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Abstract. On the algebra of functions on a symplectic manifold we consider the pointwise
product and the Poisson bracket; after a brief review of the classifications of the deformations
of these structures, we give explicit formulas relating a star product to its classifying formal
Poisson bivector.

1. Introduction. In 1974 M. Flato, D. Sternheimer and A. Lichnerowicz [FLS] defi-
ned and studied the 1-differentiable deformations of the Poisson bracket on C∞(M) where
M is a symplectic manifold. They distinguished a subset of deformations depending only
on the geometry of M , which they called “inessential” (for physical reasons). Around
twenty years later it was shown that this subset, quotiented by the natural equivalence
relation, is exactly the classifying set of all the star products on a symplectic manifold
[F1, NT] and, more generally, on a Poisson manifold [K].

After a short review of the results in the problem of classification that appeared since
[FLS] we give explicit relations between 1-differentiable deformations of the Lie algebra
(C∞(M), {., .}) and the general deformations of the associative algebra (C∞(M), .) (the
“star products”) for a symplectic manifold M . In particular, we try to see explicitly
the Kontsevich isomorphism [K] between classes of star products and classes of formal
Poisson bivectors.

2. Notation. (M,ω) is a symplectic manifold; ] : Γ(M,
⊗•

T ∗M)→ Γ(M,
⊗•

TM)
is the canonical isomorphism given by ω; Λ is the Poisson bivector corresponding to ω

by ]; d denotes the exterior derivative and Xf = ](df) is the hamiltonian vector field
corresponding to f ∈ C∞(M).

Definition 1. A star product on a smooth manifold M is an associative product on
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C∞(M)[[h̄]], denoted by ∗, such that f ∗ g = f.g +
∑

n≥1 h̄
nCn(f, g) where the Cn’s are

bidifferential operators.
If ∗̃ is another star product on M we say that ∗ is equivalent to ∗̃ (∗ ≈ ∗̃) if there

exists Th̄ = Id+
∑

n≥1 Tn, where the Tn’s are differential operators, such that Th̄(f ∗g) =
Th̄(f)∗̃Th̄(g).

Notice that if there exists a star product on M then C1(f, g)− C1(g, f) is a Poisson
bracket. It means that M is at least a Poisson manifold.

A star product on (M,ω) (or on a Poisson manifold (M,Λ)) is a star product beginning
with C1(f, g) = − ih̄

2 ω(Xf , Xg) = − ih̄
2 Λ(df, dg).

Zn
DR(M) is the space of de Rham n-cocycles (closed n-forms) on M and Hn

DR(M) the
n-th space of de Rham cohomology.

Hn
CE(C∞(M), C∞(M)) denotes the n-th space of Chevalley-Eilenberg cohomology.

3. Classifications

3.1. Deformed Poisson brackets. The idea of deformation quantization theory is to
obtain a Lie bracket on the functions on the phase space corresponding to the Lie bracket
of operators in quantum mechanics by deformation of the Poisson bracket. The first result
in this direction is due to Moyal [M]. The first works on the theory (in the early 70’s)
did not consider star products but tried to deform directly the Poisson bracket on a
symplectic manifold in the following way:

[f, g]h̄ = {f, g}+
∑
n≥1

h̄nPn(f, g) where the Pn’s are bidifferential operators. (1)

[., .]h̄ is said to be equivalent to 〈., .〉h̄ if there exists Th̄ = Id +
∑

n≥1 Tn, where the
Tn’s are differential operators such that Th̄[f, g]h̄ = 〈Th̄(f), Th̄(g)〉h̄. If we consider h̄
as a formal parameter, we can use the Gerstenhaber theory [Ge] of formal algebraic
deformations and then, as usual, the infinitesimal deformations (the P1’s) are classified
by H2

CE(C∞(M), C∞(M)).
One can also consider a subproblem: to find the deformations of type (1) taking for the

Pn’s bidifferential operators of order 1 in each variable (therefore vanishing on constants,
v.c.). They were called (inessential) 1-differentiable deformations and studied in one of
the first papers on deformation quantization [FLS]. It is easy to see that this kind of
deformations coincides with the notion of formal Poisson bivectors on M with constant
term equal to Λ, i.e. the elements of

P = {Λh̄ ∈ Γ(M,
∧2

TM)[[h̄]]; [Λh̄,Λh̄]S = 0 and Λh̄ = Λ + h̄ . . .}, (2)

where [., .]S denotes the Schouten bracket.
In this context, one can restrict the Chevalley-Eilenberg cohomology and obtain that

H2
1−diff.,v.c.(C∞(M), C∞(M)) ' H2

DR(M), (3)

which classifies the infinitesimal deformations.
In 1987 Lecomte [Le] showed that, for M symplectic,

P/∼ ' H2
DR(M)[[h̄]], (4)
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where ∼ denotes the equivalence. The map is given by Λh̄ = µh̄(Ωh̄) for Ωh̄ = ω + αh̄,
with αh̄ ∈ h̄H2

DR(M)[[h̄]], µh̄ being the canonical ]-isomorphism from Γ(M,
⊗•

T ∗M)[[h̄]]
to Γ(M,

⊗•
TM)[[h̄]] given by Ωh̄. In [B] we define a composition law � on

Γ(M,
⊗2

T ∗M)[[h̄]] such that we can explicitly write Λh̄ = Λ−
∑

p≥1 h̄
p](αh̄)�p.

3.2. Star products. Considering the star products, it was early noticed [Gu, Li] that
the possible “degrees of freedom” to continue a deformation were classified by H2

DR(M)
in each power of h̄. To obtain a complete result about the classification a general existence
theorem was needed. That was done, for the symplectic manifolds, in [DWL](83) and in
[F1] (in 94, with a completely different and more explicit method) and in [K] for the
Poisson manifolds (i.e. the general case).

In 1995, Nest and Tsygan [NT] showed, using Fedosov construction [F1, F2], that

S/≈ ' H2
DR(M)[[h̄]], (5)

where S is the set of all the star products on the symplectic manifold (M,ω) and ≈
denotes the usual equivalence. Actually, in [F1, F2] Fedosov constructs a unique star
product for each element of ω + h̄Z2

DR(M)[[h̄]].
Finally, we know by the recent and major work of Kontsevich [K] that formal Poisson

bivectors are the good objects to classify the star products. He showed that there exists
the following isomorphism:

{star products on M}/≈ ' {Λh̄ ∈ Γ(M,
∧2

TM)[[h̄]]; [Λh̄,Λh̄]S = 0}/∼. (6)

So (4) and (5) are now related in a more general setting: for a Poisson manifold (M,Λ),
we have S/≈ ' P/∼.

4. Explicit formulae for star products and 1-differentiable deformations.
The idea of this work came from the comparison between (3) and (4) on one side and (5)
on the other: we want to see how a given star product is constructed from an element of P,
i.e. from a 1-differentiable deformation. This brings us to consider the following question:
can we read from the explicit formula of a star product its “defining” formal Poisson
bivector? In terms of Kontsevich’s work on the quantization of Poisson manifolds [K], it
is an attempt to see more explicitly the isomorphism (6). Understanding this isomorphism
in the symplectic case is a first step to obtain the same kind of results in the Poisson
case.

The characteristic class of a star product is of the form

Λh̄ = Λ +
∑
n≥1

h̄nΛn. (7)

In order to locate the first non-zero Λn in the explicit formula of the star product we
have the following theorem, from which, actually, (5) can be easily derived:

Theorem 1 ([BCG]). Let ∗ and ∗̃ be two star products on a symplectic manifold M .
Suppose that ∗ and ∗̃ coincide up to the order k. Then the skewsymmetric part of their
difference at the order k+1 is a closed 2-form α. Moreover we have: ∗ ≈ ∗̃ mod h̄k+2 ⇔ α

is exact.
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The next theorem shows that in fact f ∗ g− f ∗̃ g contains a complete 1-differentiable
deformation of Λ with ]α as the first non-zero term. As a corollary we obtain that (7)
explicitly appears in the formula of the associated star product. Moreover, among all the
1-differentiable terms of a Fedosov star product, the formal Poisson bivector (7) can be
characterized as follows.

Consider (M,ω) a symplectic manifold, ∇ a symplectic connection on M and R its
curvature. Let ∗ be a Fedosov star product on M : for f, g ∈ C∞(M) we have

f ∗ g = f.g − ih̄

2
Λ(f, g) +

∑
n≥2

h̄nCn(f, g). (8)

Let Ωh̄ ∈ ω + h̄Z2
DR(M)[[h̄]] be the Weyl curvature of ∗ (actually Fedosov [F1, F2] takes

−Ωh̄). The class of ∗ (in the sense of (5) ) is the class of Ωh̄ in [ω] + h̄H2
DR(M)[[h̄]].

Let ∗̃ be the Fedosov star product of Weyl curvature Ω̃h̄ = Ωh̄ + h̄kα, with α ∈
Z2

DR(M), then

f ∗̃g = f.g − ih̄

2
Λ(f, g) +

∑
n≥2

h̄nC̃n(f, g). (9)

Theorem 2. The change Ωh̄ → Ωh̄ + h̄kα adds the series i
2

∑
p≥1 h̄

pk+1]α�p to the
explicit expression of the star product ∗. The series Λ−

∑
p≥1 h̄

p]α�p is a formal Poisson
bracket and contains all the 1-differentiable terms of ∗̃ not depending explicitly on R,
Ωh̄ − ω and derivatives of α.

Therefore we would like to see the difference of two star products as an “addition”
(in a sense to define) of a certain number of 1-differentiable deformations of the form
Λh̄ = Λ −

∑
p≥1 h̄

pk+1]α�p (which can be summed into a big one, given by the addi-
tion in Γ(M,

∧2
T ∗M)[[h̄]]). In order to make this more precise, we look (in [B]) at the

1-differentiable part of f ∗g and find different series of terms of the form Λh̄(Yf , Yg) where
Yf and Yg are 1-forms on M depending on f and g.

Proof (sketch). In Fedosov method we have to solve three successive equations to
obtain the formula for the star product. We compute explicitly all the terms of the type
described in the theorem along these three steps and we obtain a term ]α�p in each order
h̄pk+1, p ≥ 1. Finally, the coefficients of these terms are shown to be the coefficients of
the Taylor series of i

2(1−x) .

Theorem 2 can be reformulated in order to make the relation between this formal
Poisson bracket and the characteristic class of the star product more explicit:

Corollary 3. Let ∗ be the Fedosov star product of trivial Weyl curvature ω and ∗̃
the one with curvature Ωh̄ = ω + αh̄. Ωh̄ appears explicitly in the formal Poisson form
Λh̄ as a part of the formula for ∗̃. Λh̄ can be seen as all the 1-differentiable terms of ∗̃
not containing R or derivatives of αh̄. We have:

f ∗̃g = f ∗ g +
ih̄

2

∑
p≥1

](αh̄)�p(f, g) + ρ(f, g)

= f.g − ih̄

2

(
ω̄(f, g)−

∑
p≥1

](αh̄)�p(f, g)
)

+
∑
n≥2

h̄nCn(f, g) + ρ(f, g)
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= f.g − ih̄

2
Λh̄(f, g) +

∑
n≥2

h̄nCn(f, g) + ρ(f, g), (10)

where the terms occurring in the remainder ρ either depend explicitly on the curvature R
or on derivatives of αh̄, or are not 1-differentiable.

Remark 1. Expression (10) shows that on (M,ω), for a star product ∗̃ of characteri-
stic class Λh̄, the corresponding bracket {f, g}∗̃ = i

h̄ (f ∗̃g − g∗̃f) can be seen not only as
a deformation of the Lie algebra (C(M),Λ) but also as a deformation of the “formal” Lie
algebra (C(M)[[h̄]],Λh̄). Thus ∗̃ can be viewed as the star product of trivial characteri-
stic class on the “formal” symplectic manifold (M,Ωh̄), i.e. M endowed with the formal
symplectic structure given by Ωh̄. We can also consider ∗̃ as a deformation of ∗ with
i
2

∑
p≥1 ](α

h̄)�p as infinitesimal deformation.
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