NAMBU-POISSON TENSORS ON LIE GROUPS

NOBUTADA NAKANISHI
Department of Mathematics, Gifu Keizai University
5-50 Kitaagata, Ogaki-city, Gifu, 503-8550, Japan
E-mail: nakanish@gifu-keizai.ac.jp

Abstract. First as an application of the local structure theorem for Nambu-Poisson tensors, we characterize them in terms of differential forms. Secondly left invariant Nambu-Poisson tensors on Lie groups are considered.

1. Introduction. In 1994, L. Takhtajan [6] gave geometric formulations of Nambu-Poisson manifolds, and a lot of papers have followed his work. A Nambu-Poisson manifold is defined to be a pair of a C^∞-manifold and a Nambu-Poisson tensor defined on it. A Nambu-Poisson tensor is, by definition, a skew-symmetric contravariant tensor field on a manifold such that the induced bracket operation satisfies the fundamental identity, which is a generalization of the usual Jacobi identity. It is generally difficult to judge whether a given tensor field is a Nambu-Poisson tensor or not. This is because a Nambu-Poisson tensor is written in the form of a contravariant tensor.

We begin with characterizing Nambu-Poisson tensors via differential forms. The characterization will be done by using contraction of Nambu-Poisson tensors with the volume form. The local structure theorem [5] for Nambu-Poisson tensors will be very useful to obtain some results concerning this topic.

Secondly left invariant Nambu-Poisson tensors on Lie groups are considered. And we shall study when they can be projected on suitable homogeneous spaces. These problems were studied by Bon-Yao Chu [3] in the case of symplectic structures.

2. Nambu-Poisson manifolds. First we give a definition of a Nambu-Poisson tensor, which is equivalent to that of L. Takhtajan [6]. Let M be an m-dimensional C^∞-manifold, and \mathcal{F} its algebra of real valued C^∞-functions. We denote by $\Gamma(\Lambda^n TM)$ the space of global cross-sections $\eta : M \to \Lambda^n TM$. Then to each $\eta \in \Gamma(\Lambda^n TM)$, there
corresponds the bracket defined by
\[\{ f_1, \ldots, f_n \} = \eta(df_1, \ldots, df_n), \quad f_1, \ldots, f_n \in \mathcal{F}. \]
Let \(A = \sum f_1 \wedge \cdots \wedge f_{n-1} \) be any element of \(\Lambda^{n-1} \mathcal{F} \). Since the bracket operation clearly satisfies the Leibniz rule, we can define a vector field \(X_A \) corresponding to \(A \) by the following equation:
\[X_A(g) = \sum \{ f_1, \ldots, f_{n-1}, g \}, \quad g \in \mathcal{F}. \]
Such a vector field is called a Hamiltonian vector field. The space of Hamiltonian vector fields is denoted by \(\mathcal{H} \).

Definition 1. \(\eta \in \Gamma(\Lambda^n TM) \) is called a Nambu-Poisson tensor of order \(n \) if it satisfies \(L(X_A)\eta = 0 \) for all \(X_A \in \mathcal{H} \), where \(L \) is the Lie derivative. Then a Nambu-Poisson manifold is a pair \((M, \eta) \).

The above definition is clearly equivalent to the following fundamental identity:
\[\{ f_1, \ldots, f_{n-1}, \{ g_1, \ldots, g_n \} \} = \{ \{ f_1, \ldots, f_{n-1}, g_1 \}, g_2, \ldots, g_n \} + \cdots + \{ g_1, \ldots, g_{n-1}, \{ f_1, \ldots, f_{n-1}, g_n \} \} \]
for all \(f_1, \ldots, f_{n-1}, g_1, \ldots, g_n \in \mathcal{F} \). If \(n = 2 \), this equation is nothing but the Jacobi identity, and we have usual Poisson manifolds.

Let \(\eta(p) \neq 0, \ p \in M \). Then we say that \(\eta \) is regular at \(p \). Now we can state the following local structure theorem for Nambu-Poisson tensors [4],[5].

Theorem 1. Let \(\eta \in \Gamma(\Lambda^n TM) \), \(n \geq 3 \). If \(\eta \) is a Nambu-Poisson tensor of order \(n \), then for any regular point \(p \), there exists a coordinate neighborhood \(U \) with local coordinates \((x_1, \ldots, x_n, x_{n+1}, \ldots, x_m) \) around \(p \) such that
\[\eta = \frac{\partial}{\partial x_1} \wedge \cdots \wedge \frac{\partial}{\partial x_n} \]
on \(U \), and vice versa.

In Theorem 1, the condition \(n \geq 3 \) is essential. If \(n = 2 \), as is well-known, A.Weinstein [8] proved the splitting theorem for Poisson tensors. Comparing Weinstein’s splitting theorem with our theorem, we know that the local structure of Nambu-Poisson manifolds is more rigid than that of usual Poisson manifolds.

Some simple applications of Theorem 1 are the following. Informations on the Schouten bracket may be found in [7], for instance.

Corollary 1.
1. Let \(\eta \) be a Nambu-Poisson tensor of order \(n \geq 3 \). If \(f \) is a smooth function, then \(f\eta \) is again a Nambu-Poisson tensor.
2. If \(m = n \geq 3 \), then every \(\eta \in \Gamma(\Lambda^n TM) \) is a Nambu-Poisson tensor.
3. For every Nambu-Poisson tensor \(\eta \), its Schouten bracket satisfies \([\eta, \eta] = 0 \). (Of course the converse is not true.)

3. **Characterizations of Nambu-Poisson tensors.** Throughout this section, we assume that \((M, \eta) \) is a Nambu-Poisson manifold with volume form \(\Omega \), and \(m \geq n \geq 3 \).
Put \(\omega = i(\eta)\Omega \), where the right hand side is the interior product of \(\eta \) and \(\Omega \). Hence \(\omega \) is an \((m-n)\)-form.

A differential form \(\alpha \) of degree \(k \) (locally defined) around \(p \in M \) is called decomposable at \(p \) if there exist 1-forms \(\alpha_1, \ldots, \alpha_k \) (which are locally defined around \(p \)) such that \(\alpha = \alpha_1 \wedge \cdots \wedge \alpha_k \). We also define the decomposability of (locally defined) contravariant tensor fields in the same manner. In the following theorem, we will characterize a Nambu-Poisson tensor by using the notion of decomposability.

Theorem 2. Let \(\eta \in \Gamma(A^nTM) \). Then \(\eta \) is a Nambu-Poisson tensor if and only if \(\eta \) satisfies the following two conditions around each regular point:

1) \(\omega \) is decomposable, and

2) there exists a locally defined 1-form \(\theta \) such that \(d\omega = \theta \wedge \omega \).

Proof. If \(\eta \) is a Nambu-Poisson tensor and \(p \) is its regular point, then by Theorem 1, there exist local coordinates \((x_1, \ldots, x_n, x_{n+1}, \ldots, x_m)\) around \(p \) such that

\[
\eta = \frac{\partial}{\partial x_1} \wedge \cdots \wedge \frac{\partial}{\partial x_n}.
\]

Suppose that \(\Omega = fdx_1 \wedge \cdots \wedge dx_m \) with respect to these coordinates. Then we have

\[
\omega = fdx_{n+1} \wedge \cdots \wedge dx_m,
\]

and

\[
d\omega = df \wedge dx_{n+1} \wedge \cdots \wedge dx_m = \frac{df}{f} \wedge \omega.
\]

Conversely assume that \(\eta \) satisfies above two conditions. Then there exist 1-forms \(\omega_{n+1}, \ldots, \omega_m \) such that \(\omega = \omega_{n+1} \wedge \cdots \wedge \omega_m \). Note that \(\omega_{n+1}, \ldots, \omega_m \) are linearly independent around \(p \) since \(\omega(p) \neq 0 \). Adding \(n \) 1-forms \(\omega_1, \ldots, \omega_n \) to them, we can construct a basis of 1-forms around \(p \). For \(n+1 \leq i \leq m \), put

\[
d\omega_i = \sum_{1 \leq j < k \leq m} g_{jk}^i \omega_j \wedge \omega_k.
\]

Since

\[
d\omega = \theta \wedge \omega = \theta \wedge \omega_{n+1} \wedge \cdots \wedge \omega_m
\]

\[
= \sum_{i=n+1}^m (-1)^{i-n-1} \omega_{n+1} \wedge \cdots \wedge d\omega_i \wedge \cdots \wedge \omega_m,
\]

we have

\[
0 = \omega_i \wedge d\omega = (-1)^{i-n-1} \omega_i \wedge \omega_{n+1} \wedge \cdots \wedge d\omega_i \wedge \cdots \wedge \omega_m
\]

\[
= d\omega_i \wedge \omega_{n+1} \wedge \cdots \wedge \omega_m.
\]

This means that \(g_{jk}^i = 0 \) for \(1 \leq j < k \leq n \), and we have the following expression:

\[
d\omega_i = \sum_{j=n+1}^m \theta_{ij} \wedge \omega_j,
\]

where \(\theta_{ij} \) are 1-forms. By the Frobenius theorem, there exist local functions \(f_{ij} \) and \(g_j \).
such that
\[\omega_i = \sum_{j=n+1}^{m} f_{ij} dg_j, \quad G = \det(f_{ij}) \neq 0. \]

Adding \(n \)-local functions \(x_1, \ldots, x_n \), we can adopt \((x_1, \ldots, x_n, g_{n+1}, \ldots, g_m) \) as local coordinates. With respect to these local coordinates, the volume form \(\Omega \) can be written as
\[\Omega = F dx_1 \wedge \cdots \wedge dx_n \wedge dg_{n+1} \wedge \cdots \wedge dg_m. \]

If we put \(y_1 = \int \frac{F}{G} dx_1, \ y_2 = x_2, \ldots, y_n = x_n, y_{n+1} = g_{n+1}, \ldots, y_m = g_m, \) then \(\Omega \) is rewritten as
\[\Omega = G dy_1 \wedge \cdots \wedge dy_m. \]

With respect to these new local coordinates \((y_1, \ldots, y_m) \), \(\omega \) has the following expression:
\[\omega = \omega_{n+1} \wedge \cdots \wedge \omega_m = G dy_{n+1} \wedge \cdots \wedge dy_m \]
\[= i(\eta)(G dy_1 \wedge \cdots \wedge dy_m). \]
Thus we obtain that \(\eta = \frac{\partial}{\partial y_1} \wedge \cdots \wedge \frac{\partial}{\partial y_n}. \) Using Theorem 1 once again, we know that \(\eta \) is a Nambu-Poisson tensor.

Remark 1. The above criterion for Nambu-Poisson tensors does not depend on the choice of volume form.

Suppose that \(m = n + 1 \). Since every 1-form is clearly decomposable, we have

Corollary 2. If \(m = n + 1 \), then \(\eta \) is a Nambu-Poisson tensor if and only if \(\omega \wedge d\omega = 0 \).

4. Nambu-Poisson tensors on Lie groups

Let \(G \) be an \(m \)-dimensional connected Lie group, \(m \geq 3 \). First we shall determine the form of left invariant Nambu-Poisson tensors on \(G \). Denote by \(\mathfrak{g} \) the Lie algebra of left invariant vector fields on \(G \).

Proposition 3. Let \(\eta \) be a (non-zero) left invariant Nambu-Poisson tensor of order \(n \geq 3 \) on a Lie group \(G \). Then \(\eta \) is globally decomposable.

Proof. Let \(e \) be the unit element of \(G \). By Theorem 1, \(\eta \) has the following expression around \(e \in G : \eta = \frac{\partial}{\partial x_1} \wedge \cdots \wedge \frac{\partial}{\partial x_n} \), where \((x_1, \ldots, x_m) \) is some coordinate neighborhood around \(e \). Then there exist uniquely \(n \) elements \(X_1, \ldots, X_n \) of \(\mathfrak{g} \) such that \((X_i)_e = (\frac{\partial}{\partial x_i})_e \), \(1 \leq i \leq n \). Since \(\eta \) is left invariant, we immediately have \(\eta = X_1 \wedge \cdots \wedge X_n \) on \(G \).

By the above proposition, any left invariant Nambu-Poisson tensor \(\eta \) of order \(n \) can be written as a decomposable element of \(\Lambda^n \mathfrak{g} \).

Proposition 4. Let \(G \) be an \(m \)-dimensional Lie group.

(i) Let \(\mathfrak{h} \) be an \(n \)-dimensional Lie subalgebra of \(\mathfrak{g} \), \(n \geq 3 \). For a basis \(\langle X_1, \ldots, X_n \rangle \) of \(\mathfrak{h} \), put \(\eta = X_1 \wedge \cdots \wedge X_n \). Then \(\eta \) is a left invariant Nambu-Poisson tensor of order \(n \) on \(G \).

(ii) Conversely given a left invariant Nambu-Poisson tensor \(\eta = X_1 \wedge \cdots \wedge X_n \in \Lambda^n \mathfrak{g} \) on \(G \), then \(\mathfrak{h} = \langle X_1, \ldots, X_n \rangle \) is a Lie subalgebra of \(\mathfrak{g} \).
PROOF. (i) Let \(< X_1, \ldots, X_n, X_{n+1}, \ldots, X_m >\) be a basis of \(g\) obtained by extending a basis of \(\mathfrak{h}\), and let \(< \omega_1, \ldots, \omega_m >\) be the dual basis of \(< X_1, \ldots, X_m >\). Put \(\Omega = \omega_1 \wedge \cdots \wedge \omega_m\). Then \(\Omega\) is a left invariant volume form on \(G\). Define a left invariant \((m - n)\)-form \(\omega\) by \(\omega = i(\eta)\Omega = \omega_{n+1} \wedge \cdots \wedge \omega_m\). Let \(\{C_{pq}^r\}\) be the structure constants of \(g\). Since \(\mathfrak{h}\) is a Lie subalgebra, \(C_{pq}^r = 0\) \((n + 1 \leq i \leq m, 1 \leq p, q \leq n)\). Then

\[
d\omega_i = - \sum_{n+1 \leq p < q \leq m} C_{pq}^r \omega_p \wedge \omega_q - \sum_{1 \leq r \leq n} \sum_{n+1 \leq s \leq m} C_{s,r}^i \omega_r \wedge \omega_s,
\]

Thus we have

\[
d\omega = \sum_{1 \leq t \leq n} (-1)^{t-1} \omega_{n+1} \wedge \cdots \wedge d\omega_{n+t} \wedge \cdots \wedge \omega_m
\]

\[
= \sum_{1 \leq t \leq n} (-1)^{t-1} \omega_{n+1} \wedge \cdots \wedge \left(- \sum_{n+1 \leq p < q \leq m} C_{pq}^{n+t} \omega_p \wedge \omega_q \right) \wedge \cdots \wedge \omega_m
\]

\[
= \sum_{1 \leq t \leq n} \sum_{1 \leq r \leq n} (-1)^{t} C_{r,n+t}^{n+1} \omega_{n+1} \wedge \cdots \wedge (\omega_r \wedge \omega_{n+t}) \wedge \cdots \wedge \omega_m
\]

\[
= \left(- \sum_{1 \leq t \leq n} \sum_{1 \leq r \leq n} C_{r,n+t}^{n+1} \omega_r \right) \wedge \omega_{n+1} \wedge \cdots \wedge \omega_m,
\]

and we can write \(d\omega = d\omega = \theta \wedge \omega\). Hence by Theorem 2, we know that \(\eta\) is a Nambu-Poisson tensor.

(ii) We use the same notations as (i). Then by writing down the condition \(d\omega = \theta \wedge \omega\), we can get easily that \(C_{pq}^r = 0\) \((n + 1 \leq i \leq m, 1 \leq p, q \leq n)\). This means that \(\mathfrak{h}\) is a Lie subalgebra of \(g\).

By Proposition 4, to each Lie subalgebra of \(g\), there corresponds a left invariant Nambu-Poisson tensor of order \(n\) up to constant multiple. Conversely if a left invariant Nambu-Poisson tensor \(\eta\) has two expressions: \(\eta = X_1 \wedge \cdots \wedge X_n = Y_1 \wedge \cdots \wedge Y_n\), then by E.Cartan’s lemma, we know that \(< X_1, \ldots, X_n > = < Y_1, \ldots, Y_n >\). Thus we have

COROLLARY 3. There is a one to one correspondence up to constant multiple between the set of left invariant Nambu-Poisson tensors of order \(n\) on \(G\) and the set of \(n\)-dimensional Lie subalgebras of \(g\).

Let \(G\) be an \(m\)-dimensional connected Lie group and \(H\) an \(n\)-dimensional closed subgroup of \(G\). Denote by \(g\) and \(h\) the Lie algebras of \(G\) and \(H\) respectively. Let \(\pi : G \to G/H\) be the natural projection. The mapping \(\omega \to \pi^* \omega\) establishes a 1-1 correspondence between the \(G\)-invariant \(p\)-forms on \(G/H\) and the left invariant \(p\)-forms \(\omega\) on \(G\) which satisfy

(a) \(i(X)\omega = 0\) for all \(X \in \mathfrak{h}\),

(b) \(\mathcal{L}(X)\omega = 0\) for all \(X \in \mathfrak{h}\) [2].
If ω is a G-invariant $(m - n)$-form (i.e., G-invariant volume form) on G/H. Then $\omega = \pi^*\omega$ is a left invariant $(m - n)$-form on G. Since ω is closed and decomposable, ω induces a left invariant Nambu-Poisson tensor η of order n on G by the equation $i(\eta)\Omega = \omega$. It is clear that η is equal to the left invariant Nambu-Poisson tensor corresponding to the Lie algebra h up to constant multiple. Define $h_\omega = \{X \in g \mid i(X)\omega = 0\}$. Then h_ω is a Lie subalgebra of g and $h_\omega = h$. The maximal integral submanifold H_ω through e is the identity component of H. Since H is closed, H_ω is also a closed subgroup of G.

Conversely let us give a left invariant Nambu-Poisson tensor η of order $n \geq 3$. Then as we have seen in Proposition 4, η determines an n-dimensional Lie subalgebra \mathfrak{h}, and η also induces the left invariant $(m - n)$-form ω on G by $i(\eta)\Omega = \omega$. In the following theorem, we give a sufficient condition for ω to be projected down to the G-invariant volume form of G/H. This is essentially due to S.S.Chern [1].

Theorem 5. Let G be an n-dimensional connected unimodular Lie group, and η a left invariant Nambu-Poisson tensor of order $n \geq 3$ on G. Then there corresponds an n-dimensional Lie subalgebra \mathfrak{h}. Denote by H the connected Lie subgroup corresponding to \mathfrak{h}. If H is closed and unimodular, then ω is projected down to the G-invariant volume form of G/H.

Proof. It is clear that $i(X)\omega = 0$ for all $X \in \mathfrak{h}$. Since G and H are unimodular, it holds that $\text{Tr}d_{\mathfrak{g}}(X) = \text{Tr}d_{\mathfrak{h}}(X) = 0$ for all $X \in \mathfrak{h}$. Let C_{pq}^r be the structure constants of \mathfrak{g}. Then this implies that $\sum_{\alpha=n+1}^m C_{\alpha\beta}^\gamma = 0, (i = 1, \ldots, n)$. In view of the proof of Proposition 4, we know that $d\omega = 0$. Hence two conditions (a) and (b) are satisfied so that ω is projectable.

Another easy sufficient condition for ω to be projectable is the following. If \mathfrak{h} is an ideal of \mathfrak{g}, then $\text{ad}(X)$ is \mathfrak{h}-valued for $X \in \mathfrak{h}$, and we easily obtain that $d\omega = 0$. Thus we have

Proposition 6. Let η be a left invariant Nambu-Poisson tensor of order n on G. Suppose that \mathfrak{h} induced by η is an ideal of \mathfrak{g} and the connected Lie group H which corresponds to \mathfrak{h} is a closed subgroup of G. Then ω is projected down to the G-invariant volume form of G/H.

Here let us give one example of the pair of Lie groups (G, H) such that ω cannot be projected down to any G-invariant volume form of G/H. In this case, of course, H is not unimodular. Let $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{R})$ and let $\mathfrak{g} = \mathfrak{a} + \mathfrak{n} + \mathfrak{t}$ be the usual Iwasawa decomposition. Take $\mathfrak{a} + \mathfrak{n}$ as \mathfrak{h}. Then \mathfrak{h} is not an ideal but a Lie subalgebra of \mathfrak{g}. Let A and N be the connected Lie groups corresponding to \mathfrak{a} and \mathfrak{n} respectively. Then A and N are closed Lie subgroups of $SL(3, \mathbb{R})$, and H is diffeomorphic to $A \times N$. Hence H is a closed subgroup of $SL(3, \mathbb{R})$. Now we can find a basis $\langle X_1, \ldots, X_8 \rangle$ of \mathfrak{g} such that $\mathfrak{a} = \langle X_1, X_2 \rangle$ and $\mathfrak{n} = \langle X_3, X_4, X_5 \rangle$. Put $\eta = X_1 \wedge \cdots \wedge X_5$. Then $\omega = i(\eta)\Omega$ can be written as $\omega = \omega_6 \wedge \omega_7 \wedge \omega_8$ with respect to the dual basis $\langle \omega_1, \ldots, \omega_8 \rangle$ of $\langle X_1, \ldots, X_8 \rangle$. Then we know that $i(\mathfrak{h})d\omega \neq 0$. Hence ω cannot be projected down to any G-invariant form of G/H.
Let ω be a left invariant closed form on a Lie group G. Put $h_\omega = \{ X \in \mathfrak{g} \mid i(X)\omega = 0 \}$. Then h_ω is a Lie subalgebra of \mathfrak{g}. Denote by H_ω the connected Lie subgroup corresponding to h_ω. Bon-Yao Chu [3] proved the following:

Proposition 7. On a simply connected Lie group, if a left invariant 2-form ω is closed, the corresponding connected Lie subgroup H_ω is closed in G.

Applying the above result to our cases, we can easily obtain:

Proposition 8. Let G be an $(n+2)$-dimensional simply connected Lie group and η a left invariant Nambu-Poisson tensor of order n on G. Denote by \mathfrak{h} the Lie subalgebra induced by η. Put $\omega = i(\eta)\Omega$, where Ω is a left invariant volume form of G. If $d\omega = 0$, then the connected Lie subgroup H corresponding to \mathfrak{h} is closed in G. In particular if \mathfrak{h} is an ideal of \mathfrak{g}, then H is a closed normal subgroup of G.

References