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Abstract. The aim of this paper is to give an overview concerning the problem of lineariza-
tion of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we
apply those cohomological techniques to star products.

1. Introduction. The notion of Poisson structure appears in the study of Hamil-
tonien systems in mechanics. It generalizes the notion of symplectic structure. If the rank
of a Poisson tensor Λ on a manifold M , is constant and equals the dimension of M then
Λ is invertible and its inverse defines a symplectic structure on M . Darboux’s theorem
claims that two same dimensional symplectic manifolds are isomorphic. But there is no
similar result for general Poisson structures.

First of all to study locally a Poisson structure we apply Weinstein’s decomposition
theorem [15]: locally the Poisson manifold (M,Λ) is isomorphic to a Poisson product of
a symplectic manifold and a Poisson manifold which vanishes at one point. So the local
study of Poisson structures reduces to the study of Poisson structures which vanish at
one point.

A Poisson structure on a manifold M is a Lie bracket on C∞(M), denoted by { , } :
C∞(M)× C∞(M)→ C∞(M) and satisfying the Leibniz rule:

{f, gh} = {f, g}h+ g{f, h} ∀f, g, h ∈ C∞(M).

In the local coordinates (x1, . . . , xn), we obtain:

{f, g} =
∑

1≤i,j≤n

Λij
∂f

∂xi
∂g

∂xj

where Λ is a skew symmetric contravariant two tensor field satisfying [Λ,Λ] = 0 ([ , ] is
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the Schouten bracket). If Λ vanishes at e, we can write

Λij(x) =
∑

1≤k≤n

Cijk x
k +Rij(x)

where Rij are the non-linear terms in the Taylor series expansion of Λij and where Cijk are
the structure constants of a Lie algebra h called the linear approximation of the structure
(Weinstein [15]).

We may ask whether the Poisson structure Λ is isomorphic to its linear approxima-
tion in a neighborhood of e. If so we shall say that the Poisson structure Λ is formally
linearizable in a neighborhood of e, i.e. there are new local coordinates (y1, . . . , yn) in a
neighborhood of e in which the expression of Λ is

Λij(y) =
∑

1≤k≤n

Cijk y
k.

We talk about smooth resp. analytic linearization if the change of coordinates is smooth
resp. analytic.

V. Arnold was the first to prove that any Poisson structure whose linear approxima-
tion is the non-trivial two-dimensional Lie algebra is linearizable. In the formal case, A.
Weinstein [15] proved that if the linear approximation is semi-simple then the structure
is linearizable. Furthermore J. Conn [7] showed that if Λ is analytic, the linearization is
analytic. Dufour [10] gave a counterexample of a three-dimensional solvable Lie algebra.
In the case of a smooth Poisson structure, J. Conn [8] proved that if the linear approxima-
tion is semi-simple and of compact type then the linearization is smooth. A. Weinstein
[16] exhibited examples of smooth and smoothly linearizable Poisson structures where
the linear approximation is a semi-simple Lie algebra of non-compact type and of real
rank at least two.

In the first part of this paper we explain how the problem of local linearization of
a Poisson structure can be reformulated in cohomological terms. In particular this gives
the proof of the result of A. Weinstein in the formal case. Then we will consider the
particular case of Poisson-Lie groups this means that the tensor is multiplicative. In Rn,
any Poisson-Lie structure is linear and there exist some Poisson structures which are not
linearizable. We give some results of linearization of Poisson-Lie structures which admit
counterexamples in the general Poisson case. Finally we explain how those cohomolog-
ical techniques can be used to find results concerning star products on the algebra of
polynomials on the dual of a semi-simple Lie algebra.

2. Cohomology. The problem of formal linearization can be written in terms of
cohomology. Denote by

Λij(x) =
∑

1≤p≤n

Cijp x
p + Λij(k)(x) + Λij(k+1)(x) + . . .

the formal series expansion of Λij where Λij(k)(x) is the homogeneous term of degree k in
x1, . . . , xn (k ≥ 2). The idea for formal linearization is to eliminate the terms of degree
k, i.e. to transform them into higher order terms by a change of coordinates of degree
k. Let yi = xi + f i(x) where f i are homogeneous polynomials of degree k. Consider
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Λ(k) : h ∧ h→ Sk(h) (xi ∧ xj) 7→ Λij(k). At order k, the relation [Λ,Λ] = 0 can be written
∂2Λ(k) = 0 where ∂2 is the Chevalley cohomological operator of h associated to the adjoint
representation of h on S(h):

(∂2(f))(x ∧ y ∧ z) = S
x,y,z

(
ad(x)f(y ∧ z) + f(x, [y, z])

)
.

Thus Λ(k) is a 2-cocycle. Consider f(k) : h→ Sk(h) xi 7→ f i(k). Then ({yi, yj}−
∑
k C

ij
k y

k)
is of order strictly higher then k if and only if (Λ(k) + ∂1f(k))(xi, xj) = 0, i.e. Λ is a
coboundary. So, if the 2-cocycle Λ(k) is a coboundary, we transform the terms of degree
k in terms of degree ≥ k + 1. By iteration, we obtain a sequence {xiν} which in the limit
determines a system of local formal coordinates xi∞ = xi + gi∞(x) in which Λ is linear. In
particular, Λ is formally linearizable if H2(h, S(h)) = 0. For example if h is semi-simple
or if h = g1 ⊕ R where g1 is semi-simple (in this case the linearization is analytic; see
Molinier [13]).

3. Poisson-Lie groups. Now we consider the case of Poisson-Lie structures. All the
results mentioned here are in V. Chloup-Arnould [3].

Let G be a Lie group and P a Poisson tensor on G. (G,P ) is a Poisson-Lie group
(Drinfeld [9]) if P is multiplicative: P (xy) = Lx∗P (y)+Ry∗P (x). In particular P (e) = 0.

The problem of the linearization of Poisson-Lie structure is a particular case of the
problem of the linearization of Poisson structures. In the Poisson-Lie case the structure
is analytic and is totally determined by its linear part without always being linearizable;
see M. Cahen, S. Gutt and J. Rawnsley [6].

Let g be a Lie algebra. (g, g∗) (also denoted (g, p)) is a Lie bialgebra if there exists a
Lie algebra structure on g∗ such that its dual map, denoted by p, is a cocycle on g, i.e.
p : g→ g ∧ g satisfies: p([X,Y ]) = [p(X), Y ]− [p(Y ), X].

Let (G,P ) be a Poisson-Lie group, then Pr(x) = R−1
x ∗P (x) is a cocycle for the

representation Ad, i.e. Pr(xy) = Pr(x) +AdxPr(y). And p = Pr∗e defines a Lie bialgebra
structure on g the Lie algebra of the Lie group G. Reciprocally if (g, p) is a Lie bialgebra,
then (G,P ) is a Poisson-Lie group, where G is the connected and simply connected Lie
group of Lie algebra g and where P is given in a neighborhood of e by:

P (expX) = RexpX∗
eadX − 1
adX

p(X).

Thus the structure is determined by its linear approximation h = g∗.
We generalize the result of J. Conn [7] to the case where the Lie algebra h = g∗ is

reductive:

Theorem 1. Let G be a connected and simply connected Lie group, of Lie algebra g.
Let P a Poisson-Lie tensor on G such that g∗, the dual of g, has the form g∗ = g1 ⊕R

direct product where R is an abelian ideal and where g1 is a semi-simple Lie algebra.
Then P is analytically linearizable.

This theorem is not satisfied for some general Poisson (not Poisson-Lie) structures
which have the same linear approximation h = g1 ⊕ R. Let P be a Poisson tensor on
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Rn+r (where n = dimg1 and r = dimR, r > 2), vanishing at 0 and such that:

P ij(x) =
∑

1≤k≤n

Cijk x
k +Bij

where Cijk are the constants of structure of h = g1 ⊕R in the basis 〈e1, . . . , en+r〉 where
ei ∈ g1, ∀i ≤ n et ej ∈ R, ∀j > n; and where Bij are the non-linear terms of P ij , and
we assume that Bij = 0 for i or j ≤ n.

Then if B is non-zero, the maximal dimension of the symplectic leaves for the linear
structure is different from the maximal dimension of the symplectic leaves for P , so P is
not linearizable.

Theorem 2. Let G be a connected and simply connected Lie group, of Lie algebra g.
Let P be a Poisson-Lie tensor on G such that g∗, the dual of g, has the form g∗ = g1⊕R

(direct product) where R is an r-dimensional ideal and where g1 is an n-dimensional
semi-simple Lie algebra. Then P = L⊕ T where L is the linear Poisson-Lie tensor given
by constants of structure of g1 and

T (x1, . . . , xn+r) =
∑

n+1≤i,j≤n+r

T ij(xn+1, . . . , xn+r)
∂

∂xi
∧ ∂

∂xj
.

This theorem is not satisfied for some general Poisson (not Poisson-Lie) structures
which have the same linear approximation h = g1 ⊕R. We have the following result:

Proposition 3. Let Λ be a Poisson structure on a manifold M , vanishing at a point
z and such that its linear approximation at z is h = g1 .< R the semi-direct product of an
n-dimensional semi-simple Lie algebra and of an r-dimensional ideal. Then there exist
some formal coordinates (x1, . . . , xn, y1, . . . , yr) in a neighborhood of z such that:

{xi, xj} =
∑

1≤k≤n

Cijk x
k,

{xi, yα} =
∑

1≤γ≤r

Ciαγ y
γ ,

{yα, yγ} =
∑

1≤ν≤r

Cαγν yν +Rαγ(x, y),

where Cijk are the constants of structure of h and where Rαγ are series in x and y of
order at least two.

4. Star products. We apply the same cohomological techniques to obtain results
concerning star products on the space of polynomials on the dual of a semi-simple Lie
algebra (Chloup-Arnould [5]).

The notion of star product on the space N of functions on a Poisson manifold (M,P )
has been introduced by Bayen et al. [1]. More generally, N can be a subspace of smooth
functions on M which is stable under pointwise multiplication and under the Poisson
bracket. Here we shall consider the case where M is the dual g∗ of a semi-simple Lie
algebra g with its Lie-Poisson tensor P and where N is the space of polynomials on g∗

which can be identified with S(g).
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A formal star product on the space N is a bilinear map

N ×N → N [[ν]], (u, v) 7→ u ∗ v = uv + νP (du, dv) +
∑
r≥2

νrCr(u, v),

which is associative when extended ν-linearly to N [[ν]]×N [[ν]], where N [[ν]] is the space
of formal power series in the parameter ν with coefficients in N and where the Cr are
bidifferential operators vanishing on constants.

Two formal star products ∗1 and ∗2 defined on N are said to be formally equivalent
if there is a series T = Id+

∑∞
r=1 ν

rTr where the Tr are linear operators on N , such that
u ∗2 v = T−1(Tu ∗1 Tv).

Let P be a Poisson tensor on M . A contravariant skew symmetric 2-tensor B on M

is said to be P -closed if [P,B] = 0 where [ , ] denotes the Schouten-Nijenhuis bracket.
It is said to be P -exact if there exists a contravariant 1-tensor E such that B = [P,E].
We consider skew symmetric contravariant p-tensors on g∗ whose coefficients are poly-

nomials, they are p-forms on g with values in S(g). We call them polynomial contravariant
p-tensors. Using cohomology, we obtain:

Proposition 4. Let g be a semi-simple Lie algebra and M = g∗ the manifold with
the Lie-Poisson bracket, denoted by P . Then any P -closed polynomial contravariant skew
symmetric 2-tensor on M is P -exact and is the coboundary of a polynomial contravariant
1-tensor on g∗.

This result with the two following propositions gives Theorem 7.

Proposition 5 ([11], [14]). Any 2-cocycle C for the Hochschild cohomology on the
space N = S(g) can be written as

C(u, v) = δF (u, v) +B(u, v),

where δ is the Hochschild coboundary operator, F is a 1-cochain and B is a polynomial
skew symmetric contravariant 2-tensor.

Proposition 6 ([2]). If u ∗ν v and u ∗′ν v are two star products which coincide up
to order k, the skew symmetric part of their difference at order k + 1 yields a P -closed
skew symmetric contravariant 2-tensor on M . If that closed 2-tensor is P -exact and is
the coboundary of a polynomial contravariant 1-tensor, then there is a star product u∗′′ν v,
equivalent to u ∗′ν v, such that u ∗′′ν v and u ∗ν v coincide up to order k + 1.

We get:

Theorem 7. Any star product on the space S(g) of polynomials on the dual g∗ of a
semi-simple Lie algebra g is equivalent to the standard one:

Rr ∗ν Qq =
r+q∑
s=0

(2ν)s(σ(R) ◦ σ(Q))r+q−s

where

σ : S(g) −→ U(g), X1 . . . Xr 7→
1
r!

∑
σ∈Sr

Xσ(1) ◦ . . . ◦Xσ(r),
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and where an element u ∈ U(g) is written u =
∑
n un relative to the decomposition

U(g) = ⊕σ(Sn(g)).

This result can be found in M. Kontsevich [12] in a more general framework.
We can also prove:

Theorem 8. Let ∗ be a star product on the space S(g) of polynomials on the dual g∗

of a semi-simple Lie algebra g. Then any ν-linear derivation of ∗ is essentially inner.
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