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Abstract. This is a survey exposition of the results of [14] on the relationship between
the geometric quantization of a Poisson manifold, of its symplectic leaves and its symplectic
realizations, and of the results of [13] on a certain kind of super-geometric quantization. A
general formulation of the geometric quantization problem is given at the beginning.

1. The general setting. This is a report on results which I obtained in the subject
during the last years [13], [14]. But, I will start with a general formulation of the geometric
quantization problem. A general algebraic formulation was developed by Huebschmann
[4]. In this exposition the manifolds and bundles will be finite dimensional, and everything
will be of class C∞.

Let M be a manifold, and A→M a Lie algebroid with the anchor a : A→ TM [12].
A generalized, A-valued, Hamiltonian structure on M is a Lie algebra structure { , } on
C∞(M), together with a Lie algebra morphism

] : L(M) := (C∞(M), { , }) −→ (ΓA, [ , ]A)

(Γ denotes the set of global cross sections). The name comes from the fact that ∀f ∈
C∞(M) there is an associated Hamiltonian vector field Xf := a(]f). (By := we denote a
definition.)

The classical example is the usual Poisson bracket on C∞(M). Then A = T ∗M with
the bracket of 1-forms (see e.g. [12]), with ]f := df , and the usual Hamiltonian vector
field Xf . A more general example is a Jacobi bracket i.e., a bracket of the local type
on C∞(M) (see e.g. [2], [5]). Then, A is the jet bundle J1(M,R) = R ⊕ T ∗M with
the bracket of [3], [8], ]f := j1f , and Xf is the Hamiltonian vector field defined in [2].
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In principle, we may expect other examples if we use either different Lie algebroids or
brackets of nonlocal type.

For any generalized Hamiltonian structure the action of Xf on C∞(M) defines a
representation of L(M) and yields cohomology spaces which will be denoted by Hk

ham(M)
(Hamiltonian cohomology spaces). If we also look at the de Rham cohomology spaces
Hk
deR(M), and the Lie algebroid cohomology spaces Hk

A(M), we see morphisms

(1.1) ι : Hk
deR(M)→ Hk

A(M), ιA : Hk
A(M)→ Hk

ham(M),

ιh = ιA ◦ ι : Hk
deR(M)→ Hk

ham(M),
which are defined at the cochain level by composing the arguments with a, ] and a ◦ ].
For instance, if ω is a closed k-form on M , ιh[ω]deR is represented by the cocycle

(1.2) (ιhω)(f1, . . . , fk) = ω(Xf1 , . . . Xfk),

etc.
Now, let (M,A, { , }, ]) be a generalized Hamiltonian manifold, and (K,h) be a

complex Hermitian line bundle over M . Then any mapping C∞(M)→ EndR(ΓK) which
sends f ∈ C∞(M) to

(1.3) f̂ s = ∇A]fs+ 2π
√
−1fs,

where s ∈ ΓK, and ∇A is an A-connection on K, will be called a Kostant-Souriau
mapping [6], [9].

An A-connection on a vector bundle is defined like a usual covariant derivative, except
for the fact that one puts u(f) := a(u)(f), u ∈ ΓA, f ∈ C∞(M) (see e.g. [16]). Such a
connection has a curvature R∇A(u1, u2) ∈ EndRΓK (u1, u2 ∈ ΓA), defined as the usual
commutant of covariant derivatives. The preservation of the Hermitian metric of K is
defined by

(1.4) (au)h(s1, s2) = h(∇Au s1, s2) + h(u1,∇Au s2),

and it implies that the curvature of ∇A is purely imaginary and the operators f̂ are skew-
Hermitian up to derivatives, just as in the case of the usual Hermitian connection [6].

A Kostant-Souriau mapping is called a geometric prequantization if ∀f, g ∈ C∞(M)
one has

(1.5) ̂{f, g} = [f̂ , ĝ] := f̂ ◦ ĝ − ĝ ◦ f̂ .
The prequantization is trivial if K is trivial and f̂ = Xf , ∀f ∈ C∞(M). If (1.5) holds,
(K,h,∇A) is called a quantization triple.

The existence of a quantization triple is a basic question of the theory. By a simple
calculation, it follows that (1.5) is equivalent to

(1.6) (dhamI)(f, g) = − 1
2π
√
−1

R∇A(]f, ]g) (f, g ∈ C∞(M)),

where I is the tautological 1-cochain I(f) = f , and dham is the coboundary of the
Hamiltonian cohomology.

Since ∇Au s := ∇aus (u ∈ ΓA, s ∈ ΓK), where ∇ is a usual Hermitian connection on
K, is a Hermitian A-connection, it is easy to understand that −(1/2π

√
−1)R∇A , which

is dA-closed, defines a 2-dimensional cohomology class cA1 (K) ∈ H2
A(M), which is the
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image of the usual, de Rham, Chern class of K by ι of (1.1). We say that cA1 (K) is the
A-Chern class of K.

Now, we can state the basic existence theorem which extends the known classical
result:

1.1. Theorem. The generalized Hamiltonian manifold M has a quantization triple
iff dhamI reduces to a 2 A-cocycle Π, and the cohomology class [Π]A ∈ H2

A(M) is the
ι-image of an integral de Rham cohomology class.

Proof. If (1.6) holds, the conditions of the theorem hold since the usual Chern class
is integral. Conversely, if Π exists, and [Π]A = ι[ω]deR where [ω]deR is an integral class, the
Weil-Kobayashi theorem (see e.g. [6]) yields Hermitian line bundles (K,h) with the usual
Hermitian connection ∇ such that [ω]deR is the Chern class of K, and ω is its curvature
representative. Then, if Π − ι(ω) = dAλ (λ ∈ ΓA∗, and ι(ω) is computed similarly to
(1.2)), ∇A = ∇− (2π

√
−1)λ is a Hermitian A-connection which satisfies (1.6).

For a usual Poisson manifold we have

(dhamI)(f, g) = {f, g} = P (df, dg)

where P is the Poisson bivector. The A-cohomology is the Poisson-Lichnerowicz cohomo-
logy of (M,P ), and the quantization condition of Theorem 1.1 is that [P ] is the image of
an integral de Rham class. This means that there exist a closed integral 2-form λ and a
vector field A such that

(1.7) P + LAP = ]Pλ

(L is the Lie derivative) [11]. (See Kotov [7] for interesting examples.) In the particular
case of a symplectic manifold the quantization condition reduces to the integrality of the
symplectic form [6], [9].

For a Jacobi manifold M with the bracket

{f, g} = Λ(df, dg) + f(Eg)− g(Ef)

where Λ is a bivector field and E is a vector field on M (see e.g. see [2]), H∗A is the Jacobi-
Lichnerowicz cohomology of [8]. One has Xf = ]Λdf + fE and (dhamI)(f, g) = Λ(df, dg),
which is a J1(M,R)-cocycle. In fact, Λ = dJ1(M,R)(1, 0) [8]. Hence, [Λ] = 0, and the
trivial line bundle M ×C, with the connection

∇J
1(M,R)

(f,u) (1) := −2π
√
−1f (f ∈ C∞(M), u ∈ T ∗M)

and the metric h(1, 1) = 1, form a quantization triple with the trivial prequantization.
Thus, in this case, we still have to look for existence conditions of non trivial prequanti-
zations. Such conditions are given in [8].

2. Comparison theorems in the Poisson case. In the remaining part of this
exposition we consider only the case of a Poisson manifold (M,P ). Theorem 1.1 gives us
the quantization condition for L(M) := (C∞(M), { , }P ). But there are a lot of other
interesting questions to be studied. We will be interested in the study of relationships
between the quantization of M and the quantization of the symplectic leaves of P , on one



286 I. VAISMAN

hand, and that of the symplectic realizations of (M,P ) on the other hand. The results
below appeared in [14].

It is natural to look for quantization conditions of a symplectic leaf S of P in the
geometry of the immersion S → P . This problem is open. A hint is given by

2.1. Proposition. Assume that S has a normal bundle NS which is of the form C/S,
where C is a distribution on an open neighborhood U of S in M , such that the annihilator
Ann(C) ⊆ T ∗M is involutive with respect to the P -bracket of 1-forms. Then, if (M,P )
has a quantization triple (K,h,∇T∗M ), this triple induces a quantization triple of S.

Proof. By “normal distribution” we mean that TM = TS ⊕NS. I also recall that
a distribution C as in the proposition is called a cofoliation [12]. The Hermitian bundle
(K,h) has the natural restriction to S. Furthermore, ∀X ∈ TS there is a unique C-based
dual 1-form α ∈ Ann (NS) such that X = ]Pα, and the formula

(2.1) DXs = ∇T
∗M

α s̃ (s̃ ∈ Γ(K/U ), s = s̃/S)

defines a Hermitian connection on K/S . If α, β are the C-based dual forms of X,Y ∈ TS,
and α̃, β̃ ∈ Ann(C) are extensions to U , we get

(2.2) [X,Y ] = []Pα, ]Pβ] = ]P {α̃, β̃}.

Thus {α̃, β̃}/S is the C-based dual form of [X,Y ], and we deduce that D and ∇ have the
same curvature operators when computed on C-based dual elements.

We can say more on the relationship between quantization and symplectic realizations.
We need the slightly more general notion of a presymplectic realization (V, σ) of a Poisson
manifold (M,P ), which we define to be a presymplectic manifold (V, σ), with a surjective
submersion r : V →M such that F := ker σ ⊆ ker(dr), and ∀ϕ,ψ ∈ C∞(M) one has

{ϕ,ψ}P ◦ r = {ϕ ◦ r, ψ ◦ r}σ
(the last bracket exists since ϕ ◦ r, ψ ◦ r are F-projectable functions). We also need to
extend the notion of a quantization triple from symplectic to presymplectic manifolds.
Namely, it will be a triple (K,h,∇) on V where the usual connection ∇ on K satisfies
the condition R∇ = −2π

√
−1σ.

2.2. Theorem. Let r : (V, σ)→ (M,P ) be a presymplectic realization with connected
fibers. Assume that (V, σ) has a quantization triple (K,h,∇) such that the holonomy of
∇ along paths in the fibers of r is zero. Then the fibers of r are σ-isotropic, P is regular,
and (M,P ) has a quantization triple (K ′, h′,∇′) where K = r−1(K ′), h = r∗h′, and ∇′
is a partial connection along the symplectic leaves of P which is well defined by ∇.

Proof. The zero holonomy hypothesis implies that the curvature R∇(X,Y ) = 0,
∀X,Y ∈ ker(dr), and the quantization condition R∇ = −2π

√
−1σ shows that the fibers

of r, which define a foliation R of V , are isotropic submanifolds of (V, σ). That is r is
an isotropic realization, and so are the local symplectic realizations of (M,P ) given by
the local transversal submanifolds of R in (V, σ). By a result of Dazord [1], [12], P has a
constant rank.

The zero holonomy hypothesis for ∇ also implies that K has an R-foliated bundle
structure with respect to which ∇ is a Bott connection. This means that there exists a
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choice of leafwise ∇-parallel local bases with R-projectable transition functions. Namely,
these bases may be taken arbitrarily along R-transversal neighborhoods, then moved
by the path independent ∇-parallelism along the fibers of R. These bases, and their
transition functions project to M , where they produce the Hermitian line bundle (K ′, h′)
required.

For f ∈ C∞(M), the Hamiltonian vector fields are related by dr(Xσ
f◦r) = XP

f hence,
Xσ
f◦r is an r-projectable vector field. Then, if s is a projectable cross section of K, the

Bott property of ∇ and the quantization condition yield

∇Y∇Xσ
f◦r
s = ∇Xσ

f◦r
∇Y s−∇[Xσ

f◦r,Y ]s−R∇(Xσ
f◦r, Y ) = 0,

∀Y ∈ TR. This shows that ∇Xσ
f◦r
s is also r-projectable, and ensures the existence of the

partial connection

(2.3) ∇′XP
f
s′ := pr(∇Xσ

f◦r
s) (s′ = pr(s) ∈ ΓK ′),

where pr is the projection induced by r. Such a partial connection is equivalent to a
T ∗M -connection.

The quantization condition for the triple (K ′, h′,∇′) follows from the fact that r is a
Poisson mapping.

Applications of Theorem 2.2 can be obtained for realizations r which have simply
connected, isotropic fibers. In this case, the quantization condition for a triple implies
R∇(X,Y ) = 0 for X,Y ∈ TR hence, zero holonomy.

If the fibers of r are isotropic but not simply connected, K is foliated but K ′ may not
exist, since ∇ may still have holonomy. In this case we may try to quantize f ∈ C∞(M)
by an operator on ΓfolK := the space of projectable cross sections of K or on some
cohomology space with values in the sheaf of germs of the projectable cross sections
of K. This might yield a generalized geometric quantization of (M,P ). For instance,
if G is a Lie group, any coadjoint orbit O with a connected isotropy subgroup G0 is
isotropically realized by an exact presymplectic structure of G (see e.g. [15]). Hence, O
might have a generalized geometric prequantization but, it may not have a usual geometric
quantization.

In order to get an application of Theorem 2.2, let us look at a symplectic realization
r : (V, σ)→ (M,P ) which also realizes a dual Poisson manifold by r′ : (V, σ)→ (M ′, P ′)
(see e.g. [12]). Assume that the fibers of r and r′ are connected and have connected
intersections. Then every symplectic leaf S of P is of the form S = r(r′−1(y)) for some
y ∈ M ′, and σ induces a presymplectic structure on r′−1(y) with the kernel foliation
r′−1(y) ∩ r−1(x) (x ∈ S) (see e.g. [12]). Hence, (r′−1(y), σ) is an isotropic presymplectic
realization of S, and we have

2.3. Corollary. If (r′−1(y), σ) has a quantization triple (K,h,∇) and if r′−1(y) ∩
r−1(x) are simply connected ∀x ∈ S, S has an induced quantization triple (K ′, h′,∇′).

This Corollary may be used in the case of a symplectic groupoid by taking (r, r′) to
be the source and target projection of the groupoid (see e.g. [12]).

It is well known that geometric quantization of symplectic manifolds involves one
more essential ingredient, polarizations. In the Poisson case, we define a polarization
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to be a subsheaf P of the sheaf S of the Poisson algebras of germs of the complex
valued functions on (M,P ) such that the stalks of P are abelian subalgebras. The usual
Lagrangian character is lost but, we still may construct a vector space

(2.4) Γ0K := {s ∈ ΓK / ∇Xϕs = 0, ∀ϕ ∈ P},

and quantize the functions f ∈ C∞(M) such that {ϕ, f} is in P whenever ϕ ∈ P by
operators on Γ0K in a “physics consistent” way [11], [14].

Furthermore, if the germs in P are of the form ϕ(y1, . . . , yh, z1, . . . , zk−h) where ya

are real valued, zα are complex valued, and (ya, zα) are functionally independent, the
polarization will be regular of rank (k, h). By a theorem of Nirenberg, this happens iff the
equations dϕ = 0, ∀ϕ ∈ P, define a Nirenberg integrable subbundle ∆ ⊆ TM⊗C. In more
detail, this means that ∆ is involutive, and ∆+∆̄ is of constant dimension and involutive
(the bar denotes complex conjugation). In this case, {ϕ,ψ} = 0 ∀ϕ,ψ ∈ P is equivalent
to the fact that P (α, β) = 0, ∀α, β ∈ Ann∆ i.e., ∆ is a coisotropic distribution (see e.g.
[12]). Therefore, a regular polarization may be identified with a coisotropic, Nirenberg
integrable, complex distribution on (M,P ).

The notion of a polarization can be adapted to presymplectic manifolds (V, σ). Na-
mely, in this case, we will take P to be a subsheaf with abelian stalks of the sheaf of
Poisson algebras of the germs of complex valued, ker σ-projectable functions on V . The
regular case, and its identification with coisotropic, Nirenberg integrable distributions are
obtained in the same way as above. (In the presymplectic case a coisotropic distribution
is one which contains its σ-orthogonal distribution hence, it must contain T (ker σ).)

With these definitions in place, we get

2.4. Theorem. Let π : (M1, P1)→ (M2, P2) be a Poisson mapping. Then:
1) Any polarization P2 of M2 pulls back to a polarization P1 of M1.
2) If π is surjective, any P1 of M1 can be pushed forward to some (possibly zero) P2 of
M2.
3) If π is a submersion and P2 is regular, its pullback P1 is regular.
4) If π is a submersion, P1 is regular, and the germs of P1 are constant along the fibers
of π, then the pushed forward polarization P2 is also regular.

Proof. 1) The pullback of P2 is defined by

(2.5) P1 = {germsψ ◦ π / germψ ∈ P2}.

2) The push forward of P1 is

(2.6) P2 = {germsψ ∈ C∞(M2) / germψ ◦ π ∈ P1}.

3) Identify P2 with a coisotropic, Nirenberg integrable distribution ∆2 ⊆ TM2 ⊗C,
and check that, then, P1 identifies with ∆1 := (dπ)−1(∆2). ∆1 exists because π is a
submersion, and ∆1 ⊇ T (fibers of π).

4) Identify P1 with a ∆1, and use local coordinates (ya, zα, z̄α, yu) on M1 such that
Ann∆1 = span{dya, dzα}. It turns out that ∆1 is π-projectable and dπ(∆1) = ∆2 defines
the pushed forward polarization P2.
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The same proof as in the last part of Theorem 2.4 shows that a (regular) polarization
of a presymplectic manifold (V, σ) can be pushed forward to a (regular) polarization of
the symplectic reduction V/(ker σ). Accordingly, if (M,P ) has a dual Poisson manifold
(M ′, P ′), with the symplectic realizations

r : (V, σ)→ (M,P ), r′ : (V, σ)→ (M ′, P ′),

and if the symplectic leaf S of (M,P ) is S = r(r′−1(y)) (y ∈ M ′), any (regular) polari-
zation of r′−1(y) (conceivably induced by a polarization of (V, σ)) projects to a (regular)
polarization of S.

A more interesting consequence of Theorem 2.4 is

2.5. Corollary. Any polarization P of the Poisson manifold (M,P ) pulls back to po-
larizations PS of the symplectic leaves S of P . If P is regular and given by the coisotropic,
Nirenberg integrable distribution ∆, and if

(2.7) codimS(TS ∩∆) = codimM∆,

then PS is regular and given by the distribution ∆′ = TS ∩∆.

This follows by using the immersion of S in P as the Poisson mapping of Theorem
2.4. The condition on codimensions is needed to ensure that the functions (ya, zα)/S ,
where dya = 0, dzα = 0 are the local equations of ∆, are functionally independent. Then,
dya/S = 0, dzα/S = 0 define the distribution ∆′.

3. Super-geometric quantization. The problem of geometric quantization may
be generalized as follows. Assume that (M,P ) is a Poisson manifold with a quantization
triple (K,h,∇). Is it possible to embed the space ΓK in a superspace, and extend the
Kostant-Souriau formula (1.3) in such a way that the quantization condition (1.5) holds if
the commutator of its right hand side is replaced by the corresponding super-commutator?
Some results on this problem were given in [13], and I am reporting on them briefly here.

As a superspace, we take the most natural one, namely,

(3.1) SK = S+K ⊕ S−K,

where

(3.2) S+K := ⊕i≥0 ∧2i (M,K), S−K := ⊕i≥0 ∧2i+1 (M,K),

and ∧∗(M,K) denote spaces of K-valued differential forms.
The Kostant-Souriau formula (1.3) can be extended to K-valued differential forms by

(3.3) f̂A = L∇XfA+ 2π
√
−1fA (A ∈ SK),

where L∇X := D∇i(X) + i(X)D∇, and D∇ is the covariant-exterior differential [10]. The
commutation condition (1.5) still holds. But, what we want now is to find an odd (i.e.,
grade-parity switching) endomorphism l(f) : SK → SK, defined for f ∈ C∞(M), such
that the operators

(3.4) f̃A := f̂A+ 2π
√
−1l(f)(A) (A ∈ SK)
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satisfy the commutation condition

(3.5) ˜{f, g} = s[f̃ , g̃] := f̃ ◦ g̃ − (−1)deg f.deg g g̃ ◦ f̃ .

If this happens, f → f̃ is a super-geometric prequantization. (But not a geometric super-
prequantization, since we do not act on a supermanifold.)

The following result follows by technical computations [13].

3.1. Proposition. The operation ∗ defined by

f ∗ θ = [f̂ , θ] = f̂ θ − θf̂ f ∈ C∞(M), θ ∈ End(SK))

is a representation of the Poisson-Lie algebra L(M) on End(SK) which leaves the odd
subspace End−(SK) invariant. Formula (3.4) is a super-geometric prequantization iff l

is an End(SK)-valued 1-cocycle with respect to the representation ∗, and l2(f) = 0.

For instance, if c ∈ End−(SK), and [f̂ , c]2 = 0, then l(f) := [f̂ , c] is a coboundary of
the required type. In particular, if θ and V are a complex valued 1-form and vector field,
respectively, c = e(θ) + i(V ), where e, i denote exterior and interior products, provides
such a coboundary.

As in the classical theory, we can extend the operators f̃ to a similarly defined su-
perspace S(K ⊗ D), where D is the bundle whose cross sections are the half-densities
(or half-forms) on M , by acting on D by Lie derivatives, and try to get a pre-Hilbert
metric on Sc(K ⊗D) (c means compact supports) such that f̃ would be skew-Hermitian.
A natural guess is

(3.6) < α1 ⊗ s1 ⊗ ρ1, α2 ⊗ s2 ⊗ ρ2 >:=
∫
M

g(α1, α2)h(s1, s2)ρ1ρ̄2,

where αa ∈ ∧kM , sa ∈ ΓK, ρa ∈ ΓD (a = 1, 2), and g is a Riemannian metric on M .
Then, the operators f̃ will be skew-Hermitian if f is such that the Hamiltonian vector
field Xf is a Killing vector field of g and l(f) is Hermitian for the metric gh.

Furthermore, polarizations will also have to be used here. In fact, it turns out that
one is even more compelled to reduce the class of quantizable functions via polarizations
than one was in the classical theory, in order to be able to define the operators l(f) of
the previous scheme. I could obtain well behaved operators l(f) only on restricted classes
of functions. After such a restiction, we will speak of super-geometric quantization rather
than prequantization.

For an example let us look at a phase space M = T ∗N with the symplectic structure

ω = −dθ + p∗F,

where p : M → N is the natural projection, θ is the Liouville form, and F = dλ (λ ∈ ∧1N)
is an exact electromagnetic term. We also assume that N is endowed with a Riemannian
metric g. Then, we may take the trivial bundle K, and the K-valued forms are just
differential forms on M . Let ∇ be the flat connection of K which is defined by the global
connection form 2π

√
−1(θ − λ). Let P be the polarization defined on M by the germs

ϕ ◦ p, ϕ ∈ C∞(N). With this notation in place, one gets

3.2. Proposition. On M , consider the “observables” f = µ(Y ) + ϕ ◦ p, where ϕ ∈
C∞(N), Y is a Killing vector field of g on N , and µ(Y ) is the momentum of Y (µ(Y ) =
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i, pi = momentum coordinates on M). Then, the formula

(3.7) f̃A = −LYA+ 2π
√
−1(ϕ+ µ(Y ))A+ 2π

√
−1(dϕ− i(Y )F ) ∧A

+2π
√
−1i(dϕ− i(Y )F )A (A ∈ ∧∗N ⊗C)

defines a super-geometric quantization on ∧∗N⊗C with the odd-even grading. This quan-
tization is by skew-Hermitian operators with respect to the global scalar product induced
by g on the compactly supported forms on N .

Proof. The technique of polarizations asks for the use of arguments in ∧∗N ⊗C (see
e.g. see the earlier formula (2.4)). The first two terms of (3.7) come from the extended
Kostant-Souriau formula (3.3). The remaining part behaves like a correct odd extension
to a super-geometric quantization on the indicated family of functions f . This may be
checked by technical computations for the cases where f is the pullback of a function on
N , and f is the momentum µ(Y ) of a Killing vector field Y on (N, g).

In [13], another example is also given namely, a symplectic manifold (M,σ) endowed
with a Kähler polarization associated to a σ-compatible complex structure J , and with
a J-holomorphic 1-form θ. In this case, the line bundle K must be holomorphic, and, if
one puts

l(f) = e(LXf θ) + i([Xf , ]g θ̄]),
where g is the metric defined by (σ, J) on M , one gets a correct super-geometric quanti-
zation for functions f which satisfy the following conditions: i) Xf preserves the Kähler
polarization, ii)]gLXf θ̄ is a J-holomorphic vector field.

The proof involves manipulation of known formulas of complex differential geome-
try [13].
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