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0. Introduction. A C∞-manifold M is endowed with a Poisson pair if two linearly
independent smooth bivectors c1, c2 are defined on M and cλ = λ1c1 + λ2c2 is a Poisson
bivector for any λ = (λ1, λ2) ∈ R2. A bihamiltonian structure J = {cλ} is the whole
2-dimensional family of bivectors. The structure J is degenerate if rank cλ < dimM ,
λ ∈ R2.

An intensive study of such objects was done by I. M. Gelfand and I. S. Zakhare-
vich ([10], [11], [12]) in a particular case of bihamiltonian structures in general position
on an odd-dimensional M (the corresponding Poisson pairs are necessarily degenerate:
rank cλ = 2n, λ ∈ R2 \ {0}, if dimM = 2n + 1). In [11] there was introduced a notion
of a Veronese web, i.e. a 1-parameter family of 1-codimensional foliations such that the
corresponding family of annihilators is represented by the Veronese curve in the cotan-
gent space at each point. It turns out that Veronese webs form a complete system of local
invariants for bihamiltonian structures of general position. More precisely, it was shown
in [11] that any such structure J = {cλ} in R2n+1 admits a local reduction to a Veronese
web WJ on a (n + 1)-dimensional manifold and that for any Veronese web W one can
locally construct a bihamiltonian structure J(W) of general position in R2n+1 with the
reduction equal to W. In the real analytic case J and J(WJ) are isomorphic.

The aim of this paper is to introduce a wider class of degenerate bihamiltonian struc-
tures that possess many features of the general position case and to generalize the notion
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of a Veronese web for this class. We call the bihamiltonian structures from this class
complete since they are intimately connected with the completely integrable systems
([2]) on M . In particular, the Poisson pairs appearing in the well known method of argu-
ment translation (see [8], [9], and Example 1.12, below) generate complete bihamiltonian
structures of higher (> 1) corank.

The paper is organized as follows. In Section 1 we recall some definitions and facts
about bihamiltonian structures and introduce the main definition of completeness. The
last is based on one result of A. Brailov (Theorem 1.8). We show that complete biha-
miltonian structures generalize the case of general position. Analyzing the correspond-
ing Poisson pair (c1(x), c2(x)) at a point x ∈ M we deduce that it consists of fi-
nite number of the so called Kronecker blocks (Corollary 1.15); the general position
is characterized by the case of the sole block. Section 2 is devoted to distinguishing
the invariants for the sum of k Kronecker blocks. In the next section we define local
Veronese webs for complete bihamiltonian structures under some additional assump-
tion of simplicity. This last means that: 1) the number of Kronecker blocks does not
change from point to point and the corresponding subspaces vary smoothly ”sweeping”
a flag of k subbundles in the tangent bundle; 2) there are no blocks of equal dimen-
sion. The second condition allows to avoid some technical complications but in prin-
ciple may be skipped (see Remark 2.5). In general, the above mentioned distributions
are nonintegrable (Examples 3.4, 3.5); consequently, the bihamiltonian structure does
not split to direct product of the bihamiltonian structures of corank 1, i.e. of general
position. We conclude the paper by calculating the Veronese web for the method of ar-
gument translation (Section 5). In the case of normal noncompact real form of complex
simple Lie algebra this web is generically a product of flat Veronese webs of codimen-
sion 1.

Recent papers [13], [14] are closely related to the subject, in particular to generalized
Veronese webs. In [14] the author introduces a more general notion of a Kronecker web,
which is essentially equivalent to the notion of a Veronese web (see Definition 3.2) in
case of simple bihamiltonian structures. Our approach emphasizes a bit more the role of
Veronese curves in the theory.

The following two questions arise from the context of this paper.
1. Does the Veronese web of a complete bihamiltonian structure determine it up to

an isomorphism?
2. What is a relation between the Veronese webs introduced here and d-webs of max-

imal rank and codimension 2 studied in paper [6] of S. S. Chern and P. A. Griffiths?
(The notion of the rank of a d-web should not be confused with that of a bihamiltonian
structure; the corank of a bihamiltonian structure is equal to the codimension of the
web.)

Note that the d-webs of maximal rank and codimension 1 considered in paper [7] of
the same authors are intimately connected with the Veronese webs of codimension 1.

The author would like to thank Prof. Ilya Zakharevich for useful remarks on this
paper and for indicating references [13], [14], which had an essential inluence on the final
version.
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1. Bihamiltonian structures and completeness. Let M be a C∞-manifold. In
the sequel, all Poisson bivectors considered will have maximal rank on an open dense
subset in M . Given a Poisson bivector c, define rank c as maxx∈M rank c(x).

1.1. Definition. Two linearly independent Poisson bivectors c1, c2 on M form a
Poisson pair if cλ = λ1c1 + λ2c2 is a Poisson bivector for any λ = (λ1, λ2) ∈ R2.

1.2. Proposition. A pair of linearly independent Poisson bivectors (c1, c2) is Poisson
if and only if [c1, c2] = 0, where [·, ·] is the Schouten bracket.

1.3. Definition. A bihamiltonian structure on M is defined as a two-dimensional li-
near subspace J = {cλ}λ∈S of Poisson bivectors on M parametrized by a two-dimensional
vector space S over R . We say that J is degenerate if rank cλ < dimM for any cλ ∈ J .

It is clear that every Poisson pair generates a bihamiltonian structure and the transi-
tion from the latter to a Poisson pair corresponds to a choice of basis in S. We shall write
(J, c1, c2) for a bihamiltonian structure J with a chosen Poisson pair (c1, c2) generating J .

1.4. Definition. Let J be a bihamiltonian structure. Introduce a subfamily J0 ⊂ J

of Poisson bivectors of maximal rank R0 (the set J \ J0 is at most a finite sum of 1-
dimensional subspaces), and a set of functions F0 = SpanR(

⋃
c∈J0

Zc(M)), where Zc(M)
stands for the space of the Casimir functions of c on M . We take Span in order to obtain
a vector space: a sum of two Casimir functions for different c1, c2 ∈ J0 need not be a
Casimir function.

The following proposition shows how the degenerate bihamiltonian structures can be
applied for constructing the completely integrable systems.

1.5. Proposition. Let J be a degenerate bihamiltonian structure on M . A family F0

is involutive with respect to any cλ ∈ J .

Proof. Let c1, c2 ∈ J0 be linearly independent, fi ∈ Zci , i = 1, 2. Then

{f1, f2}cλ = (λ1c1(f1) + λ2c2(f1))f2 = −λ2c2(f2)f1 = 0. (1.5.1)

Now it remains to prove that for any c ∈ J0, fi ∈ Zc, i = 1, 2, one has {f1, f2}cλ = 0. For
that purpose we first rewrite (1.5.1) as

cλ(x)(φ1, φ2) = 0, (1.5.2)

where φi ∈ ker ci(x), i = 1, 2, x ∈M , and the lefthandside denotes the contraction of the
bivector with two covectors. Second, we fix x such that rank c(x) = R0 and approximate
df2|x by a sequence of elements {φi}∞i=1, φ

i ∈ ker ci(x), where ci ∈ J0, i = 1, 2, . . . , is
linearly independent with c. Finally, by (1.5.2) we get cλ(x)(df1|x, φi) = 0 and by the
continuity {f1, f2}cλ(x) = 0. Since the set of such points x is dense in M , the proof is
finished.

In fact this proposition is true for the local Casimir functions (for the germs of Ca-
simir functions). The corresponding family of functions (germs) SpanR(

⋃
c∈J0

Zc(U))
(SpanR(

⋃
c∈J0

Zc,x) is denoted by F0(U) (F0,x).
In order to obtain a completely integrable system from Casimir functions one should

require additional assumptions on the bihamiltonian structure J . Of course, the condition
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of completeness given below concerns the local Casimir functions (in fact their germs)
and may be insufficient for obtaining the completely integrable system. However, it is
of use if the local Casimir functions are restrictions of global ones (see Example 1.12,
below).

Given a Poisson bivector cλ ∈ J , let Sλ(x) denote the symplectic leaf of cλ through a
point x ∈M .

1.6. Definition ([3]). Let J be a bihamiltonian structure; fix some cλ ∈ J . J is called
complete at a point x ∈M with respect to cλ if the linear subspace of T ∗xM generated by
the differentials of the germs f ∈ F0,x restricted to Sλ(x) has dimension 1

2 dimSλ(x).

1.7. Proposition. A bihamiltonian structure J is complete with respect to cλ ∈ J0 at
a point x∈M such that Sλ(x) is of maximal dimension if and only if dim(

⋂
cλ∈J0

TxSλ(x))
= 1

2 dimSλ(x).

The following theorem is due to A. Brailov (see [3], Theorem 1.1 and Remark after it).

1.8. Theorem. A bihamiltonian structure (J, c1, c2) is complete with respect to cλ ∈
J0 at a point x ∈M such that Sλ(x) is of maximal dimension if and only if the following
condition holds

(∗) rank(λ1c1 + λ2c2)(x) = R0 for any λ = (λ1, λ2) ∈ C2 \ {0}.

Here the bivector cλ = (λ1c1 + λ2c2)(x) is regarded as an element of
∧2

TC
x M , where

TCM is the complexified tangent bundle, and its rank is defined as that of the associated
sharp map c]λ(x) : (TC

x M)∗ → TC
x M .

The theorem shows that J is complete with respect to a fixed cλ ∈ J0 at a point x
such that the dimension Sλ(x) is maximal if and only if J = J0

⋃
{0} and J is complete

at x with respect to any nontrivial cλ ∈ J . This motivates the next definition.

1.9. Definition. Let (J, c1, c2) be a bihamiltonian structure. The structure J (the
pair (c1, c2)) is complete at a point x ∈ M if condition (∗) of Theorem 1.8 holds at x.
J ((c1, c2)) is called complete if it is so at any point from some open and dense subset
in M .

1.10. Proposition. Let J be complete on M and let x ∈ M be a point of complete-
ness. Then there exists a neighbourhood U 3 x such that the foliation L defined on U by
F0(U) is lagrangian in any Sλ(y), λ 6= 0, y ∈ U (by Proposition 1.7 this foliation can be
defined as the intersection of the foliations of symplectic leaves for cλ ∈ J0).

1.11. Definition. Call L a bilagrangian foliation of J .

1.12. Example (Method of argument translation, see [8], [3]). Let g be a Lie alge-
bra, g∗ its dual space. Fix a basis {e1, . . . , en} in g with the structure constants {ckij};
write {e1, . . . , en} for the dual basis in g∗. The standard linear Poisson bivector on g∗ is
defined as

c1(x) = ckijxk
∂

∂xi
∧ ∂

∂xj
,
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where {xk} are linear coordinates in g∗ corresponding to {e1, . . . , en}. In more invariant
terms c1 is described as an operator dual to the Lie-multiplication map [ , ] : g∧ g→ g. It
is well-known that the symplectic leaves of c1 are the coadjoint orbits in g∗. Now define
c2 as a bivector with constant coefficients c2 = c(a), where a is a fixed point on any
leaf of maximal dimension. It turns out that c1, c2 form a Poisson pair and it is easy to
describe the set I of points x for which condition (∗) fails. Consider the complexification
(g∗)C ∼= (gC)∗ and the sum Sing(gC)∗ of symplectic leaves of nonmaximal dimension
for the complex linear bivector ckijzk

∂
∂zi
∧ ∂

∂zj
, where zj = xj + iyj , j = 1, . . . , n, are

the corresponding complex coordinates in (g∗)C. Then I is equal to the intersection of
the sets g∗ ⊂ (g∗)C and a,Sing(gC)∗, where a,Sing(gC)∗ denotes the cone of complex
2-dimensional subspaces passing through a and Sing(gC)∗.

In particular, (c1, c2) is complete for a semisimple g (codim Sing(gC)∗ ≥ 3, see [1],
Corollary 4.42, and the codimension of I in g∗ is not less than 2). Note that this gives rise
to completely integrable systems since the local Casimir functions on g∗ are restrictions
of global ones, i.e. invariants of the coadjoint action.

1.13. Example (Bihamiltonian structure of general position on an odd-dimensional
manifold, see [11]). Consider a pair of bivectors (a1, a2), ai ∈

∧2
V, i = 1, 2, where V

is a (2m + 1)-dimensional vector space; (a1, a2) is in general position if and only if is
represented by the Kronecker block of dimension 2m+ 1, i.e.

a1 = p1 ∧ q1 + p2 ∧ q2 + · · ·+ pm ∧ qm
a2 = p1 ∧ q2 + p2 ∧ q3 + · · ·+ pm ∧ qm+1

(1.13.0)

in an appropriate basis p1, . . . pm, q1, . . . qm+1 of V . A bihamiltonian structure J on a
(2m + 1)-dimensional M is in general position if and only if the pair (c1(x), c2(x)) is so
for any x ∈ M . Such a J is complete. In general, a complete Poisson pair at a point is
a direct sum of the Kronecker blocks as the corollary of the next theorem shows. This
theorem is a reformulation of the classification result for pairs of 2-forms in a vector space
([10], [12]).

1.14. Theorem. Given a finite-dimensional vector space V over C and a pair of bivec-
tros (c1, c2), ci ∈

∧2
V, there exists a direct decomposition V = ⊕Vj , ci =

∑
c
(j)
i , c

(j)
i ∈∧2

Vj , i = 1, 2, such that each triple (Vj , c
(j)
1 , c

(j)
2 ) is from the following list:

(a) the Jordan block: dimVj = 2nj and in an appropriate basis of Vj the matrix of c(j)i
is equal to (

0 Ai
−ATi 0

)
, i = 1, 2,

where A1 = Inj (the unit nj × nj-matrix) and A2 = Jλnj (the Jordan block with
eigenvalue λ);

(b) the Kronecker block: dimVj = 2nj + 1 and in an appropriate basis of Vj the matrix
of c(j)i is equal to (

0 Bi
−BTi 0

)
, i = 1, 2,
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where B1 =


1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .

0 0 0 . . . 1 0

 , B2 =


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1


((nj + 1)× nj-matrices; in case nj = 0 put c1 = c2 = 0).

1.15. Corollary. Let (J, c1, c2) be a bihamiltonian structure. It is complete at a
point x ∈ M if and only if the pair (c1(x), c2(x)), ci(x) ∈

∧2(TC
x M), i = 1, 2, does not

contain the Jordan blocks in its decomposition.

Proof. The statement follows from the definition of completeness.

1.16. Remark. In the absence of Jordan blocks Theorem 1.14 is valid also over the
reals.

2. Complete bihamiltonian structure at a point. Now, we shall examine a linear
bihamiltonian structure (J, c1, c2), ci ∈

∧2
V , where V is a vector space over R, such that

the decomposition V = ⊕kj=1Vj , ci =
∑k
j=1 c

(j)
i (see Theorem 1.14 and Remark 1.16)

consists of k Kronecker blocks V1, . . . , Vk,dimVj = 2nj + 1, n1 < . . . < nk.
The aim is to isolate the invariants and to introduce the infinitesimal approximation

to Veronese webs (these last will be defined in the next section).
It turns out that the decomposition to Kronecker blocks is noninvariant. To illustrate

this let us consider V = Span{e, p, q1, q2}, c1 = p ∧ q1, c2 = p ∧ q2. Here V = V1 ⊕ V2,
where V1 = Span{e}, V2 = Span{p, q1, q2}, but instead V1 one can choose any direct
complement to V2. However, there is a canonically defined filtration associated to J .

Let Pcλ ⊂ V (P
c
(j)
λ

⊂ Vj) be the characteristic subspace, i.e. the symplectic leaf

through 0, of cλ = λ1c1 + λ2c2 (c(j)λ = λ1c
(j)
1 + λ2c

(j)
2 ), (λ1, λ2) ∈ R2; let L = ∩λ6=0Pcλ

(Lj = ∩λ6=0Pc(j)
λ

) be the bilagrangian subspace, i.e. the leaf through 0 of the bilagrangian

foliation, corresponding to the bihamiltonian structure J ({c(j)λ }λ∈R2), see Definition 1.11.
Put

Φi =
∑

distinct λ1,...,λi∈P(R2)

Pcλ1
∩ . . . ∩ Pcλi , i = 1, 2, . . . ,Φ0 = V.

2.1. Theorem. The following relations hold:

Φ0 = Φ1 = · · · = Φn1 ⊃ Φn1+1 = Φn1+2 = · · · = Φn2 ⊃ · · · ⊃ Φnk−1+1 = · · · = Φnk ⊃

⊃ Φnk+1 = Φnk+2 = . . . =: Φnk+1 ,

where

Φnj =
∑
l<j

Ll ⊕
∑
l≥j

Vl, j = 1, . . . , k + 1

(we put Vl = 0, l > k). In particular, the filtration is stabilized from i > nk, Φnk+1 =
⊕Lj = L, and the numbers n1, . . . , nk are invariants of J .
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2.2. Remark. The filtration F0 = Φ⊥n1
⊂ · · · ⊂ Fk−1 = Φ⊥nk ⊂ Fk = L⊥ = (V/L)∗ (⊥

stands for the annihilator sign) appears in [14] and is called there isotypic. We shall refer
to this notion below.

Before we begin to prove the theorem we recall the following definition.

2.3. Definition. ([11]) Let S, V be vector spaces of dimensions 2 and n + 1, n ≥ 0,
respectively. A Veronese inclusion of P(S) in P(V ) is a map i : P(S) → P(V ) such that
there exists a linear isomorphism φ : P(V ) → P(SnS) making the following diagram
commutative:

P(S) i→ P(V )
‖ ↑ φ

P(S)
P(Sn(·))→ P(SnS).

The image i(P(S)) is called a Veronese curve.

Here Sn denotes the n-th symmetric power; the standard model of the mapping Sn(·)
is described as follows. Let S be a space of linear functions f in two variables t1, t2. Then
SnS is a space of homogeneous polynomials in t1, t2 and Sn(f) = fn. For n = 0 the map
i is not an inclusion, but we shall use the defined term in this situation as well.

Proof. We now prove Theorem 2.1. It is sufficient to show the following equalities

ΦiVj :=
∑

distinct λ1,...,λi

P
c
(j)
λ1

∩ . . . ∩ P
c
(j)
λi

=
{
Lj i ≥ nj + 1
Vj i < nj + 1.

(2.3.1)

One has

(ΦiVj)⊥ =
⋂

distinct λ1,...,λi

(P⊥
c
(j)
λ1

+ · · ·+ P⊥
c
(j)
λi

).

The 1-dimentional annihilator P⊥
c
(j)
λ

∈ P((Vj/Lj)∗) sweeps an appropriate Veronese curve

(see [11]). On the other hand, images of distinct points under a Veronese inclusion P(S)→
P(V ) are linearly independent provided their number does not exceed dimV (cf. [7], I.A).
So now, the first of equalities 2.3.1 follows from the fact that P⊥

c
(j)
λ1

+ · · ·+P⊥
c
(j)
λi

= (Vj/Lj)∗

for any set of distinct λ1, . . . , λi, i ≥ nj + 1.
For the second one, we notice that for any set of points λ1, . . . , λnj+1

nj+1⋂
s=1

(P1 + · · ·+ P̂s + · · ·+ Pnj+1) = {0},

where we put Ps = P⊥cλs and ˆ means omitting the corresponding term. Thus we proved
it for i = nj ; this implies 2.3.1 also for i < nj .

2.4. Corollary. Let 0 = F1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = (V/L)∗ be the isotypic filtration
(see 2.2). Put FjP⊥cλ = Fj ∩ P⊥cλ , j = 1, . . . , k. Then: 1) Aλj := FjP

⊥
cλ
/Fj−1P

⊥
cλ

is a
one-dimensional subspace in Aj := Fj/Fj−1; 2) the mapping P(R2) 3 λ 7→ Aλj ∈ P(Aj)
is a Veronese inclusion for any j = 1, . . . , k.
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Proof. We first notice that Fj = ⊕ji=1(Vi/Li)∗, j = 1, . . . , k, as Theorem 2.1 implies.
Under the identification (V/L)∗ = ⊕ki=1(Vi/Li)∗

FjP
⊥
cλ

= ⊕ji=1P
⊥i
c
(i)
λ

,

where ⊥i stands for the annihilator of a subspace in Vi/Li. Thus there are linear isomor-
phisms Aj ∼= (Vj/Lj)∗ and Aλj

∼= P
⊥j
c
(j)
λ

, j = 1, . . . , k, and 2) follows from the analogous

fact for a sole Kronecker block ([11]).

2.5. Remark. We note that analogues of Theorem 2.1 and Corollary 2.4 can be pro-
ved also without the restriction that n1, . . . , nk are distinct. In order to do that one should
use a ”multiple” version of a Veronese inclusion, i.e. a map φ : P(S) → G(k, V (l+1)k)
(G(k, V ) denotes the Grassmannian of k-planes in a (l+1)k-dimensional vector space V )
such that there exist a decomposition V = ⊕kj=1Vj ,dimVj = l + 1, and Veronese inclu-
sions ij : P(S) → P(Vj), j = 1, . . . , k, with the property φ(v) = SpanR{i1(v), . . . , ik(v)},
where ij(v) is considered as a 1-dimensional subspace in V . This definition can be also
used to adapt the notion of a Veronese web (see Definition 3.2, below) to a more general
situation.

2.6. Definition. An infinitesimal Veronese web of type (n1, . . . , nk), n1 < . . . < nk,
on a vector space W, dimW = n1 + · · ·+ nk + k, is a 1-parameter family {Wλ}λ∈P(S) of
linear subspaces Wλ ⊂W, codimWλ = k, satisfying the following conditions:

(i) there is a filtration 0 = F0 ⊂ . . . ⊂ Fk−1 ⊂ Fk = W ∗ of the dual space with
dimFj/Fj−1 = nj + 1, j = 1, . . . , k;

(ii) it induces the filtration 0 = F0W⊥λ ⊂ . . . ⊂ Fk−1W⊥λ ⊂ FkW⊥λ = W⊥λ , FjW⊥λ =
Fj ∩ W⊥λ , j = 1, . . . , k, of the annihilator W⊥λ ⊂ W ∗ so that dimFjW⊥λ = j; in
particular Aλj := FjW⊥λ /Fj−1W⊥λ can be considered as a 1-dimensional subspace
in Aj := Fj/Fj−1;

(iii) the map P(S) 3 λ 7→ Aλj ∈ P(Aj) is a Veronese inclusion, j = 1, . . . , k.

2.7. Proposition. Let (J, c1, c2) be as above. Then the vector space W = V/L has a
structure of an infinitesimal Veronese web of type (n1, . . . , nk).

Proof. The proof follows from Corollary 2.4.

3. Simple bihamiltonian structures and their Veronese webs. In this section
we shall define objects that generalize the Veronese webs introduced in [11] for the biha-
miltonian structures of general position. We shall show that any complete bihamiltonian
structure from the class defined below admits the local reduction to such an object.

3.1. Definition. Let J be a complete bihamiltonian structure on M . A type of J at
x ∈ M is the vector (n1, . . . , nk)(x), where 2n1(x) + 1, . . . , 2nk(x) + 1 are dimensions of
the Kronecker blocks in the decomposition of (c1(x), c2(x)) for some Poisson pair (c1, c2)
generating J (these dimensions do not depend on this pair, see Theorem 2.1). If this vector
is independent of x we call it a type of J and say that J is regular (cf. Example 3.8, below).
If, moreover, all nj , j = 1, . . . , k, are different we call J simple.
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3.2. Definition. Consider a manifold U diffeomorphic to an open set in RN , where
N = (n1 + 1) + · · · + (nk + 1), n1 < . . . < nk, and a family W = {Wλ}λ∈P(S) of k-
codimensional foliations on U parametrized by the projectivizaton of a two-dimensional
vector space S. We callW a Veronese web of type (n1, . . . , nk) if the following conditions
are satisfied:

(i) there is a bundle filtration 0 = F0 ⊂ . . . ⊂ Fk−1 ⊂ Fk = T ∗U such that
rankFj/Fj−1 = nj + 1, j = 1, . . . , k;

(ii) it induces the bundle filtration 0 = F0W⊥λ ⊂ . . . ⊂ Fk−1W⊥λ ⊂ FkW⊥λ = W⊥λ ,
FjW⊥λ = Fj ∩ W⊥λ , j = 1, . . . , k, of the annihilating bundle W⊥λ := (TWλ)⊥ ⊂
T ∗U so that rankFjW⊥λ = j; in particular Aλj (x) := FjW⊥λ,x/Fj−1W⊥λ,x can be
considered as a 1-dimensional subspace in Aj(x) := Fj,x/Fj−1,x for any x ∈ U ;

(iii) the map P(S) 3 λ 7→ Aλj (x) ∈ P(Aj(x)) is a Veronese inclusion for any x ∈ U, j =
1, . . . , k.

3.3. Theorem. Let J be a simple bihamiltonian structure of type n = (n1, . . . , nk),
n1 < · · · < nk, and let x ∈ M be a point of completeness for J . Write Vλ for the
foliation of symplectic leaves of cλ ∈ J . Then there exists a neighbourhood Ũ 3 x such
that U = Ũ/L (see 1.10) is diffeomorphic to an open set in RN and {Vλ|Ũ/L}λ∈P(S) is
a Veronese web of type n on U .

Proof. The theorem follows from Proposition 2.7.

3.4. Example. Let U = R3(x, y, z), α1 = xdy − dz, αλ2 = λ1dx + λ2dy, k = 2, n1 =
0, n2 = 1. Put Γ(F1) = Span{α1},Γ((TWλ)⊥) = Span{α1, α

λ
2}, where Γ stands for

the space of sections and Span is taken over the ring of functions. Then Γ(F1(TWλ)⊥) =
Γ(F1). Since TWλ ⊂ TU is a subbundle of rank 1, it is indeed tangent to the 1-dimensional
foliation Wλ. Explicitely, Γ(TWλ) = Span{λ2v1 − λ1v2}, where v1 = ∂

∂x , v2 = ∂
∂y + x ∂

∂z .
On Ũ = R(p)×U one defines the corresponding bihamiltonian structure as { ∂∂p ∧ (λ1v1 +
λ2v2)}(λ1,λ2)∈R2 .

3.5. Example. Let U = R5(x, y, z, s, t), αλ1 = λ1(xdy − dz) + λ2(sdy − dt), αλ2 =
λ2

1dx+λ1λ2ds+λ2
2dy,Γ(F1) = Span{xdy−ds, sdy−dt},Γ((TWλ)⊥)) = Span{αλ1 , αλ2}, k =

2, n1 = 1, n2 = 2. Then Γ(F1(TWλ)⊥)) = Span{αλ1}. The 3-distribution in TU annihila-
ted by the 1-forms αλ1 , α

λ
2 is integrable since

dαλ1 =

{
αλ2 ∧ 1

λ1
dy if λ1 6= 0

−αλ2 ∧ 1
λ2
ds if λ1 = 0.

Explicitly, Γ(TWλ) = Span{λ2
∂
∂x − λ1

∂
∂s , λ2

∂
∂s − λ1v, λ2

∂
∂z − λ1

∂
∂t}, where v = ∂

∂y +
x ∂
∂z + s ∂∂t , and on Ũ = R3(p1, p2, p3) × U the corresponding bihamiltonian structure is
{ ∂
∂p1
∧ (λ2

∂
∂x − λ1

∂
∂s ) + ∂

∂p2
∧ (λ2

∂
∂s − λ1v) + ∂

∂p3
∧ (λ2

∂
∂z − λ1

∂
∂t )}(λ1,λ2)∈R2 .

3.6. Remark. Of course, it is more convenient to describe Veronese webs in terms
of a bundle direct decomposition B1 ⊕ . . . ⊕ Bk = T ∗U such that Fj = ⊕ji=1Bi rather
than in terms of the isotypic filtration itself. In the above examples we used implicitly
such a decomposition. However, one should remember that it is not unique. For instance,
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in Example 3.5 one has B1 = F1,Γ(B2) = Span{dx, ds, dy}. But one could take α̃λ2 =
λ2

1(dx+ xdy− dz) + λ1λ2(ds+ sdy− dt) + λ2
2dy = αλ2 + λ1α

λ
1 instead of αλ2 and Γ(B̃2) =

Span{dx + xdy − dz, ds + sdy − dt, dy}. Although this does not change the web, the
corresponding decomposition is changed. In [14] the author gives an involved analysis of
this nonuniqueness.

3.7. Definition. A Veronese web admits the following local description. One can
choose linear coordinates (λ1, λ2) on S and a local coframe α1

1, . . . , α
1
n1+1, . . . , α

k
1 , . . . ,

αknk+1 such that αj1, . . . , α
j
nj+1 ∈ Γ(Fj), j = 1, . . . , k, and the annihilator (TWλ)⊥ ⊂ T ∗U

is generated by α1
λ, . . . , α

k
λ, where αjλ = λ

nj
1 αj1 + λ

nj−1
1 λ2α

j
2 + · · · + λ

nj
2 αjnk+1 (Veronese

curve). If in a neighbourhood of any x ∈ U there exists a holonomic coframe with the
above properties, the Veronese web is called flat.

In particular, all bundles in the isotypic filtration of a flat web are completely inte-
grable as differential systems and, moreover, such a web splits into a direct product of
flat Veronese webs of codimension 1.

The webs from Examples 3.4, 3.5 are not flat, since the bundles F1 are nonintegrable.
We conclude the section by an example of a complete bihamiltonian structure that is

not regular.

3.8. Example. Let M = R6 with coordinates (p1, p2, q1, . . . , q4), c1 = ∂
∂p1
∧ ∂
∂q1

+ ∂
∂p2
∧

∂
∂q2

, c2 = ∂
∂p1
∧ ( ∂

∂q2
+ q1

∂
∂q3

) + ∂
∂p2
∧ ∂
∂q4

. Here we have: two 3-dimensional Kronecker
blocks on M \H,H = {q1 = 0}; the 5-dimensional Kronecker block and the 1-dimensional
zero block on the hyperplane H.

4. Veronese webs for the argument translation method. The notations from
Subsection 1.12 will be used below. We consider a normal (déployable in the terminology
of Bourbaki, [5], IX,3) real form g of a complex simple Lie algebra. Let m1, . . . ,mr, r =
rank(g) be the exponents of g.

4.1. Theorem. Let (c1, c2) be the Poisson pair from Example 1.12. Then the Veronese
web {Wλ}λ∈R2 of the corresponding bihamiltonian structure J is of type (m1, . . . ,mr) and
is flat (Definition 3.7) in a neighbourhood of any point π(x), where x ∈ (g∗ \ I) and π

denotes the canonical projection π : g∗ \ I → (g∗ \ I)/L (cf. 1.10, 3.3).

Proof. Let g1(x), . . . , gr(x),deg gj = mj + 1, be a set of algebraically independent
global homogeneous polynomial Casimir functions for c (see [4], VIII,8). Here we have
identified g and g∗ by means of the Killing form. Note that g1, . . . , gr are functionally in-
dependent on g\Sing g, where Sing g is the set of adjoint orbits of nonmaximal dimension.
Indeed, their restrictions to a Cartan subalgebra h ⊂ g are algebraically independent and
invariant with respect to the Weyl group W . Now, we can apply the result of R. Steinberg
([16]) to deduce the nondegeneracy for the Jacobi matrix of g1|h, . . . , gr|h at a regular
point.

Consider the subspace dF0 ⊂ Γ(T ∗g∗) generated by the differentials of functions from
the involutive set F0 (see 1.4) corresponding to J . It turns out that dF0 is generated by
{dgj |λ1x+λ2a, (λ1, λ2) ∈ R2, j = 1, . . . , r}. If gij(a, x), i = 0, . . . ,mj + 1, j = 1, . . . , r, are
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the coefficients of the Taylor expansions gj(x + λa), j = 1, . . . , r, with respect to λ ∈ R,
then one also has

dF0 = Span{dgij(a, x), i = 0, . . . ,mj , j = 1, . . . , r}. (4.1.1)

Moreover, these differentials are linearly independent at any x ∈ g∗ \ I. This follows
from the fact that J is complete at g∗ \ I, from (4.1.1), and from the formula

∑r
j=1mj =

1
2 (dim g− r) (cf. [15], formula (F1), p. 289).

Thus, we can regard gij(a, x), i = 0, . . . ,mj , j = 1, . . . , r as coordinates on the reduced
space (g∗ \ I)/L. Finally, (TWλ)⊥, λ = (λ1, λ2), is generated by

λ
mj
1 dg0

j (a, x) + λ
mj−1
1 λ2dg

1
j (a, x) + · · ·+ λ

mj
2 dg

mj
j (a, x), j = 1, . . . , r.
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