 5, 6. . . ) which don’t
correspond to linear Nambu structures.

We have the following classification of linear Nambu structures.

Theorem 3. Let Λ be a linear Nambu tensor of order r (we suppose either r > 2 or
r = 2 but with 2 as maximal rank). Then, up to a linear isomorphism, Λ has one of the
following two types:

Type 1: Λ = ±x1∂/∂x2 ∧ . . .∧ ∂/∂xr+1 + · · · ± xu∂/∂x1 ∧ . . .∧ ∂/∂xu−1 ∧ ∂/∂xu+1 ∧
. . .∧∂/∂xr+1 +xr+2∂/∂x1∧ . . .∧∂/∂xu∧∂/∂xu+2∧ . . .∧∂/∂xr+1 + · · ·+xr+s+1∂/∂x1∧
. . . ∧ ∂/∂xu+s−1 ∧ ∂/∂xu+s+1 ∧ . . . ∧ ∂/∂xr+1 with 0 ≤ u+ s ≤ r + 1.

Type 2: Λ = ∂/∂x1 ∧ . . . ∧ ∂/∂xr−1 ∧ X where X is a linear vector field which is
independent of x1, . . . , xr−1 (and can be put in Jordan normal form).

To understand better this theorem we can rewrite type 1 in the form

Λ =
r+1∑
i=1

li∂/∂x1 ∧ . . . ∧ ∂/∂xi−1 ∧ ∂/∂xi+1 ∧ . . . ∧ ∂/∂xr+1
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where li are (precise) linear functions. Choose Ω = dx1 ∧ · · · ∧ dxn: by the Ω trick Λ
becomes

dxr+2 ∧ . . . ∧ dxn ∧ α

with α =
∑
i±lidxi (the precise form of Λ corresponds to the fact that we can choose

for α the precise form d(±x2
1/2 + · · · ± x2

u/2± xu+1xr+2 + · · · ± xu+sxr+s+1)).
For type 2, we can write X =

∑n
i=r ki∂/∂xi, where the ki are linear functions. Then

by the Ω trick, Λ corresponds to the (n− r)-form
n∑
i=r

±kidxr ∧ · · · ∧ dxi−1 ∧ dxi−1 · · · ∧ dxn.

So we observe an interesting duality between type 1 and type 2: type 2 are decom-
posable exactly as the duals of type 1, type 1 are in general non-decomposable and have
an analogous form as the duals of type 2. For type 1 the covariant form is simpler: it
reduces to the 1-form α. For type 2 the contravariant form is simpler: it reduces to the
vector field X.

In [D-N] there is a proof of this theorem for the case r > 2. The same proof works
also for the case r = 2. Its principle is as follows. Use the covariant characterization
of paragraph 4. Write ω(= iΛΩ) in the form

∑
i xiωi where ωi are constant (n − r)-

forms. The decomposability of ω leads to the decomposability of each ωi and also to the
decomposability of ωi + ωj . If we denote by Vi the span of ωi when it is non trivial, we
obtain that each Vi has dimension r and that Vi ∩ Vj has at least dimension r − 1. So a
linear algebra exercise gives that there are two possibilities: either the intersection of the
Vi has dimension r−1 or they are all included in a (r+1)-dimensional subspace. The first
case leads to ω = dxr+2 ∧ . . . ∧ dxn ∧ α where α is a linear 1-form in a good coordinates
system; the second case leads to ω =

∑
i kidxr ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn where the

ki are linear functions. Then the integrability condition permits to give the precise forms
of α and the ki which leads respectively to type 1 and type 2.

Foliations corresponding to linear Nambu structures of type 2 are simply “suspension
of phase portraits” of linear vector fields (X). In the type 1 case the foliation is given by
xi=constant, for i = r + 2,. . . ,n and α = 0.

Remark. This last theorem gives, as a corollary, the classification of Lie algebras with
coadjoint orbits of dimension at most 2 ([A-C-L]) and Nambu linear tensors of order n−1
(which appears, for example, in [M-V-V]).

7. Normal forms. A type 1 linear Nambu structure is called regular if we have
u = r, s = 0; this means that it is isomorphic to Λ =

∑r+1
j=1 ±xj∂/∂x1 ∧ . . . ∧ ∂/∂xj−1 ∧

∂/∂xj+1 ∧ . . . ∧ ∂/∂xr+1. We will say that it is elliptic if the ± in that formula are all
equal.

A regular type 1 linear Nambu structure with r = 2 corresponds to a Lie algebra
which is a direct product of sl(2) or so(3) (so(3) in the elliptic case) with a commutative
one.

Theorem 4. Let Λ be a Nambu tensor which vanishes at a point m (if it is a Poisson
tensor we impose that its maximal rank is 2). If it admits a linear part at m which is
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type 1 and regular we can formally linearize it (we can linearize up to flat terms). If it
is elliptic we can linearize up to a non-zero factor. If all the data are analytic we can
linearize analytically up to a non-zero factor.

The proof is a slight extension of the one we gave in [D-N] for the case of Nambu
structures of order r > 2; it uses classical technics from the study of integrable forms.

A type 2 linear Nambu structure ∂/∂x1 ∧ . . . ∧ ∂/∂xr−1 ∧X is called regular if the
trace of X is different from 0. Remark that if ∂/∂x1 ∧ . . . ∧ ∂/∂xr−1 ∧ X and ∂/∂y1 ∧
. . . ∧ ∂/∂yr−1 ∧ Y are equivalent, they are simutaneously regular or non-regular.

Theorem 5. Let Λ be a Nambu tensor which vanishes at a point m (if it is a Poisson
tensor we impose that its maximum rank is 2). If it admits a linear part at m which is type
2 and regular, there are local coordinates which give to it the form ∂/∂x1∧. . .∧∂/∂xr−1∧X
where X is a vector field independent of x1, . . . , xr−1.

Proof. First we will recall the BV-structure of the set of p-vectors ([K], [KS],. . . ). It
is an instance of the Ω trick which works as follows: choose a volume form Ω and consider
the operator

DΩ : Vp → Vp−1

defined by DΩ := ] ◦ d ◦ [ where ] is the inverse of [ (defined in the introduction). Then
([K]) the Schouten bracket of the p-vector A and the q-vector B satisfies

[A,B] = (−1)p(DΩ(A ∧B)− (DΩA) ∧B − (−1)pA ∧ (DΩB)).

Now, if Λ is a Nambu tensor, DΩ(Λ) will be called the curl of Λ (relatively to Ω). If
Π is a Poisson structure, the curl (DΩ(Π)) of Π plays a fundamental role in the study of
its singularities. To my knowledge, it was first introduced by C. Camacho and A. Lins
Neto ([C-LN]) for the study of integrable 1-forms in dimension 3 (they use the converse
of the Ω trick). Later we remark in [D-H] that, although there is no evident analog in
the context of integrable 1-forms for higher dimensions, this curl can be defined for any
Poisson structure, whatever the dimension is. It gives, in general, a non trivial infini-
tesimal isomorphism of the Poisson structure (unique up to addition of a Hamiltonian
vector field). We used it in [D-H] and [D] to classify quadratic Poisson structures and in
[D-Z] to obtain normal forms for 3-dimensional Poisson structures. In [W] A. Weinstein
shows that this curl plays an important role even when there are no singularities; he also
rebaptises it modular vector field.

The curl of a Nambu tensor of order r is a (r − 1)-tensor. Using the local triviality
theorem we prove the following lemma.

Lemma. Let Λ be a Nambu tensor and C its curl relatively to a fixed volume form.
Then we have

(i)- C is a Nambu tensor (a vector field if r = 2)
(ii)- iγC ∧ Λ = 0
(iii)- [iγC,Λ] = 0

for any (r − 2)-form γ.

Note that we have only (iii), i.e. [C,Λ] = 0, in the Poisson case; (ii), i.e. C ∧ Λ = 0,
works only if the maximal rank is 2.
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To finish the proof of the theorem we proceed now as follows. We choose coordinates
y1, . . . , yn such that Λ(1) = ∂/∂y1∧ . . .∧∂/∂yr−1∧Y, (Y linear) and choose volume form
Ω = dy1∧ . . .∧dyn. Then the curl of Λ relatively to it has the form C = C(0) +C(1) + · · · ,
where C(k) is the curl of Λ(k+1). Moreover the fact that Y has a non zero trace (regularity
hypothesis) implies C(0) 6= 0. So we obtain that C is different from zero at m and we can
apply the local triviality theorem to get

C =
∂

∂x1
∧ · · · ∧ ∂

∂xr−1

in a new system of local coordinates. Then we can apply (ii) of the lemma to get Λ =
∂/∂x1 ∧ . . .∧ ∂/∂xr−1 ∧X where X is a vector field. Finally we apply (iii) of the lemma
to get that X is independent of x1, . . . , xr−1.

This last theorem implies that the normal forms of Nambu tensors with regular type
2 linear parts reduce to normal forms for vector fields (see [Ma], [A-I]). For example,
if the eigenvalues λ1, . . . , λn−r of the linear part of the vector field X don’t satisfy any
“resonance relation”

λi =
n−r∑
j=1

njλj ,

i = 1, . . . , n − r, where nj are non-negative integers then the Nambu tensor can be
linearized.
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Montpellier (1992).
[D-H] J. P. Dufour and A. Haraki, Rotationnel et structures de Poisson quadratiques, C.

R. Acad. Sci. Paris 312 I (1991), 137-140.
[D-N] J. P. Dufour and T. Z. Nguyen, Linearization of Nambu structures, to appear in

Compositio Mathematica.
[D-Z] J. P. Dufour and M. Zhitomirskii, Singularities and bifurcations of 3-dimensional

Poisson structures, preprint.
[G] Ph. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37

(1996), 103–116.



68 J.-P. DUFOUR

[K] J. L. Koszul, Crochets de Schouten-Nijenhuis et cohomologie, Astérisque (hors série)
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