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1. Introduction. The results contained in this paper are the basis of the author’s

thesis. The essential ideas are due to S. Zakrzewski. We present a construction of a covari-

ant functor from the category of differential groupoids to the category of C∗ algebras in

the sense of [10]. However our definition of morphism of differential groupoids is different

from the standard one, i.e. a mapping which satisfies the obvious compatibility condition

with respect to the groupoid structure. Let us argue that there is no hope to construct

such a functor with the standard notion of morphism. The main problem can be shown

in the discrete case so let us assume that all sets are with discrete topology.

Let (Γ,m,E, s) be a groupoid (see the next section for the notation) and let A (Γ) de-

note a linear space of complex functions with compact support (i.e. for f ∈ A (Γ) we have

f(x) 6= 0 for a finite number of x). There are natural notions of convolution and star op-

eration in A (Γ) which make it a *-algebra. Namely (f1 f2)(x) :=
∑

yz=x f1(y)f2(z) =
∑

y∈Fl(x)
f1(y)f2(s(y)x) =

∑

z∈Fr(x) f1(xs(z))f2(z) (Fl(x), Fr(x) denote the left and

right fiber containing x) and f∗(x) := f(s(x)). We expect that C∗(Γ) will be the com-

pletion of A (Γ) with respect to some C∗-norm.

The “extremal” examples of groupoids are sets and groups. For sets the above multipli-

cation is equal to pointwise multiplication and for groups it is usual convolution. The stan-

dard definition of morphism of groupoids reduces to a mapping if groupoids are sets and

to a group homomorphism if they are groups. If h : Γ −→ Γ′ is a group homomorphism,

we can push forward the convolution algebra by the formula (ĥf)(x′) :=
∑

x∈h−1(x′) f(x)

so ĥ : A (Γ) −→ A (Γ′). But if h : Γ −→ Γ′ is a mapping of sets, functions with po-

intwise multiplication can be pulled back by (ĥf ′)(x) := f ′(h(x)). In fact ĥf ′ can have
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noncompact support, but this is not a problem, since we know that it should belong

to (some kind of) multiplier algebra of A (Γ) so (ĥf ′)f should be in A (Γ) for any

f ∈ A (Γ) and certainly this is true. Disregarding the subtlety in this case we have

ĥ : A (Γ′) −→ A (Γ). We expect that C∗(h) will be some extension of ĥ. And here we

are in trouble, since our “C∗-functor” is covariant in the first case and contravariant in

the second. So to achieve our goal we need a definition of morphism between groupoids

which reduces to a group homomorphism if groupoids are groups and to a mapping in the

reverse direction if groupoids are sets. In particular this suggests that morphisms should

be relations rather than mappings. Such a definition was given in [11] and extended to

a differential setting in [12]. Let us briefly explain the main idea of the construction,

still in the discrete setting. We suggest looking at the next section before reading the

following.

Let (Γ,m,E, s), (Γ′,m′, E′, s′) be groupoids. A morphism from Γ to Γ′ is a relation

which satisfies some obvious compatibility conditions. In particular it turns out that it

defines a mapping fh : E′ −→ E and for each b ∈ E′ a mapping hLb : Fl(fh(b)) −→ Fl(b).

For a morphism h : Γ ⊲Γ′ and f ∈ A (Γ) we define ĥf , a linear mapping on A (Γ′), by

the formula:

((ĥf)f ′)(x′) :=
∑

x∈Fl(b)

f(x)f ′(s′(hLa (x))x′),

where a := e′L(z), b := fh(a). By the same formula we define πh(f)f ′ where we view f ′ as

an element of L2(Γ′), the Hilbert space of square summable functions on Γ′. Let us also

define norms on A (Γ): ||f ||l := supa∈E
∑

x∈Fl(a)
|f(x)|, ||f ||r := supa∈E

∑

x∈Fr(a) |f(x)|,

and ||f || := max{||f ||l, ||f ||r}. It is not difficult to prove the following:

Proposition 1.1. a) (A (Γ), ∗, ||.||) is a normed *-algebra.

b) ||πh(f)|| ≤ ||f || and πh is a representation of the *-algebra A (Γ).

c) f∗

3 (ĥ(f1)f2) = (ĥ(f∗

1 )f3)
∗f2 for any f1 ∈ A (Γ), f2, f3 ∈ A (Γ′).

d) If k : Γ′ ⊲Γ′′ is a morphism of groupoids then πk(ĥ(f1)f2)f3 = πkh(f1)πk(f2)f3

for any f1 ∈ A (Γ), f2 ∈ A (Γ′), f3 ∈ L2(Γ′′) with compact support, and k̂(ĥ(f1)f2)f3 =

k̂h(f1)(k̂(f2)f3) for any f1 ∈ A (Γ), f2 ∈ A (Γ′), f3 ∈ A (Γ′′).

Using these facts one can define the C∗ norm on A (Γ) by: ||f ||C∗ := sup ||πh(f)||

where the supremum is taken over all morphisms h : Γ ⊲Γ′. This is obviously a C∗-

seminorm, but one can show that there exists a faithful representation of A (Γ). The

completion of A (Γ) with respect to this norm is the C∗-algebra of Γ and one can see

that ĥ extends to a C∗(h) ∈ Mor(C∗(Γ), C∗(Γ′)). The extension of this construction to

a differential setting is the main result of the paper.

Of course in the above case we can also proceed in the standard way: first one can

complete (A (Γ), ∗, ||.||) to get a Banach *-algebra and then take its envelopingC∗-algebra.

However, in such a construction the functoriality is lost and moreover it seems that there

is no natural, geometric norm on A (Γ) in the differential case.
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Let us now say a few words about our motivations. One is to get “geometric models”

of quantum groups, especially noncompact, from double Lie groups. If (G;A,B) is a

double Lie group (see section 3) we can define two differential groupoid structures on G:

GA := (G,mA, A, sA) and GB := (G,mB , B, sB). It turns out that mT
B is a morphism

GA −→ GA×GA which is coassociative: (mT
B× id)mT

B = (id×mT
B)mT

B. Applying our C∗

functor we get a coassociative morphism ∆ ∈ Mor(C∗(GA), C∗(GA × GA)). We expect

that C∗(GA×GA) is (some sort of) C∗(GA)⊗C∗(GA). In this way we get one of the main

ingredients of quantum group structure on C∗(GA). It seems that also other ingredients

as defined in [5] have a natural geometric interpretation in the groupoid setting. For a

connection with symplectic geometry and quantisation see Appendix.

2. Groupoids—algebraic structure. A relation r from X to Y is a triple r =

(R;Y,X), where X and Y are sets and R is a subset of Y ×X . R is the graph of r and

we denote it by Gr(r). A relation r from X to Y will be denoted by r : X ⊲Y (note

the special type of arrow). Relations can be composed: if s : X ⊲Y and r : Y ⊲Z ,

then the composition rs is a relation from X to Z defined by Gr(rs) := {(z, x) ∈ Z×X :

∃ y ∈ Y [(z, y) ∈ Gr(r) and (y, x) ∈ Gr(s)]}. We say that the composition rs is simple iff

for any (z, x) ∈ Gr(rs) there exists a unique y ∈ Y such that (y, x) ∈ Gr(s) and (z, y) ∈

Gr(r). For a relation r : X ⊲Y its transposition is a relation rT : Y ⊲X defined by

Gr(rT ) := {(x, y) ∈ X × Y : (y, x) ∈ Gr(r)}. The cartesian product of relations is also

naturally defined: if r : X ⊲Y and s : Z ⊲T then r×s : X×Z ⊲Y ×T is a relation

with graph Gr(r×s) := {(y, t, x, z) ∈ Y ×T×X×Z : (y, x) ∈ Gr(r) and (t, z) ∈ Gr(s)}.

If r : X ⊲Y and A ⊂ X we denote be r(A) the image of A by r: r(A) := {y ∈ Y :

∃x ∈ A (y, x) ∈ Gr(r)}. Let {1} denote the one point set. Now we can formulate the

basic definition:

Definition 2.1 ([11]). A groupoid is a quadruple (Γ,m, e, s) where Γ is a set, m :

Γ × Γ ⊲Γ and e : {1} ⊲Γ are relations, s : Γ −→ Γ is an involution which satisfy:

associativity: m(m× id) = m(id×m),

identity: m(e× id) = m(id× e) = id,

inverse: sm = m(s× s) ∼ where ∼: Γ × Γ ∋ (x, y) 7→ (y, x) ∈ Γ × Γ,

strong positivity: for any x ∈ Γ ∅ 6= m(s(x), x) ⊂ e({1}).

The relation m is called multiplication, s the inverse and E := e({1}) the set of identities.

Notice that the first three conditions are formally the same as in the group case but

instead of mappings we use relations. The above definition is equivalent (cf. proposition

below) to the ”ordinary” definition of groupoid: A groupoid is a small category in which

every morphism is an isomorphism. But if we think of a groupoid as a category, the

natural candidates for morphisms are functors—this is not our point of view, so we

prefer the definition based on relations.
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Proposition 2.2 ([11]). Let (Γ,m, e, s) be a groupoid. Then:

a) If a, b ∈ E then m(a, b) 6= ∅ iff a = b and in this case m(a, a) = a.

b) There exist unique mappings eL, eR : Γ −→ E such that m(eL(x), x) = x = m(x, eR(x))

for any x ∈ Γ and eL(a) = eR(a) = a for any a ∈ E.

c) m(s(x), x) = eR(x),m(x, s(x)) = eL(x).

d) m(x, y) 6= ∅ iff eR(x) = eL(y).

e) m(x, y) ∩ E 6= ∅ implies y = s(x).

f) m(x, y) consists of at most one point.

Now we explain our notation. The set of composable pairs will be denoted by Γ(2) :=

mT (Γ) = {(x, y) ∈ Γ × Γ : eR(x) = eL(y)}. From the statements c) and f) of the above

proposition it follows that m restricted to Γ(2) is a surjective mapping to Γ. The set

of identities E will also be denoted by Γ0. If it doesn’t lead to any confusion we write

x = x1x2 instead of (x;x1, x2) ∈ Gr(m). For A,B ⊂ Γ let AB := {ab : a ∈ A, b ∈ B}.

For x ∈ Γ , by Fl(x) and Fr(x) we denote the left and right fibers containing x, i.e.

Fl(x) := e−1
L (eL(x)) and Fr(x) := e−1

R (eR(x)). If a ∈ E we also write aΓ := Fl(a) and

Γa := Fr(a). Clearly aΓ ∩ Γa is a group.

Examples 2.3. a) Sets. If X is a set then (X, dT , X, id), where d : X −→ X ×X is

a diagonal mapping, is a groupoid. Conversely, any groupoid such that mT is a mapping

is of this type.

b) Groups. If G is a group then (G,mG, {e}, s), where mG, s are group multiplication

and group inverse, is a groupoid and any groupoid for which m is a mapping is a group.

c) Pair groupoids. Examples a) and b) are “extremal” examples of groupoids. The

“middle” and the simplest are pair groupoids. Let X be a set. We put: Γ := X × X,

Gr(m) := {((x, y); (x, z), (z, y)) : x, y, z ∈ X}, s(x, y) := (y, x) and Γ0 := {(x, x), x ∈ X}.

Then (Γ,m,Γ0, s) is a groupoid.

d) Equivalence relations. If R ⊂ X × X is an equivalence relation on X , then

(R,m,Γ0, s) where m,Γ0, s are as above is a groupoid.

e) Transformation groupoids. Let a group G act on a set X . We denote the action by

G ×X ∋ (g, x) 7→ gx ∈ X . Define Γ := G ×X , s(g, x) := (g−1, gx), E := {e} ×X and

m by Gr(m) := {((g1g2, x); (g1, g2x), (g2, x)) : g1, g2 ∈ G, x ∈ X} ⊂ Γ × Γ × Γ. Then

(Γ,m,E, s) is a groupoid.

f) Double groups ([11]). Let (G;A,B) be double group i.e. A,B ⊂ G are subgroups,

A ∩ B = {e} and G = AB. In this situation each element of G can be written uniquely

as: g = aL(g)bR(g) = bL(g)aR(g). This decomposition defines four mappings: aR, aL :

G −→ A and bR, bL : G −→ B. Let mA : G×G ⊲G be the relation defined by

mA(g1, g2) :=

{

g1bR(g2) = bL(g1)g2 if aR(g1) = aL(g2)
∅ otherwise

Let sA : G ∋ g 7→ (bL(g))−1aL(g) ∈ G. Then GA := (G,mA, A, sA) is a groupoid.

g) And many, many more. See e.g. [4]
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Morphisms of groupoids

Definition 2.4 ([11]). Let (Γ,m, e, s) and (Γ′,m′, e′, s′) be groupoids. A morphism

from Γ to Γ′ is a relation h : Γ ⊲Γ′ such that:

1. hm = m′(h× h) 2. hs = s′h 3. he = e′.

Proposition 2.5 ([11]). Let h : Γ ⊲Γ′ be a morphism of groupoids. Then:

a) The compositions in the definition above are simple.

b) Let the relation h0 : E ⊲E′ be defined by Gr(h0) := Gr(h) ∩ (E′ × E).

Then (e′R × eR)Gr(h) = (e′L × eL)Gr(h) = Gr(h0) and fh := hT0 is a mapping.

c) Let b ∈ E′ and a := fh(b). Let us define two relations hRb : Fr(a) ⊲Fr(b) and

hLb : Fl(a) ⊲ Fl(b) by Gr(hRb ) := Gr(h) ∩ (Fr(b) × Fr(a)) and Gr(hLb ) := Gr(h) ∩

(Fl(b) × Fl(a)). Then hRb , h
L
b are mappings.

Morphisms can also be characterised in terms of mappings.

Proposition 2.6. Any morphism h : Γ ⊲Γ′ determines and is uniquely determined

by mappings f : E′ −→ E and g : Γ ×f E′ −→ Γ′, where Γ ×f E′ := {(x, e′) ∈ Γ × E′ :

eR(x) = f(e′)} which satisfy:

a) eLe
−1
R (f(E′)) = f(E′) (then also eRe

−1
L (f(E′)) = f(E′))

b) e′Rg(x, e
′) = e′

c) s′g(x, e′) = g(s(x), e′Lg(x, e
′))

d) ∀ (x1, x) ∈ Γ(2) (x, e′) ∈ Γ ×f E′ ⇒ g(x1x, e
′) = g(x1, e

′

Lg(x, e
′)) g(x, e′)

Let h : Γ ⊲Γ′ be a morphism and f, g be as above. Denote Γ̃ := Γ ×f E′. Define

s̃ : Γ̃ ∋ (x, b) 7→ (s(x), e′Lg(x, b)) ∈ Γ̃, Ẽ := E ×f E′ and a relation m̃ : Γ̃ × Γ̃ ⊲ Γ̃

by: Gr(m̃) := {(x1x2, b2;x1, e
′

Lg(x2, b2), x2, b2) : eR(x1) = eL(x2), (x2, b2) ∈ Γ̃}. Then

(Γ̃, m̃, Ẽ, s̃) is a groupoid. Consider relations h1 : Γ ⊲ Γ̃ and h2 : Γ̃ ⊲Γ′ defined by:

Gr(h1) := {(x, b;x) : (x, b) ∈ Γ̃}, Gr(h2) := {(g(x, b);x, b) : (x, b) ∈ Γ̃}. Clearly we have

h = h2h1, moreover h1 is a morphism from Γ to Γ̃ and h2 is a morphism from Γ̃ to Γ′.

For h1 the mappings between fibers are bijective, and fh2
is a bijective mapping. In this

way we have the following:

Proposition 2.7. If h : Γ ⊲Γ′ is a morphism of groupoids, then there exists a

groupoid Γ̃, morphisms k : Γ ⊲ Γ̃ and l : Γ̃ ⊲Γ′ such that h = lk and:

a) For each a ∈ Ẽ the mappings kRa and kLa are bijections.

b) l is a mapping from Γ̃ −→ Γ′ which is bijective when restricted to Ẽ.

Groupoids together with morphisms just defined form a category.

Proposition 2.8 ([11]). Let h : Γ ⊲Γ′ and k : Γ′ ⊲Γ′′ be morphisms of group-

oids. Then h and k have simple composition and kh is a morphism from Γ to Γ′′.

Examples 2.9. a) If X is a set and (Γ,m, e, s) is a groupoid then any morphism

h : X ⊲Γ is equal to fT for some mapping f : E −→ X . In particular if X is a set and

G is a group then morphisms X ⊲G are just points of X .
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b) If G,H are groups then morphisms from G to H are just group homomorphisms.

c) If (G;A,B) is a double group thenmT
B : GA ⊲GA×GA andmT

A : GB ⊲GB×GB

are morphisms of groupoids [11].

d) For any groupoid Γ the mapping Γ ∋ x 7→ (eL(x), eR(x)) ∈ E × E is a morphism

from Γ to the pair groupoid E × E. We denote this relation by ẽ.

e) The relation l : Γ ⊲Γ × Γ given by: (x, y; z) ∈ Gr(l) ⇔ (x; z, y) ∈ Gr(m) is a

morphism from Γ to the pair groupoid Γ × Γ. It is called left regular representation [11].

The above defined morphisms differ from the standard one, but later on we will see

that this definition is proper for defining the algebra of a groupoid and the functorial

properties of the construction. Also we want to point out that our definition is not a

generalisation of the usual definition. Below we show that our morphisms are related to

actions of groupoids on sets.

Definition 2.10 ([7]). Let (Γ,m, e, s) be a groupoid, Y be a set and µ : Y −→ Γ0

be a mapping. Denote Γ ×µ Y := {(x, y) ∈ Γ × Y : eR(x) = µ(y)}. The (left) action of

Γ on Y is a mapping φ : Γ ×µ Y ∋ (x, y) 7→ φ(x, y) ∈ Y which satisfies:

µφ(x, y) = eL(x), φ(x1x2, y) = φ(x1, φ(x2, y)), φ(µ(y), y) = y.

Now let Γ act on Y . Put f := µ and g : Γ×f Y ∋ (x, y) 7→ (φ(x, y), y) ∈ Y ×Y . Then

it is easy to see that these mappings satisfy the conditions given in Prop. 2.6, so they

determine a morphism from Γ to the pair groupoid Y ×Y . Conversely, if h : Γ ⊲ Y ×Y

is a morphism then putting: µ := fh and φ(x, y) := e′Lh
R
y (x) we get an action of Γ

on Y . Also for any morphism h : Γ ⊲Γ′ the mappings µ := fhe
′

L : Γ′ −→ E and

φ(x, x′) := hRa′(x)x
′ where a′ := e′L(x′) define an action of Γ on Γ′.

Bissections. A bissection B is a subset of Γ such that eL |B: B −→ Γ0 and eR |B:

B −→ Γ0 are bijections. The set of bissections of Γ will be denoted by B(Γ). Bissections

form a group, which acts on Γ according to the formula: Bx := B{x} (left action) and

xB := {x}B (right action). Bissections can also be characterized as subsets of Γ with the

property that Bs(B) = s(B)B = Γ0.

Examples 2.11. a) For any groupoid the set of identities is a bissection.

b) If Γ is a group then bissections are just group elements.

c) If Γ := X×X is a pair groupoid then any bissection is of the form B := {(f(x), x) :

x ∈ X} for some bijection f : X −→ X .

Morphisms of groupoids act on bissections: if h : Γ ⊲Γ′ is a morphism and B a

bissection of Γ then the set h(B) is a bissection of Γ′.

3. Differential groupoids. From now on, when we use the word manifold without

any comments, we mean a Hausdorff, finite dimensional, smooth manifold with a count-

able basis of neighbourhoods. A submanifold is a nonempty, embedded submanifold (with

the relative topology). A differentiable relation r : X ⊲Y is a triple r = (R;Y,X) such
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that X,Y are manifolds and R is a submanifold in Y ×X . The tangent lift of a differen-

tiable relation r : X ⊲Y is a relation Tr : TX ⊲TY with a graph Gr(Tr) := TGr(r).

A phase lift of r is a relation Pr : T ∗X ⊲T ∗Y such that:

(α, β) ∈ Gr(Pr) ⇐⇒ < α, u >=< β, v > for any (u, v) ∈ T(y,x)Gr(r),

where y := πY (α), x := πX(β) and πX , πY are the canonical projections of the cotangent

bundles. We say that relations r : X ⊲Y and s : Y ⊲Z are transverse (and write

r ⌢| s) iff Tr, T s and Pr, Ps have simple composition, and sr is a differentiable relation.

Let us also recall that a differentiable reduction is a differentiable relation r : X ⊲Y of

the form r = fiT , where i : C −→ X is the inclusion map of the submanifold C ⊂ X and

f : C −→ Y is a surjective submersion.

Definition 3.1 ([12]). A differential groupoid (Γ,m, e, s) is a groupoid such that

Γ is a manifold, m is a differentiable reduction, e is a differentiable relation, s is a

diffeomorphism and the following transversality relations hold: m ⌢| (m × id),m ⌢|

(id×m),m ⌢| (e× id),m ⌢| (id× e).

It can be shown [12] that in this situation eL, eR are submersions.

Examples 3.2. a) Examples 2.3 a)-e) with obvious smoothness conditions are differ-

ential groupoids.

b) Double Lie groups ([3]). We say that a double group (G;A,B) is a double Lie group

iff G is a Lie group and A,B are closed subgroups of G. Then GA, GB are differential

groupoids.

c) Tangent and cotangent bundles. If X is a manifold then (TX,+, X,−) and

(T ∗X,+, X,−) are differential groupoids. More generally, if (P,X) is a vector bundle

then it is a groupoid in a natural way (P,+, X,−).

d) Tangent and phase lifts of differential groupoids ([12]). If (Γ,m, e, s) is a differential

groupoid then (TΓ, Tm, T e, T s) and (T ∗Γ, Pm, Pe,−Ps) are differential groupoids. If

Γ := (X, dT , X, id) is a manifold groupoid then its tangent lift TΓ = (TX, dTTX , TX, id)

is again a manifold groupoid but its cotangent lift PΓ = (T ∗X,+, X,−) is a cotangent

bundle with the usual groupoid structure.

e) If Γ = (G,m, e, s) is a Lie group, then its tangent lift is a Lie group TG. But the

phase lift is T ∗G as a transformation groupoid: T ∗G = G× g∗ with coadjoint action.

Morphisms of differential groupoids

Definition 3.3 ([12]). Let Γ,Γ′ be differential groupoids and h : Γ ⊲Γ′ a differen-

tiable relation which is an (algebraic) morphism of groupoids. Then h is a morphism of

differential groupoids iff m′ ⌢| (h× h) and h ⌢| e.

Proposition 3.4 ([12]). If h : Γ ⊲Γ′ is a morphism of differential groupoids then:

a) fh : E′ −→ E is a smooth mapping.

b) Γ∗hE′ := {(x, b) ∈ Γ×E′ : eL(x) = fh(b)} is a submanifold of Γ×E′ (and of Γ×Γ′).

c) The mapping: Gr(h) ∋ (y, x) 7→ (x, e′L(y)) ∈ Γ ∗h E′ is a diffeomorphism.
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Using this proposition one shows that the sets: Γ ∗h Γ′ := {(x, y) ∈ Γ × Γ′ : eL(x) =

fh(e
′

L(y))} and Γ ×h Γ′ := {(x, y) ∈ Γ × Γ′ : eR(x) = fh(e
′

L(b))} are submanifolds of

Γ × Γ′. Let us define a mapping mh : Γ ×h Γ′ ∋ (x, y) 7→ m′(hRb (x), y) ∈ Γ′, where

b := e′L(y). It turns out that mh is a surjective submersion. It is illustrated in figure 1.

Also we define the diffeomorphism th : Γ ×h Γ′ ∋ (x, y) 7→ (x,mh(x, y)) ∈ Γ ∗h Γ′.

Fig. 1

Examples 3.5. a) If f : X −→ Y is a smooth mapping then T ∗f considered as

a relation: T ∗Y ⊲T ∗X is a morphism of differential groupoids. The same is true for

(Tf)T : TY ⊲ TX . Note that here TX, TY are considered as manifold groupoids, not

vector bundle groupoids. Unless f is a local diffeomorphism, (Tf)T is not a morphism of

(TY,+, Y,−) and (TX,+, X,−).

b) Let a Lie group G act on a manifold X . We form the transformation groupoid

Γ := G × X . Let Y be a manifold and h : Γ ⊲ Y × Y be a morphism to the pair

groupoid of Y . Consider the smooth mapping Φ : G×Y ∋ (g, y) 7→ e′Lh
R(g, fh(y); y) ∈ Y .

Then Φ defines an action of G on Y . Moreover fh is equivariant, i.e. gfh(y) = fhΦ(g, y).

Conversely, if G acts on X and Y with equivariant mapping f : Y −→ X then h defined

by: Gr(h) := {(gy, y; g, f(y))) : y ∈ Y, g ∈ G} is a morphism from Γ to Y × Y .

c) Let X,Y be manifolds and Γ := X × X , Γ′ := Y × Y be the corresponding pair

groupoids. Then using Props. 2.6 and 3.4 one can see that any morphism h : Γ ⊲Γ′ is

determined by a smooth surjection f : Y −→ X and a smooth mapping g : X ×Y −→ Y

which satisfy for any x, x1 ∈ X, y ∈ Y : a) fg(x, y) = x , b) g(f(y), g(x, y)) = y , c)

g(x, y) = g(x, g(x1, y)). Then Gr(h) := {(g(x, y), y;x, f(y)) : x ∈ X, y ∈ Y }. One can

show that f is a submersion and for x0 ∈ X , Z := f−1(x0) the mapping: φ : X × Z ∋

(x, y) 7→ g(x, y) ∈ Y is a diffeomorphism. In this way for any morphism h : Γ ⊲Γ′ there

exists a diffeomorphism φ : Y −→ X×Z and Gr((φ×φ)h) = {(x, z, x1, z;x, x1) : x, x1 ∈

X, z ∈ Z}.

The next proposition shows that differential groupoids with the morphisms defined

above form a category.
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Proposition 3.6 ([12]). Let Γ,Γ′,Γ′′ be differential groupoids and let h : Γ ⊲Γ′

and k : Γ′ ⊲Γ′′ be morphisms. Then h ⌢| k and kh : Γ ⊲Γ′′ is a morphism.

A submanifold B ⊂ Γ is a bissection iff eL|B and eR|B are diffeomorphisms. If h :

Γ ⊲Γ′ is a morphism of differential groupoids and B is a bissection then h(B) is a

bissection.

4. Construction of the ∗-algebra of a differential groupoid. In this section we

introduce the ∗-algebra of a differential groupoid. The way we do it is rather nonstandard

and at first sight may be regarded as too complicated, nevertheless it is very convenient

for the further development.

Let Γ be a differential groupoid and let Ω1/2(eL) (Ω1/2(eR)) be the smooth bundle

of complex half densities along the left (right) fibers of Γ. Following A. Connes [2] our

basic object is the linear space of compactly supported smooth sections of the bundle

Ω1/2(eL)⊗Ω1/2(eR). We denote this space by A (Γ). Its elements will be called bidensities

and usually denoted by ω. So ω(x) = λ(x) ⊗ ρ(x) ∈ Ω1/2T lxΓ ⊗ Ω1/2T rxΓ, where we used

notation: T lxΓ := Tx(Fl(x)), T
r
xΓ := Tx(Fr(x)). In the following we also write Ω

1/2
L (x) :=

Ω1/2T lxΓ and Ω
1/2
R (x) := Ω1/2T rxΓ.

We also use the following notation: if M,N are manifolds, F : M −→ N and Ψ

is some geometric object on M which can be pushed-forward by F , then we denote the

push-forward of ψ simply by Fψ. What it really means will be clear from the context.

The groupoid inverse induces the star operation on A as follows

ω∗(x)(v ⊗ w) := ω(s(x))(s(w) ⊗ s(v)), v ∈ ΛmaxT lxΓ, w ∈ ΛmaxT rxΓ

(for any vector space V by ΛmaxV we denote the maximal exterior power of V ). This

is a well defined antilinear involution (since s is an involutive diffeomorphism which

interchanges left and right fibers).

We are going to show that with any morphism h : Γ ⊲Γ′ is associated a mapping

ĥ : A (Γ) −→ LA (Γ′) (LA (Γ′) denotes linear endomorphisms of A (Γ′)), which “well

behaves” with respect to composition of morphisms and the ∗-operation. Then putting

h = id we get an algebra structure on A (Γ). Before this we define some special sections

of Ω1/2(eL) ⊗ Ω1/2(eR) which are very convenient for computations.

∗-invariant bidensities. Since left (right) translations are diffeomorphisms of left

(right) fibers, we can define left (right) invariant sections of Ω1/2(eL)(Ω1/2(eR)), namely

a section λ is left invariant iff for any (x, y) ∈ Γ(2), λ(xy)(xv) = λ(y)(v), v ∈ ΛmaxT lyΓ. In

the same way right invariant half densities are defined. Any left invariant half density is

determined by its value on Γ0 and conversely any section of Ω1/2(eL)|Γ0 can be uniquely

extended to a left invariant half density on Γ.

So let λ̃ be a nonvanishing, real, half density on Γ0 along the left fibers (one constructs

such a density by covering Γ0 with maps adapted to the submersion eL and using an
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appropriate partition of unity to glue them together). We define:

λ0(x)(v) := λ̃(eR(x))(s(x)v), v ∈ ΛmaxT lxΓ,

then λ0 is a left invariant, nonvanishing section of Ω1/2(eL). Now ρ̃ := λ̃s is a nonva-

nishing, real, half density on Γ0 along the right fibers, and ρ0 defined by: ρ0(x)(v) :=

ρ̃(eL(x)(vs(x)), v ∈ ΛmaxT rxΓ is a right invariant, nonvanishing, real half density along

the right fibers. Let ω0 := λ0 ⊗ ρ0; this is a real, nonvanishing bidensity. From now on

the symbol ω0 will always mean the bidensity constructed in this way. When ω0 is chosen

any element ω ∈ A (Γ) can be written uniquely as ω = f ω0 for some smooth, complex

function f with compact support. Note the following:

Lemma 4.1. If ω = fω0 then ω∗ = f∗ω0 where f∗(x) := f(s(x)).

Choosing λ0 in fact we choose some left Haar system in the sense of [6] on our groupoid.

But all our constructions and in particular our C∗ algebra are independent of this choice.

Action of groupoid morphisms on bidensities. Now, for a morphism h : Γ ⊲Γ′ we

construct the mapping ĥ. It can be shown that:

1. The set Γ×hΓ′

a := {(x, y) ∈ Γ×Γ′ : eR(x) = fh(e
′

L(y)), e′R(y) = a} is a submanifold

of Γ ×h Γ′.

2. The mapping: π2 : Γ×hΓ′

a ∋ (x, y) 7→ y ∈ Γ′

a is a surjective submersion and π−1
2 (y)

is diffeomorphic to Fr(fh(e
′

L(y))).

3. The mapping th : Γ ×h Γ′

a ∋ (x, y) 7→ (x,mh(x, y)) ∈ Γ ∗h Γ′

a := {(x, y) ∈ Γ × Γ′

a :

eL(x) = fh(e
′

L(y))} is a diffeomorphism.

4. π̃2 : Γ∗hΓ′

a ∋ (x, y) 7→ y ∈ Γ′

a is a surjective submersion and π̃−1
2 (y) is diffeomorphic

to Fl(fh(e
′

L(y))).

Before we go further, let us recall some facts about densities. Let V be a finite di-

mensional vector space. For p ≥ 0 we denote the linear space of complex p-densities

on V by Ωp(V ). If V = V1 ⊕ V2 and ν1, ν2 are p-densities on V1, V2 then the formula

(ν1 ⊗ ν2)(v1 ∧ v2) := ν1(v1)ν2(v2) for v1 ∈ ΛmaxV1, v2 ∈ ΛmaxV2 defines an isomor-

phism Ωp(V ) = Ωp(V1) ⊗ Ωp(V2). Also we have Ωp(V ) = Ωp(V1) ⊗ Ωp(V/V1) defined

by choosing some V2 ⊂ V complementary to V1. The isomorphism does not depend on

the choice made. In this way if F : V −→ W is a linear surjection, we have a canonical

isomorphism Ωp(V ) = Ωp(ker F )⊗Ωp(W ). This fact is constantly used in the following.

Now we go back to groupoid morphisms.

Let (x, y) ∈ Γ ×h Γ′

a and th(x, y) =: (x, z), b := e′L(z). Due to point 2, we have

an isomorphism: i1 : Ω
1/2
R (x) ⊗ Ω

1/2
R (y) −→ Ω1/2T(x,y)(Γ ×h Γ′

a) . From point 3, th :

Ω1/2T(x,y)(Γ×h Γ′

a) −→ Ω1/2T(x,z)(Γ ∗h Γ′

a) is an isomorphism and from 4, i2 : Ω
1/2
L (x)⊗

Ω
1/2
R (z) −→ Ω1/2T(x,z)(Γ ∗h Γ′

a) is an isomorphism. So (i2)
−1thi1(ρx ⊗ ρy) =: λx ⊗ ρz for

some λx⊗ρz ∈ Ω
1/2
L (x)⊗Ω

1/2
R (z). Moreover the mapping Fl(y) ∋ u 7→ hRe′

L
(y)(x)u ∈ Fl(z)

is a diffeomorphism, so for λy ∈ Ω
1/2
L (y), hRe′

L
(y)(x)λy ∈ Ω

1/2
L (z).

Now let ω = λ ⊗ ρ ∈ A (Γ) ω′ = λ′ ⊗ ρ′ ∈ A (Γ′). Then (i2)
−1thi1(ρ(x) ⊗ ρ′(y)) =:
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λ̃x⊗ρ̃z and hRe′
L
(y)(x)λ

′(y) =: λ̃′z. So the expression: [λ(x)λ̃x]⊗λ̃′z⊗ρ̃z defines a one-density

on Fl(fh(b)) with values in the one dimensional vector space Ω
1/2
L (z) ⊗ Ω

1/2
R (z).

Let us define

(ĥ(ω)ω′)(z) :=

∫

Fl(fh(b))

[λλ̃] ⊗ λ̃′z ⊗ ρ̃z .

Choose ω0 = λ0 ⊗ ρ0, ω
′

0 = λ′0 ⊗ ρ′0. Then ω = f1 ω0, ω
′ = f2 ω

′

0 and (i2)
−1thi1(ρ0(x) ⊗

ρ′0(y)) =: th(x, y)λ0(x)⊗ρ′0(z) for some smooth, nonvanishing function th : Γ×hΓ′ −→ R

and hRe′
L

(y)(x)λ
′

0(y) = λ′0(z).

We get the explicit expression:

(ĥ(ω)ω′)(z) :=

[

∫

Fl(fh(b))

λ2
0(x)f1(x)th(x, y)f2(y)

]

ω′

0(z) =: (f1 ∗h f2)(z)ω
′

0(z),

where y is defined by th(x, y) = (x, z), i.e. y = s′(hLb (x))z.

The next proposition is crucial for the construction, it describes how the mapping ĥ

behaves with respect to composition of morphisms. We cannot simply write: k̂(ĥω) = k̂hω

since the left hand side is not defined. Instead of this equality we prove another one, which

is formally the same as for morphisms of C∗-algebras.

Proposition 4.2. Let h : Γ ⊲Γ′, k : Γ′ ⊲Γ′′ be morphisms of differential group-

oids. Then

k̂(ĥ(ω1)ω2)ω3 = k̂h(ω1)(k̂(ω2)ω3) for any ω1 ∈ A (Γ), ω2 ∈ A (Γ′), ω3 ∈ A (Γ′′).

Proof. The proof of this proposition is based on the following lemma which describes

how the functions th, tk and tkh are related. The lemma is proven by investigation of

various submanifolds defined by the morphisms h, k, kh and various natural identifications

among (half)densities at corresponding points.

Lemma 4.3. Let (x, y, z) ∈ Γ×Γ′ ×Γ′′ satisfy: eR(x) = fh(e
′

L(y)), e′R(y) = fk(e
′′

L(z))

and let y′, z′ be defined by: th(x, y) = (x, y′) and tk(y, z) = (y, z′). Then th(x, y)tk(y
′, z) =

tkh(x, z
′)tk(y, z).

Remark 4.4 (the algebra structure on A (Γ)). Take h = id : Γ ⊲Γ, then Γ×h Γ =

Γ(2) and put: ω1ω2 := îd(ω1)ω2. Due to the above proposition, this product is associative.

Chosen ω0 we can write ω1 = f1ω0, ω2 = f2ω0. In this situation tid ≡ 1 and the explicit

formula for the product is: ω1ω2 =: (f1 ∗ f2)ω0 and

(f1 ∗ f2)(x) :=

∫

Fl(x)

λ2
0(y)f1(y)f2(s(y)x) =

∫

Fr(x)

ρ2
0(y)f1(xs(y))f2(y).

The equality is implied by the fact that right and left fibers are diffeomorphic by s.

That the multiplication is compatible with the star operation (i.e. A is in fact a

∗-algebra) can be shown directly, but it will follow from more general facts. The multi-

plication is nondegenerate, i.e. if ω′ω = 0 for ω ∈ A (Γ) then ω′ = 0.

It seems that there is no natural, geometric, norm on A (Γ), but one can introduce

the family of useful norms “indexed” by ω0 [6]. So choose λ0 and write ω = fω0. We
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define

||ω||l := sup
a∈Γ0

∫

Fl(a)

λ2
0 |f |, ||ω||r := sup

a∈Γ0

∫

Fr(a)

ρ2
0 |f |, ||ω|| := max{||ω||l, ||ω||r}.

(We do not explicitly write the dependence on λ0 to make notation simpler.) The next

lemma shows that the definitions are correct.

Lemma 4.5. The functions ||.||l, ||.||r, ||.|| are norms and give A the structure of a

normed algebra. Moreover ||ω∗||l = ||ω||r so ||ω∗|| = ||ω|| (in fact (A , ∗, ||, ||) is a normed

*-algebra as we will see later on).

Remark 4.6. We can try to define a “geometric” norm on A (Γ) as follows. Recall

that the orbit of a point a ∈ E is the set eL(Γa) = eR(aΓ). It is known [4] that for

each a ∈ Γ0 the set Γa ∩ aΓ is a submanifold in Γ and a Lie group. Since right and

left translations are diffeomorphisms of the fibers it is clear that all sets aΓ ∩ Γb for a, b

in the same orbit are diffeomorphic submanifolds. Also we have that eL|Γa
: Γa −→ Γ0

and eR|aΓ : aΓ −→ Γ0 are of constant rank so orbits are immersed submanifolds. Now

suppose that each orbit in Γ0 is a submanifold; let us denote the orbit through a by Oa.

In this case (Γa, Oa, eL|Γa
) and (aΓ, Oa, eR|aΓ) are locally trivial differential fibrations,

with the fibers diffeomorphic to the Lie group aΓ ∩ Γa. If λ is a half density on Γ along

the left fibers then its restriction to aΓ can be written as λ(x) = µ(eR(x)) ⊗ ν(x) for µ

a half density on Oa and ν a half density on aΓ along the fibers of eR|aΓ. In the same

way if ρ is a half density along the right fibers then its restriction to Γa can be written

as ρ(x) = µ1(eL(x))⊗ ν1(x) for µ1 a half density on the orbit and ν1 a half density along

the fibers of eL|Γa
. So for ω = λ ⊗ ρ ∈ A (Γ) and x ∈ Γ with eL(x) = a, eR(x) = b we

have ω(x) = µ(eR(x)) ⊗ µ1(eL(x)) ⊗ ν(x) ⊗ ν1(x) but since fibers of eR|Γa
and eL|bΓ are

the same ν(x) ⊗ ν1(x) is a density on Tx(Γa ∩ bΓ). Let S denote the set of orbits and

define the following quantity:

||ω||geom := sup
s∈S

√

∫

s×s

|µ1|2(a) ⊗ |µ|2(b)

(
∫

aΓ∩Γb

|νν1|

)2

.

This quantity is finite and for ω ∈ A (Γ) we have ||ω||geom ≤ ||ω|| where the norm on the

right side is introduced above.

Now we show that A is a normed ∗-algebra and morphisms define ∗-homomorphisms.

As in Prop. 4.2 the equality we prove is taken from the definition of conjugation of a

linear mapping on a C∗-algebra [8].

Proposition 4.7. Let h : Γ ⊲Γ′ be a morphism of differential groupoids. Then

ω∗

3(ĥ(ω1)(ω2)) = (ĥ(ω∗

1)ω3)
∗ω2 for any ω1 ∈ A (Γ), ω2, ω3 ∈ A (Γ′).

Remark 4.8 (∗-algebra structure on A ). Take h = id. Then we have ω∗

3(ω1ω2) =

(ω∗

3ω1)ω2 = (ω∗

1ω3)
∗ω2 for any bidensities ω1, ω2, ω3. So (ω∗

3ω1) = (ω∗

1ω3)
∗ (multiplication

is nondegenerate) and since * is an involution we have that (ω1ω2)
∗ = ω∗

2ω
∗

1 .
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Representation of the ∗-algebra of a groupoid associated with a morphism. Let h :

Γ ⊲Γ′ be a morphism of differential groupoids. Then it defines a representation of the

∗-algebra A (Γ) in the Hilbert space L2(Γ′) of square integrable half densities on Γ′ as

follows.

Let Ψ be a smooth half density on Γ′ with compact support and ω ∈ A (Γ), ω = λ⊗ρ.

Let (x, y) ∈ Γ ×h Γ′ and th(x, y) =: (x, z). As in the definition of ĥ, ρ(x) ⊗ Ψ(y) can be

viewed as a half density on T(x,y)(Γ ×h Γ′) and th(ρ(x) ⊗ Ψ(y)) is a half density on

T(x,z)(Γ ∗h Γ′). Since Ω
1/2
L (x) ⊗ Ω1/2TzΓ

′ ≃ Ω1/2T(x,z)(Γ ∗h Γ′) this half density can be

written as λ̃x ⊗ Ψx(z) for λ̃x a half density on Tx(Fl(x)) and Ψx(z) a half density on

Tz(Γ
′). Then λ(x)λ̃x⊗Ψx(z) is a 1-density on T rxΓ with values in half densities on Tz(Γ

′).

Integrating it we get a half density on Tz(Γ
′). Let us define:

(πh(ω)Ψ)(z) :=

∫

Fl(fh(a))

[λ(x)λ̃x] ⊗ Ψx(z).

Choose ω0 and write ω = f ω0. Since e′R is a surjective submersion we have: Ω1/2TwΓ′ ≃

Ω
1/2
R (w)⊗Ω1/2Te′

R
(w)E

′ for any w ∈ Γ′. In this way, if we choose ρ′0 and ν0 a nonvanishing,

real half density on E′ then ρ′0⊗ν0 defines a nonvanishing, real, half density on Γ′. So any

other smooth half density with compact support Ψ can be written as Ψ = ψ ρ′0 ⊗ ν0 =:

ψΨ0 for some smooth, complex function ψ with compact support. It is easy to see that:

th(ρ0(x) ⊗ ρ′0(y) ⊗ ν0(a)) = th(x, y)λ0(x) ⊗ ρ′0(z) ⊗ ν0(a) where th is as in the definition

of ĥ. So the explicit formula is:

(πh(ω)Ψ)(z) =

[
∫

bΓ

λ2
0(x) f(x) th(x, y)ψ(y)

]

Ψ0(z),

where b := fh(e
′

L(z)), th(x, y) = (x, z). Note that formally the expression is the same as

in Prop. 4.2.

Proposition 4.9. a) Let h : G ⊲Γ′ be a morphism of differential groupoids. Let

||.|| be a norm on A (Γ) associated with the chosen ω0. The correspondence: A (Γ) ∋ ω 7→

πh(ω) is a representation of the normed ∗-algebra A (Γ) in L2(Γ′).

b) If k : Γ′ ⊲Γ′′ is a morphism then: πk(ĥ(ω1)ω2)Ψ = πkh(ω1)πk(ω2)Ψ for any ω1 ∈

A (Γ), ω2 ∈ A (Γ′),Ψ a smooth half density on Γ′′ with compact support.

Examples 4.10. a) Reduced C∗-algebra of a differential groupoid. Let l be the mor-

phism from Γ to the pair groupoid Γ × Γ defined in Example 2.9 f), i.e. (x, y; z) ∈

Gr(l) ⇐⇒ (x; z, y) ∈ Gr(m). Let πl be a representation of A (Γ) in L2(Γ × Γ) =

L2(Γ)⊗L2(Γ) associated with the morphism l. Short computation shows that πl = πid⊗I.

So ||πl(ω)|| = ||πid(ω)|| and it can be shown that the function A (Γ) ∋ ω 7→ ||πid(ω)||

is a C∗-norm on A (Γ). The completion of A (Γ) in this norm will be called the reduced

C∗-algebra of Γ and denoted by C∗

red(Γ).

b) Modular function. Let ẽ be a morphism from Γ to the pair groupoid E × E de-

fined in Example 2.9 e), i.e. Gr(ẽ) = {(eL(x), eR(x);x) : x ∈ Γ}. It is easy to see that

tẽ(x; eR(x), e) = (x; eL(x), e). Choose some ω0 = λ0 ⊗ ρ0 and some real, nonvanish-
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ing half density ν0 on E. Such a choice defines a function tẽ(x; eR(x), e). From Lemma

4.3, this function does not depend on e and if we define ∆(x) := tẽ(x, eR(x)) then

∆(xy) = ∆(x)∆(y) for any composable x, y ∈ Γ. ∆ is called a modular function of Γ (it

depends on the chosen λ0, ν0). ∆ can also be described in the following way. When ω0, ν0

are chosen, the expressions: ψr(x) := ρ0(x) ⊗ ν0(eR(x)) and ψl(x) := λ0(x) ⊗ ν0(eL(x))

define smooth, nonvanishing, real half densities on Γ. Then ∆ is defined by: ψl =: ∆ψr.

Nondegeneracy of morphisms. In the context of morphisms of C∗-algebras an impor-

tant role is played by the nondegeneracy condition. The following proposition is used to

prove that the action of morphisms on bidensities is nondegenerate (i.e. if ĥ(ω)ω′ = 0 for

any ω then ω′ = 0).

Proposition 4.11. Let h : Γ ⊲Γ′ be a morphism of differential groupoids. Then

for any ω′ ∈ A (Γ′) there exists a sequence ωn ∈ A (Γ) such that: limn→∞ ĥ(ωn)ω
′ = ω′.

(The limit is in the norm given by some ω′

0.)

Remark 4.12. a) The action of morphisms on bidensities is nondegenerate. Indeed,

if ĥ(ω)ω′ = 0 for any ω then taking ωn as above we have: 0 = limn→∞ ĥ(ωn)ω′ = ω′.

b) The representation πh associated with the morphism h is nondegenerate.

Note that we don’t claim that ĥωn is an approximate identity for A (Γ′), since ωn

depend on the chosen ω′. Also πh(ωn) does not converge strongly or weakly to the identity

on L2(Γ′).

5. C∗-algebra of a differential groupoid. Let Γ be a differential groupoid. The

results from the previous sections show that the following definition is meaningful.

Definition 5.1. The C∗-algebra of a differential groupoid Γ is the completion of

A (Γ) with respect to the norm: ||ω|| := suph ||πh(ω)||, where the supremum is taken over

all morphisms h : Γ ⊲Γ′.

Now we can state the main result, i.e. functoriality of our construction.

Proposition 5.2. a) For any morphism h : Γ ⊲Γ′ , πh extends to a nondegenerate

representation of C∗(Γ) and ĥ extends to C∗(h) ∈Mor(C∗(Γ), C∗(Γ′)).

b) C∗(kh) = C∗(k)C∗(h).

The definition of the C∗ norm given above is rather abstract and the C∗ algebra

obtained seems untreatable. However, we can restrict ourselves to a smaller class of

morphisms—namely to the morphisms into pair groupoids. Let h : Γ ⊲Γ′ be a mor-

phism of differential groupoids and let l′ : Γ′ ⊲Γ′ × Γ′ be a left regular representation

as defined in 2.9 f) (Γ′ × Γ′ is a pair groupoid, not the product of groupoids). Then

h̃ := l′h is a morphism from Γ to the pair groupoid Γ′ × Γ′. Then one can show that the

(semi)norms coming from πh and πh̃ are equal.

Examples 5.3. a) Pair groupoids. Let Γ := X ×X,Γ′ := Y × Y be pair groupoids.

Due to the structure of morphisms in this case as explained in Example 3.5b) we can
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assume that Y = X × Z for some manifold Z and h : Γ ⊲Γ′ is given by Gr(h) :=

{(x, z, x′, z;x, x′) : x, x′ ∈ X, z ∈ Z}. Using this fact one can show that for pair groupoids

the C∗ norm on A (Γ) is equal to the norm coming from the left regular representation.

The completion of A (Γ) in this norm is the algebra of compact operators.

Groups. Let Γ = G be a Lie group. A (G) is by definition the *-algebra of compactly

supported, smooth, complex densities on G. For any U -strongly continuous, unitary rep-

resentation of G on the Hilbert space H the formula

(x, πU (ν)x) :=

∫

G

ν(g)(x, U(g)x), ν ∈ A (G), x ∈ H

defines a nondegenerate *-representation of A (G). C∗(G) is the completion of A (G) with

respect to the norm ||ν|| := supU ||πU (ν)||.

Since for a group, left and right fibers are equal it is clear that any ω ∈ A (Γ) is a

density on G by the assignment: A (Γ) ∋ λ ⊗ ρ 7→ λρ ∈ A (G). Let X be a manifold and

Γ′ := X×X the corresponding pair groupoid. By a slight modification of arguments used

in Example 3.5 a) morphisms h : Γ ⊲Γ′ are in one to one correspondence with smooth

actions of G on X : Gr(h) := {(gx, x; g) : x ∈ X,G ∈ G}. Choose λ0 a real, smooth,

nonvanishing left invariant half density on G and ψ0 a smooth, real, nonvanishing half

density on X . Then short computations show that for ω = fλ0 ⊗ ρ0,Ψ = ψψ0 ⊗ ψ0 we

have:

(πh(ω)Ψ)(x1, x2) =

[
∫

G

λ2
0(g)f(g)th(g; g

−1x1, x2)ψ(g−1x1, x2)

]

ψ0(x1) ⊗ ψ0(x2).

Since L2(Γ′) = L2(X) ⊗ L2(X) this representation is of the form πh(ω) = π̃h(ω) ⊗ I for

(π̃h(ω)Ψ)(x) :=

[
∫

G

λ2
0(g)f(g)

ρ0

λ0
(g)

gψ0

ψ0
(x)ψ(g−1x)

]

ψ0(x),

where Ψ = ψψ0 is a smooth half density on X with compact support.

On the other hand, the action of G on X defines a strongly continuous unitary repre-

sentation ofG on L2(X) by the formula: UgΨ := gΨ for Ψ a smooth, compactly supported

half density on X . If Ψ = ψψ0 then (UgΨ)(x) = ψ(g−1x)gψ0

ψ0

(x)ψ0(x). If ω = fλ0 ⊗ ρ0

then ν := fλ0ρ0 = f ρ0λ0

λ2
0 and π̃h(ω)Ψ = πU (ν)Ψ. In this way ||ω||C∗(Γ) ≤ ||ν||C∗(G) and

the C∗-algebra of a Lie group G viewed as a differential groupoid is something “between”

the reduced C∗-algebra of G and the algebra C∗(G) where G is treated as a locally

compact topological group.

Transformation groupoids. Let Γ := G×X be a transformation groupoid. By C0(X)

we denote the C∗-algebra of complex, continuous functions on X vanishing at infinity.

The action of G on X induces a strongly continuous homomorphism α : G ∋ g 7→

αg ∈ Aut(C0(X)), where Aut(C0(X)) is the group of *-isomorphisms of C0(X)), namely

(αgf)(x) := f(g−1x). So (G,C0(X), α) is a C∗ dynamical system [1]. Let Y be a manifold

and Γ′ := Y × Y the corresponding pair groupoid. By Example 3.5 a) morphisms h :

Γ ⊲Γ′ are in one to one correspondence with smooth actions G × Y ∋ (g, y) 7→ gy ∈

Y together with smooth equivariant mapping F : Y −→ X . The graph of h is then
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Gr(h) = {(gy, y; g, F (y)) : y ∈ Y, g ∈ G}. The action of G on Y induces a strongly

continuous, unitary representation G ∋ g 7→ Ug ∈ B(L2(Y )). The mapping F defines

a nondegenerate representation π of C0(X) on L2(Y ) by the formula: (π(f)ψ)(y) :=

f(F (y))ψ(y), f ∈ C0(X) and ψ a smooth, compactly supported half density on Y . The

pair (π, U) is a covariant representation of (G,C0(X), α).

Now we go back to the groupoid Γ. Choose µ0 6= 0 a real half density on TeG. Since

T r(g,x)Γ = TgG, it defines a right invariant, nonvanishing, half density on Γ by the formula

ρ0(g, x)(vg) := µ0(vgg
−1) where vg ∈ ΛmaxTgG = ΛmaxT r(g,x)Γ. The corresponding left

invariant half density is given by λ0(g, x)(v) = µ0(g
−1π(v)) where v ∈ ΛmaxT l(g,x)Γ and

π : Γ ×X −→ G is a projection. Let λ be the corresponding left invariant density on G,

i.e. λ(g) := gµ2
0 and let ∆ be the corresponding modular function.

Let K(G,C0(X)) be the *-algebra of compactly supported, continuous functions from

G to C0(X) with the usual structure [1]. We define the mapping A (Γ) ∋ ω 7→ ω̂ ∈

K(G,C0(X)) by ω̂(g)(x) := ∆(g)−1/2f(g, g−1x) for ω = fω0. Straightforward computa-

tions show that this is an injective *-homomorphism.

One can show that ||πh(ω)|| = ||ρ(ω̂)|| for ρ a covariant representation ofK(G,C0(X))

defined by the morphism h. In this way we see that C∗(G×X) is a kind of “smooth” cros-

sed product, which can be “smaller” than the universal crossed product C∗(G,C0(X), α).

Since bissections act in a natural way on A (Γ) and are “transported” by morphisms

one can expect that they define unitary multipliers of C∗(Γ). And indeed this is true.

Also there is a natural action of smooth functions on Γ0 on bidensities which can be

extended to an action of continuous functions on Γ0 on C∗(Γ). It turns out that those

functions are affiliated with C∗(Γ) [8].

6. Appendix: Lie groupoids and C∗-algebras. These are notes left by S. Za-

krzewski.

In this work we construct a functor from the category of smooth groupoids (with

suitably defined morphisms) to the category of C∗-algebras (with morphisms defined as

in the context of locally compact noncommutative spaces, cf. for instance [9]). (. . . )

In the rest of this introduction, let us explain the role of our construction in establish-

ing relations between ‘classical’ and ‘quantum’ theories. Recall that symplectic manifolds

correspond to (play a similar role as) Hilbert spaces (possibly projective) and symplectic

diffeomorphisms correspond to unitaries.

In order to have a procedure which relates some concrete symplectic manifolds to some

concrete Hilbert spaces and some concrete symplectic diffeomorphisms to unitaries one

has to consider a more special situation. Suppose we are given a manifold Q (playing the

role of ‘configurations’). We have then immediately the corresponding phase space S =

T ∗Q and also the Hilbert space H = L2(Q) (of square-integrable complex half-densities

on Q). To any diffeomorphism φ of Q there corresponds a symplectomorphism u := φ∗

(the push-forward of covectors) and also a unitary operator U := φ∗ (the push-forward
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of half-densities). It is clear that in these circumstances we have a 1–1 correspondence

between such u’s and U ’s, illustrated by the diagrams in figure 2.

S = T ∗Q H = L2(Q)

Q

//_ _ _ _ _xxxxxxx<<aaCCCCCCC u = φ∗ U = φ∗

φ ∈ Diff(Q)

//_ _ _ _ _ _yyyyyyy<<bbEEEEEE
Fig. 2

We see that the transition from the classical level to the quantum level is possible in

this case due to the common ‘configuration level’ as shown in figure 3.

classical
level

quantum
level

configuration

//_ _ _ _ _ _xxxxxxx<<bbEEEEEEE
Fig. 3

The symplectic diffeomorphisms of T ∗Q which are just the natural lifts of diffeomor-

phisms of Q are said to be point transformations. It turns out that not only these can be

‘quantized’. Namely, as a second step consider phase shifts of T ∗Q, that is, symplectic

diffeomorphisms v of T ∗Q of the form

T ∗Q ∋ ξ 7→ ξ + df(π(ξ)) ∈ T ∗Q,

where f is a smooth function on Q and π:T ∗Q→ Q is the cotangent bundle projection.

It is natural to associate with f also the unitary operator V in L2(Q) of multiplication

by eif . Symbolically, we have the situation as in figure 4:

v = +df V = ·eif

f : Q→ R

//_ _ _ _ _zzzzzz==aaCCCCCC
Fig. 4

It means that we can associate (projective) unitaries with phase shifts. Moreover,

symplectic diffeomorphisms of the form vu form a group, which can be then naturally

mapped into the unitary opearators by the rule vu 7→ V U (it works modulo the phase

factor). What we here obtain is (essentially) the quantization of symplectic diffeomor-

phisms which preserve the natural polarization of the cotangent bundle (i.e. map fibers

onto fibers). In fact, to construct (projective) H from S, the polarization is sufficient (the

change of the lagrangian section playig the role of the ‘zero section’ is then implemented

by the corresponding unitary transformations of type V ).
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We may summarize the above discussion as follows. A symplectic manifold S may

serve to construct a quantum-mechanical Hilbert space H if S comes from configurations,

S = T ∗Q, or if at least S is equipped with a projection on Q with lagrangian fibers

(which essentially means that S is equipped with a polarization). Then a symplectic

diffeomorphism of S may serve to construct a unitary operator in H if it is a point

transformation, or, at least if it preserves the polarization.

Now the point is that structures important for quantum mechanics such as operator

algebras (in particular, C∗-algebras) have also classical counterparts, namely symplectic

groupoids. In this context, the above diagrams have the form given in figure 5 whose

concrete realization is given in figure 6.

symplectic
groupoids

C∗-algebra

Lie groupoids

//_ _ _ _ _ _ _wwwwwwww;;

ccGGGGGGG T ∗Γ C∗(Γ)

Γ

//_ _ _ _ _ _yyyyyyy<<``BBBBBB
Fig. 5 Fig. 6

Here Γ is a Lie groupoid, T ∗Γ is its cotangent (symplectic) groupoid and C∗(Γ) is the

C∗-algebra of Γ. Similarly, for morphisms, we shall have (as a result of the present paper)

Ph(h) ∈Mor(T ∗(Γ), T ∗(Γ′)) C∗(h) ∈Mor(C∗(Γ), C∗(Γ′))

h ∈Mor(Γ,Γ′)

//_ _ _ _ _ _ _lllllllllllll 55iiRRRRRRRRRRRRR
Fig. 7

This corresponds to the ‘point case’. There is also the second step, admitting also

‘phase shifts’. It consists in considering symplectic groupoids which are projectable on

Lie groupoids (in the sense that Γ is the cotangent bundle of some manifold Q and the

multiplication relation projects onto a Lie groupoid multiplication relation onQ). It turns

out that the symplectic groupoid structure of Γ is the cotangent lift of the Lie groupoid

structure, shifted by a ‘2-cocycle’ and the previous diagram is generalized to

symplectic groupoids
projectable on Lie groupoids

C∗-algebras

Lie groupoids
with 2-cocycle

//_ _ _ _ _ _ _xxxxxxxx<<

ggPPPPPPPPPPP
Fig. 8

The situation with 2-cocycles will be described in another paper.
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