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Abstract. All homogeneous spaces G/K (G is a simple connected compact Lie group, K a
connected closed subgroup) are enumerated for which arbitrary Hamiltonian flows on T ∗(G/K)
with G-invariant Hamiltonians are integrable in the class of Noether integrals and G-invariant
functions.

1. Introduction. Let G be a compact connected Lie group and K its closed con-
nected subgroup. Denote by X a symplectic manifold on which G acts in a Hamiltonian
fashion. Let P : X → g∗, where g is the Lie algebra of G, be the moment mapping. The
functions of type h ◦ P , for h : g∗ → R, are called collective. Such h ◦ P are integrals
for any flow on X with G-invariant Hamiltonian (Noether’s theorem). A completely inte-
grable system consisting of (dimX/2 independent real-analytic commuting with respect
to the Poisson bracket) functions of this type is called a collective completely integrable
system [GS1]. All symmetric spaces G/K admit a collective completely integrable system
on the phase space T ∗(G/K) ( [Ti, Mi, My1, GS2] and [IW]). Moreover, the following
conditions are equivalent [GS1, GS2, My2, PM]:

1) on the phase space T ∗(G/K) there exists a collective completely integrable sys-
tem (and, consequently, every Hamiltonian system with a G-invariant Hamiltonian H is
integrable);

2) the algebra of G-invariant functions on T ∗(G/K) is commutative;
3) the subgroup K of G is spherical; i.e., the quasiregular representation of G on
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the Hilbert space L2(G/K) (or on the space C[G/K] of regular functions on the affine
algebraic variety G/K) has simple spectrum;

4) P separates (at least generically) the G-orbits, i.e. P−1(P (x)) ⊂ G · x.
The classification of spherical subgroups of simple compact (connected) Lie groups

was obtained in [Kr] by M. Kramer (1979), of semisimple compact connected Lie groups
in our paper [My2](see also [PM]) and by a different method in [Br] by M. Brion. In the
case of a real noncompact Lie group G the generalization of these results was obtained
by M. Chumak [Ch].

The spherical pairs of Lie groups were studied in many papers and have many beautiful
features. But, since the Poisson structure on X is nondegenerate, then every G-invariant
Hamiltonian H locally has the form h ◦P ; i.e., for integrability we don’t use the function
H.

Let Nmax be the maximal number of independent real-analytic commuting (with
respect to the Poisson bracket) functions on X = T ∗(G/K) of type h ◦ P . If Nmax =
(dimX/2) − 1 we will call the corresponding system of functions an almost collective
completely integrable system and the subgroup K an almost spherical subgroup of G. In
this case every Hamiltonian system with a G-invariant Hamiltonian H, in particular, the
geodesic flow, is also integrable: for the integrability we can use H or another G-invariant
function.

In this paper we enumerate all such homogeneous spaces G/K with a simple compact
Lie group G. Crucial ingredients in our classification are the dimensional criterion

dimK ≥ 1
2

(dimG− rankG)− 1,

Theorem 5, and inequality (9). Roughly speaking this criterion says that K has to be a
“large” subgroup of G, Theorem 5 allows us to find only “maximal large” almost spherical
subgroups K and to use the already known classification of spherical pairs of semisimple
compact Lie groups. We show by inspection that simple groups G do not have many
maximal large subgroups and there is only one pair (G,K), where the almost spherical
subgroup K is maximal in G. With the exception of this one case, an almost spherical
subgroup K of a simple group G is not maximal. Moreover, if K ⊂ S ⊂ G, where
a connected subgroup S is a spherical maximal subgroup of G, then for the isotropy
subgroup Sx2 of an arbitrary point x2 ∈ G/S in some neighborhood of the point {S} ∈
G/S the following inequality holds:

dim(S/K) ≤ 1
2

(dimSx2 + rankSx2) + 1.

A connected closed subgroup K of a compact simple group G is said to be of height
at most n in G if there exist a chain of distinct connected (closed) subgroups K ⊂ S(n) ⊂
. . . ⊂ S′ ⊂ G and every chain of distinct connected (closed) subgroups between K and G
is of length at most n. It is proved that if K is almost spherical, then K is of height at
most n in G, where n ≤ 2. There are eighteen types of such pairs (G,K), one of which
is of height 0, four are of height 2, while the remaining are of height 1. In the latter case
K ⊂ S ⊂ G, where G/S is a symmetric space.
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2. Almost spherical pairs and the integrability of invariant flows

2.1. Moment map. Let G be a compact real Lie group, K its closed subgroup and
M = G/K. The natural action of G on the quotient space M extends to an action of G
on T ∗M . This G-action on T ∗M is symplectic since it preserves the canonical 1-form λ

(the form “pdq” ), and thus also the symplectic 2-form dλ. For each vector ξ belonging to
the Lie algebra g of G the 1-parameter subgroup exp tξ induces the Hamiltonian vector
field ξ̂ on T ∗M with the Hamiltonian function fξ = λ(ξ̂) : dfξ = −ξ̂cdλ. The mapping
ξ 7→ fξ of g into the algebra C∞(T ∗M) (with the Poisson bracket) is an equivariant
algebra homomorphism: f(g−1m) = fAd g(ξ)(m) and hence the action of G on T ∗M is
Poisson [GS3]. This action defines the moment map P : T ∗M → g∗ from T ∗M to the
dual space of the Lie algebra g by P (x)(ξ) = fξ(x). For arbitrary smooth functions h1

and h2 on g∗ we have {h1 ◦ P, h2 ◦ P} = {h1, h2} ◦ P , where the Poisson bracket on g∗ is
given by the formula {h1, h2}(β) = β([dh1(β), dh2(β)]), β ∈ g∗.

There exists a faithful representation of g such that its associated bilinear form Φ is
negative definite on g. Let k be the Lie algebra of the subgroup K and π the natural
projection of G onto M . Using Φ we can identify the space g∗ with g, the corresponding
isomorphism denote by ψ : g∗ → g. Also identify T ∗π(e)M and m

def= {x ∈ g : Φ(x, k) = 0}.
It is evident that g = k ⊕ m. Under these identifications P (x) = Φ(x, ·) ∈ g∗. Let gx =
{y ∈ g : [x, y] = 0} and kx = k ∩ gx, where x ∈ g.

2.2. Integrability. Let us show that the fulfillment of the condition

dim(gx/kx) +
1
2

dim(g/gx) = dim(g/k)− ε, ε = ε(g, k) = 0 or 1 (1)

at any point x from some neighborhood in m is sufficient for the integrability of any
Hamiltonian flow on T ∗M with G-invariant Hamiltonian function.

Let us consider the Zariski open subset R(m) ⊂ m of points in general position:

R(m) = {x ∈ m : dim gx ≤ dim gy,dim kx ≤ dim ky,∀y ∈ m}. (2)

On g∗
ψ
= g there exists s = dim(gx/kx) + 1

2 dim(g/gx), x ∈ R(m), polynomial functions
h1, h2, . . . , hs such that the functions h1 ◦ P, h2 ◦ P, . . . , hs ◦ P are pairwise in involution
on T ∗M and are independent at the point x ∈ m = T ∗π(e)M (the number s is the maximal
number of independent functions in involution of the form h ◦ P on T ∗M) (see [My2]).
Let W (x) be the tangent space to the orbit G · x ⊂ T ∗M (of maximal dimension). Then
W (x) is generated by vectors ξ̂(x), ξ ∈ g. Applying the slice-theorem to the action of
the compact group G on T ∗M (or to the AdK-action on m = T ∗π(e)M) one deduces that

the orthogonal complement W (x)⊥ def= {X ∈ TxT ∗M : dλ(X,W (x)) = 0} to W (x) with
respect to the symplectic structure dλ is generated by Hamiltonian vector fields (at x)
of G-invariant functions on T ∗M . Let us show that codimension of W⊥(x) ∩W (x) in
W⊥(x) is equal to 2ε. Indeed, multiplying both sides of (1) by 2, we obtain after simple
rearrangements

dim(gx/kx) + dim(g/kx) = 2 dim(g/k)− 2ε. (3)

It follows from [My1] (see also [GS2], [PM]) that ξ̂(x) = 0 iff ξ ∈ kx and consequently
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dimW (x) = dimG · x = dim(g/kx). Because of the relations

dλ(ξ̂(x), η̂(x))(x) = {fη, fξ}(x) = f[η,ξ](x) = P (x)([η, ξ])

= Φ(x, [η, ξ]) = Φ([x, η], ξ) for any η, ξ ∈ g

we have that W (x) ∩W⊥(x) = {η̂(x), η ∈ gx} and dimW (x) ∩W⊥(x) = dim(gx/kx).
Taking into account that the 2-form dλ is nondegenerate we obtain

dimW (x) + dimW⊥(x) = dimT ∗M = 2 dim(g/k).

Thus dimW (x)⊥−dim(W (x)∩W⊥(x)) = 2ε and therefore if ε = 1 there is a G-invariant
function F on T ∗M which is independent of functions {hi ◦P}, i = 1, s (the Hamiltonian
vector fields of hi ◦P are tangent to orbits of G in T ∗M). The set {F, h1 ◦P, . . . , hs ◦P}
is the maximal involutive set of independent functions: s + 1 = 1

2 dimT ∗M . If the G-
invariant function H is independent of {hi◦P}, i = 1, s then the set {H,h1◦P, . . . , hs◦P}
is a maximal involutive set; if H is dependent then we have the commutative set of
integrals {F, h1 ◦P, . . . , hs ◦P}. If ε = 0, then s = 1

2 dimT ∗M ; i.e., on the manifold T ∗M
there exists a collective completely integrable system and also any G-invariant flow is
integrable. We proved

Proposition 1. If condition (1) holds for all x from open subset of m then any
Hamiltonian system on T ∗M with a G-invariant Hamiltonian function H is integrable.

2.3. Properties of spherical pairs of compact Lie algebras. Since dim g = dim k+dim m

equation (1) (the definition of ε(g, k)) is equivalent to

dim(gx/kx) + dim(k/kx) = dim m− 2ε. (4)

By [My2, Prop. 1.1] (see also [Mi, GS2]) for any x ∈ R(m) the commutator [gx, gx] is
contained in the algebra kx = k ∩ gx. Therefore for a semisimple element x ∈ R(m) we
have dim(gx/kx) = rank g− rank kx, and so (4) can be rewritten as

(rank g− rank kx) + dim(k/kx) = dim m− 2ε. (5)

Moreover, it is evident that dim(gx/kx) ≤ rank g ≤ dim gx and consequently (1) implies

dim k ≥ 1
2

(dim g− rank g)− ε. (6)

For any x ∈ m put

m(x) def= {z ∈ m : [x, z] ∈ m} = {z ∈ m : Φ(z, adx(k)) = 0}. (7)

Lemma 2. For a pair (g, k) of compact Lie algebras and any point x ∈ m the following
conditions are equivalent:

(1) {codim adx(k) in m} = dim(gx/kx) + 2ε; i.e., dim m(x) = dim(gx/kx) + 2ε;
(2) {codim(gx)m in m(x)} = 2ε, where (·)m is the projection onto m along k induced

by the decomposition g = k⊕m;
(3) {codim[adx(m(x)) ∩ adx(k)] in adx(m(x))} = 2ε.

Proof. It is sufficient to see that 1) (gx)m ⊂ m(x); 2) adx(k) ⊂ m; 3) m(x)⊕adx(k) =
m and if x′ ∈ m then adx(x′) ∈ adx(k)⇔ x′ ∈ (gx)m.
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Definition 3. We say that a pair (g, k) of compact Lie algebras is an almost spherical
pair (resp. spherical pair) and a subalgebra k ⊂ g is an almost spherical subalgebra (resp.
spherical subalgebra) if for any x ∈ R(m) the equivalent conditions of Lemma 2 or the
equivalent equalities (1), (3)–(5) are satisfied, where ε = 1 (resp., where ε = 0).

Remark 4. For a spherical pair (g, k) of compact Lie algebras the conditions (2),
(3) of Lemma 2, ε = 0 are equivalent to the conditions (2’) m(x) = (gx)m and (3’)
(adx)(m(x)) ⊂ adx(k), x ∈ R(m) [My2]. Thus all symmetric pairs (g, k), i.e. those for
which k is the algebra of fixed points of an involutive automorphism of the algebra g,
are spherical (see [Mi], [My2]). Indeed, [m,m] ⊂ k and consequently m(x) = gx ∩ m. All
spherical subalgebras k of compact Lie algebras g are classified in [Kr] (for simple g) and
in [My2], [Br] (the semisimple case).

Theorem 5. Let g be a compact Lie algebra with subalgebras k ⊂ s. Let (g, k) be
an almost spherical pair. Then the pairs (g, s) and (s, k) are either almost spherical or
spherical. Moreover, if (g, s) is almost spherical, then the pair (s, k) is spherical.

Proof. Let m1 (respectively m2) be the orthogonal complement to the subalgebra k

in s (respectively to the subalgebra s in g) with respect to the form Φ; i.e., m = m1⊕m2.
Fix an element x1 + x2 ∈ R(m1 ⊕ m2) such that x1 ∈ R(m1) and x2 ∈ R(m2). Let
V1 (respectively V2) be the orthogonal complement to the subspace (sx1)m1 in m1(x1)
(respectively to the subspace (gx2)m2 in m2(x2)). From the relation (sx1)m1 = {z ∈ m1 :
adx1(z) ∈ adx1(k)} it may be concluded that

adx1(V1) ∩ adx1(k) = 0, dim adx1(V1) = dimV1. (8)

If u1 ∈ m1(x1) then by definition [x1, u1] ∈ m1, hence [x1 +x2, u1] ∈ m and, consequently,
m1(x1) ⊂ m(x1 + x2). Using the similar arguments we obtain that m2(x2) ⊂ m(x1 + x2).

The pair (s, k) is either spherical or almost spherical iff dimV1 ≤ 2. Otherwise the
space V1 is at least four-dimensional. From the relations V1 ⊂ m1(x1) ⊂ m(x1 + x2) for
the space V1 of the dimension ≥ 4 and condition (2) of Lemma 2: dim m(x1 + x2) −
dim(gx1+x2)m = 2, it follows that for some v1 ∈ V1, v1 6= 0 : v1 ∈ (gx1+x2)m. Thus
[x1 +x2, v1] ∈ ad(x1 +x2)(k). Therefore for some z ∈ k: [x1, v1] + [x2, v1] = [x1, z] + [x2, z]
and consequently [x1, v1] = [x1, z] ∈ m1. This contradicts the first relation in (8) (by the
second relation [x1, v1] 6= 0) so that dimV1 ≤ 2.

To obtain the contradiction, suppose that the pair (g, s) is neither almost spherical
nor spherical. In this case the space V2 = V2(x2) ⊂ m(x2) is at least four-dimensional. But
the pair (g, k) is almost spherical and V2 ⊂ m2(x2) ⊂ m(x1 + x2) so that the intersection
V2 ∩ (gx1+x2)m is at least two-dimensional. Since for x ∈ R(m) dimension dim(gx)m =
dim(gx/kx) is constant, we can define the Zariski open subset Q1 = Q1(x2) of m1 of
all elements x′1 such that (1) x′1 ∈ R(m1) and x′1 + x2 ∈ R(m1 ⊕ m2); (2) the space
V2 ∩ (gx

′
1+x2)m

def= V2(x′1) has the minimal possible dimension l (from what has already
been showed l ≥ 2). Since the set Q1 is not empty and 0 ∈ Q1, the space V2∩ (gx2)m is at
least l-dimensional (the Grassmann manifold of all l planes in V2 is compact, [k,m1] ⊂ m1).
This contradicts the definition of V2 because (gx2)m ∩m2 ⊂ (gx2)m2 so that dimV2 ≤ 2.
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It remains to prove that if dimV2 = 2 then V1 = 0. Otherwise, assume that dimV1 = 2.
Since V1 ⊕ V2 ⊂ m1(x1)⊕m2(x2) ⊂ m(x1 + x2), by condition (2) of Lemma 2, the space
V ′ = (V1 ⊕ V2) ∩ (gx1+x2)m has dimension ≥ 2. Therefore, for any non-zero v1 + v2 ∈
V ′ ⊂ V1 ⊕ V2 there exists an element z ∈ k such that [x1 + x2, v1 + v2] = [x1 + x2, z].
But [k,mi] ⊂ mi, i = 1, 2 so that [x1, v1] = [x1, z] which contradicts (8) if v1 6= 0. Thus
V ′ = V2, (dimV ′ ≥ 2) and V2 ⊂ (gx1+x2)m; i.e., for any non-zero v2 ∈ V2 we have
[x1 + x2, v2] ∈ ad(x1 + x2)(k) and consequently [x1 + x2, v2] ∈ adx2(k). The latter holds
for any x′1 ∈ m from some neighborhood of x1, hence [x2, v2] ∈ adx2(k) ⊂ adx2(s).
Therefore v2 ∈ (gx2)m2 , which is impossible, a contradiction.

In the notation of the proof of the theorem if a pair (g, k) is almost spherical and (g, s)
is spherical or almost spherical then

(rank g− rank kx1+x2) + dim(k/kx1+x2) = dim(g/k)− 2

and

(rank g− rank ss2) + dim(s/sx2) = dim(g/s)− 2ε2, where ε2 = 0, 1.

Hence 2 dim(s/k) = (dim sx2 + rank sx2)− (dim kx1+x2 + rank kx1+x2) + (2− 2ε2) and

dim(s/k) ≤ 1
2

(dim sx2 + rank sx2) + 1− ε2. (9)

Remark 6. Let g be a semisimple compact Lie algebra and let a⊕ z be its subalgebra
with one-dimensional center z. If the pair (g, a⊕z) is spherical then the pair (g, a) is either
spherical or almost spherical. To prove this fact it is sufficient to see that m

def= (a⊕z)⊥ ⊂ g

is the subspace of a⊥ = m⊕ z and R(m) ∈ R(m⊕ z) [My2, Prop.2.2].

3. Almost spherical subalgebras of simple Lie algebras

3.1. Preliminary remarks. Let g be a complex semisimple Lie algebra with a compact
real form g0 and let Φ be the Killing form of g. Let k be a reductive subalgebra of g such
that k0 = k ∩ g0 is the real form of k. Write m for the orthogonal complement to k in g

with respect to Φ. It is evident that g = k ⊕ m and m = m0 ⊕ im0, where m0 = m ∩ g0.
Using (2) define the Zariski open subset R′(m) (over C) of m. Let R(m) denote a set of
all x ∈ R′(m) which are semisimple elements of Lie algebra g. Then R(m) is a Zariski
open subset of m (see [My2]). It is clear that R(m0) ⊂ R(m). We say that a pair (g, k)
is almost spherical (resp. spherical) if the pair (g0, k0) of compact Lie algebras is almost
spherical (resp. spherical); i.e., if for any x ∈ R(m) the equivalent conditions like (1),
(3)–(5) hold. To verify these conditions we use the results of [El], where for all simple
complex Lie algebras k all their representations πk and types of corresponding isotropic
subalgebras kx (of elements in general position) if kx 6= 0 are enumerated.

Let h be a Cartan subalgebra of g. Write R(Λ) for the irreducible representation of
g with highest weight Λ, and R′(Λ) for its contragredient representation. Let η denote
the one-dimensional trivial representation. If {αi} is a basis for the root system of g

relative h, and {ϕi} are the corresponding fundamental weights, then Λ =
∑

Λiϕi, where
Λi ∈ Z+. We shall index the roots of a basis for the root system of a simple Lie algebra
in the order given in [Bo2], Tables I-IX of Chapter VI.
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Let ρ be a faithful linear representation of a simple complex Lie algebra g in a space
of the smallest possible dimension. We associate the embedding j0 of a subalgebra k0 in
g0 and the embedding j of the natural complex extension k = kC0 in g with the linear
(complex) representation ρ̃ obtained by restricting ρ◦j to its semisimple part. We denote
such a subalgebra k0 ⊂ g0(k ⊂ g) by a pair (·, ρ̃), where for the first entry we put the type
of an algebra k0 or k.

3.2. Almost spherical maximal subalgebras of classical Lie algebras. Let V be a linear
space of dimension n over C. For the rest of this subsection g will denote a classical
complex Lie algebra, i.e. one of sl(n), so(n), or sp(n) (for n even), with k a reductive
subalgebra. Since k is reductive, V is a semisimple k-module. If V is a simple k-module
we shall say that k is irreducible.

Proposition 7. Suppose that k is an almost spherical subalgebra of a simple clas-
sical Lie algebra g and k is maximal in g. Then g ' B2 and k is a unique (up to in-
ner automorphisms) principal sl2-subalgebra of g; i.e., (g, k) ' (sp(4), (A1, R(3ϕ))) '
(so(5), (A1, 4ϕ)). Moreover, any almost spherical subalgebra k1 of so(5) (sp(4)) such that
k1 ⊂ k coincides with k.

Proof. Since the subalgebra k is reductive, the k-module V is semisimple. Suppose
that V is a nonsimple k-module; i.e., V = V1⊕V2 is a direct sum of two nonzero semisimple
k-modules V1 and V2. But the subalgebra s = g(V1, V2) = {x ∈ g : x(V1) ⊂ V1, x(V2) ⊂ V2}
(which contains k) of the classical Lie algebra g is maximal because the pair (g, s) is
symmetric [He]. Therefore k 6= s and V is a simple k-module.

A) Suppose that k is a simple irreducible subalgebra of g (by E.Cartan theorem any
irreducible subalgebra of g is semisimple). If the pair (g, k) is almost spherical then in-
equality (6) is satisfied: dim k ≥ M(g) − 1, where M(g) = 1

2 (dim g − rank g). Therefore
dim g ≥ 1

4n(n−2)−1, since 1
4n(n−2) ≤M(so(n)) ≤M(sp(n)) ≤M(sl(n)). When k has

type Ar (r ≥ 1), Br (r ≥ 2), Cr (r ≥ 3), Dr (r ≥ 4), E6, E7, E8, F4, or G2, it is not hard
to verify that for the latter inequality to be satisfied it is necessary for n not to exceed
2r+3, 4r, 4r, 4r−2, 19, 25, 33, 17, or 9, respectively. The irreducible representations ρ of
simple algebras a whose dimensions satisfy these restrictions can be found in [On, Lemma
3.2] with the exception of one case when a ' Ar and n = 2r + 3. For an algebra a of
type Ar the representations are the following: (r ≥ 2, ϕ1(ϕr), r + 1, 0), (4, ϕ2(ϕ3), 10, 0),
(3, ϕ2, 6, 1), (2, 2ϕ1(2ϕ2), 6, 0), (1, ϕ1, 2,−1), (1, 2ϕ1, 3, 1), (1, 3ϕ1, 4,−1), where in the
quadruple (r,Λ, n(Λ), ε(Λ)) we mean that r is the rank of k, Λ and n(Λ) are the highest
weight and dimension of ρ respectively; the symbol ε(Λ) is 1, −1, or 0 according as ρ is
orthogonal, symplectic, or neither orthogonal nor symplectic, respectively. For a simple
algebra a of type Br we have the following representations: (r, ϕ1, 2r+ 1, 1), (4, ϕ4, 16, 1),
(3, ϕ3, 8, 1), (2, ϕ2, 4,−1); type Cr: (r, ϕ1, 2r,−1); type Dr: (r, ϕ1, 2r, 1), (5, ϕ4(ϕ5), 16, 0),
(4, ϕ3(ϕ4), 8, 1); type G2: (2, ϕ1, 7, 1); algebras of the remaining types have no such rep-
resentations. Clearly ρ(a) ⊂ so(n) (ρ(a) ⊂ sp(n)) if the representation ρ is orthogonal
(symplectic). It can be verified that inequality (6) is satisfied only for the following pairs
(g, a) from among those found above: (a) (sl(n), so(n)), n ≥ 3, n 6= 4; (b) (sl(n), sp(n)),
n ≥ 4; (c) (so(8), (B3, R(ϕ3))) (spinor representation); (d) (so(7), (G2, R(ϕ1))). All these
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pairs (a)–(d) are spherical [Kr, My2]. Now assume that n = 2r + 3 for k ' Ar. Since
in this case dim k < M(sl(2r + 3)) − 1 for all r ≥ 1 the representation ρ of k have
to be either orthogonal or symplectic. If r = 1 then for the pair (so(5), (A1, R(4ϕ)))
condition (6) is an equality. If r ≥ 2 using the explicit formula for dimension of the rep-
resentation R(Λ) and properties of the root system Ar (all roots have the same length)
we obtain that a representation of k which admits an invariant bilinear form and has
minimal dimension is the representation (r ≥ 2, ϕ1 + ϕr, r(r + 2), 1), (3, ϕ2, 6, 1) or
(r = 2k + 1 ≥ 5, ϕk+1, Nk ≥ (k + 2)(k + 3), (−1)k+1), where Nk = (2k+2)!

(k+1)!(k+1)! . Thus
there are no such representations of Lie algebra Ar of the dimension 2r + 3(r ≥ 2).

B) Suppose that k is an irreducible subalgebra of g and k is not simple (is semisim-
ple). Then k ∈ {a}, where {a} is a set of all maximal semisimple (not simple) subalge-
bras of g. The maximal subalgebra a is isomorphic to the tensor product sl(s) ⊗ sl(t)
(st = n, 2 ≤ s ≤ t) if g = sl(n); sp(s) ⊗ sp(t) (st = n, 2 ≤ s ≤ t) or so(s) ⊗ so(t)
(st = n, 3 ≤ s ≤ t; s, t 6= 4) if g = so(n); sp(s) ⊗ so(t) (st = n, s ≥ 2, t ≥ 3, t 6= 4
or s = 2, t = 4) if g = sp(n) ([Dy1, Theorems 1.3 and 1.4]). Inequality (6) holds only
for two pairs (g, a): (sl(4), sl(2) ⊗ sl(2)) and (so(8), sp(2) ⊗ sp(4)). These two pairs are
spherical [Kr, My2].

Now it remains to prove that the pair (g, k) = (so(5), (A1, R(4ϕ))) is almost spher-
ical. To compute the representation πk of the Lie algebra k in m consider the sl2-triple
{X+, H,X−} in k ' A1 [Bo3, Chapt.VIII,§1]. Then the eigenvalues of H ∈ so(5) ⊂ sl(5)
are the numbers 4, 2, 0,−2,−4. Using the standard root system of g with respect to the
Cartan subalgebra (of diagonal matrices) h 3 H of g we obtain that αi(H) = 2 for every
simple root αi, i = 1, 2 so that k is principal sl2-subalgebra of g [Bo3, Chapt.VIII,§1,11]
and πk = R(6ϕ). Thus kx = 0 for any x ∈ R(m) [El] and consequently the pair g, k is al-
most spherical. Since in this case (6) is equality k does not contain proper almost spherical
subalgebra of g. To prove that (so(5), (A1, R(4ϕ))) ' (sp(4), (A1, R(3ϕ))) it is sufficient to
make the following observation: (A1, R(3ϕ))) ⊂ sp(4) is principal sl2-subalgebra of sp(4)
(the eigenvalues of H ∈ sp(4) ⊂ sl(4) are 3, 1,−1,−3) and all principal sl2-subalgebras
are conjugate.

3.3. Almost spherical maximal subalgebras of exceptional Lie algebras. Let g be a
simple complex Lie algebra. A subalgebra a ⊂ g is regular if [h, a] ⊂ a for some Cartan
subalgebra h of g. We say that a is an S-subalgebra of g if it is not contained in any
proper regular subalgebra of g [Dy2].

Let g be an exceptional complex Lie algebra, s its maximal reductive subalgebra. Let
us find such subalgebras s for which condition (6) holds: dim s ≥ M(g) − 1 = (dim g −
rank g)/2− 1.

A maximal reductive subalgebra s of a simple Lie algebra g is either regular or an
S-subalgebra. The list of the types of all maximal S-subalgebras s of the exceptional
algebras g is as follows: G2 − {A1}; F4 − {A1, A1 ⊕G2}; E6 − {A1, G2, A2 ⊕G2, F4, C4};
E7−{A1, A1⊕A1, A2, G2⊕C3, A1⊕F4, A1⊕G2}; E8−{A1, A1⊕A2, B2, G2⊕F4} [Dy2].
It is not hard to verify that necessary condition (6) for (g, s) is satisfied only for the pairs
of types (E6, F4) and (E6, C4) which are symmetric [GG] so we can proceed to the case
when s is regular.
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The list of the types of all maximal regular subalgebras s of the exceptional algebras
g such that (g, s) is not symmetric is as follows: G2−{A2}; F4−{A2⊕A2}; E6−{A2⊕
A2⊕A2}; E7−{A2⊕A5}; E8−{A8, A4⊕A4, A2⊕E6} [Dy2]. Condition (6) holds only
for the pair of type {G2, A2} which is spherical. Thus we proved

Proposition 8. There is no almost spherical subalgebra k of a simple exceptional Lie
algebra g such that k is maximal in g.

3.4. Almost spherical subalgebras of simple Lie algebras. Let g be a complex simple
Lie algebra. A reductive subalgebra k of g is said to be of height at most n in g if there
exists a chain of distinct reductive subalgebras k ⊂ s(n) ⊂ . . . ⊂ s′ ⊂ g and every chain of
distinct reductive subalgebras between k and g is of length at most n. From Propositions 7
and 8 it follows that 1) there is only one almost spherical pair (g, k) for which k is of height
at most 0 in g; 2) if an almost spherical subalgebra k is of height at most h ≥ 1 in g

then k ⊂ s ⊂ g, where by Theorem 5 the subalgebra s is maximal spherical in g and k is
either almost spherical or spherical (maximal if h = 1) subalgebra of s. But we already
know all spherical subalgebras s of simple Lie algebras g. If s is maximal then the pair
(g, s) is symmetric or is as in the following list: (so(8), (B3, R(ϕ3))), (so(8), sp(2)⊗sp(4)),
(so(7), (G2, R(ϕ1))), (G2, A2) [Kr, My2]. Now applying the dimensional criterion (9) with
ε2 = 0 to such pairs (g, s) (types of the isotropic subalgebras ss2 are enumerated in [Ar]
for symmetric pairs and for remaining spherical pairs in [My2]) we find the set of such
pairs (g, k) which contains all almost spherical pairs. It remains to establish that (5)

Table 1

N g k j

1 Ar, r ≥ 2 Ar−2 ⊕ 2C R(ϕ1)+̇2η
2∗ Ar, r ≥ 4 Ar−2 ⊕C R(ϕ1)+̇2η
3 A2r−1, r ≥ 1 Ar−1 ⊕Ar−1 R(ϕ1)⊗ η+̇η ⊗R(ϕ1)
4 Br, r ≥ 2 Ar−1 R(ϕ1)+̇R′(ϕ1)+̇η
5 Br, r ≥ 2 Br−1 R(ϕ1)+̇2η
6 Cr, r ≥ 3 Ar−1 R(ϕ1)+̇R′(ϕ1)
7 Cr, r ≥ 3 Cr−1 R(ϕ1)+̇2η

8 Cr, r ≥ 3 Cr−2 ⊕A1 ⊕A1
R(ϕ1)⊗η⊗η+̇η⊗R(ϕ1)⊗η+̇η⊗
η ⊗R(ϕ1)

9 D2r, r ≥ 2 A2r−1 R(ϕ1)+̇R′(ϕ1)
10 Dr, r ≥ 4 Dr−1 R(ϕ1)+̇2η
11 A5 C2 ⊕ C1 ⊕C R(ϕ1)⊗ η+̇η ⊗R(ϕ1)
12 B5 B3 ⊕A1 R(ϕ3)⊗ η+̇η ⊗R(2ϕ1)
13 B4 G2 ⊕C R(ϕ1)+̇2η
14 B2 A1 R(4ϕ1)
15 D5 B3 R(ϕ3)+̇2η
16 F4 D4 D4 ⊂ B4 ⊂ F4

17 E6 B4 ⊕C B4 ⊕C ⊂ D5 ⊕C ⊂ E6

18 E7 E6 E6 ⊂ E6 ⊕C ⊂ E7
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holds (or does not hold) at points x ∈ R(m) for all these pairs. For this it suffices to
find the type of the centralizer kx, which is completely determined by the representation
π : x 7→ adm x of k in m. An easy computation shows that often kx ⊂ k1, where k1 is some
simple ideal of k, and, consequently, the algebra kx is determined by the restriction πk1

and its type is given in the tables in [El]. Thus using Theorem 5, Propositions 7,8 and
dimensional criterion (9) we obtain

Theorem 9. Let g be a complex simple Lie algebra, k its reductive subalgebra. All
almost spherical pairs (g, k) are shown in Table 1, where the representations determining
the embedding j : k → g are also given 1. The almost spherical subalgebra k of the pair
(g, k) 14 is of height 0 (in g), four subalgebras k of pairs 2,4,7,15 are of height 2, while
the remaining are of height 1.
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