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Abstract. For the first time in dimension 9, the Goursat distributions are not locally smooth-
ly classified by their small growth vector at a point. As shown in [M1], in dimension 9 of
the underlying manifold 93 different local behaviours are possible and four irregular pairs of
them have coinciding small growth vectors. In the present paper we distinguish geometrically
objects in three of those pairs. Smooth functions in three variables – contact hamiltonians in
the terminology of Arnold, [A] – help to do that. One pair of models, however, resists this
technique. Another example of similar resistance in dimension 10 is also given – through the
exact classification in dimension 10 of one family of local pseudo-normal forms (with redundant
real constants) for Goursat objects. The latter result is an harbinger of more general phenomena
that will be treated in a subsequent paper.

1. Introduction. For any geometric distribution D (a subbundle of the tangent bun-
dle) on a given smooth manifold M we set D1 = D, D2 = D+ [D, D], . . . , Dl+1 = Dl +
[D, Dl]; D(0) = D, D(1) = D + [D, D], . . . , D(l+1) = D(l) + [D(l), D(l)]. All these are,
in general, modules of vector fields. By the small growth vector of D at p we understand
the sequence [n1, n2, n3, . . .] of dimensions at p ∈M of the flag D1 ⊂ D2 ⊂ D3 ⊂ . . .

Definition 1. Let D be a rank–2 distribution on an n-dimensional manifold. We say
that D satisfies the Goursat Condition (GC for short in the sequel) when the members of
the flag D(0) ⊂ D(1) ⊂ D(2) ⊂ . . . have at every point linear dimensions 2, 3, . . . , n−1, n.
The dual object S = D⊥ we just call a Goursat system.

This condition is sometimes also called the Cartan–Goursat condition.

Every Goursat system S on an n-dimensional manifold admits locally around any fixed
point certain Kumpera–Ruiz pseudo-normal form (see [KR] and, for newer presentations,
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[CM], [PR]), depending on that point and not unique (in general) even after fixing the
point: the germ at 0 ∈ Rn(x1, x2, . . . , xn) of (ω1, ω2, . . . , ωn−2), where

ω1 = dxi1 − x3dxj1 , (i1, j1) = (2, 1)

ω2 = dxi2 − x4dxj2 , (i2, j2) = (3, j1)

ω3 = dxi3 − x5dxj3 , (i3, j3) ∈ {(4, j2), (j2, 4)}
ω4 = dxi4 −X6dxj4 , (i4, j4) ∈ {(5, j3), (j3, 5)}

• •
ωn−2 = dxin−2 −Xndxjn−2 , (in−2, jn−2) ∈ {(n− 1, jn−3), (jn−3, n− 1)},

and where for 6 ≤ l ≤ n, X l = xl if (il−2, jl−2) = (jl−3, l − 1) and X l = xl + cl in the
opposite case of (il−2, jl−2) = (l−1, jl−3). The c6, c7, . . . , cn are certain real constants.1

Moreover, one gets locally the successive derived systems of S by always removing
the last (bottommost) Pfaffian equation.

(Throughout this paper, in contrast to [KR] and [CM], we write the forms ωl with
the − signs instead of +. The same convention was used in [G].)

We code the KR pseudo-normal forms in dimensions n ≥ 5 as in [CM], assigning to a
Pfaffian equation ωl = 0, l = 3, 4, . . . , n− 2:

1 , when the first alternative for ωl holds and cl+2 = 0,
2 , in the case of the first alternative, but cl+2 6= 0,
3 , in the case of the second alternative for ωl,

and writing those integers, when l runs through the set {3, 4, . . . , n − 2}, from left to
right, separated by dots. Specifically, we write 2 instead of 2 when the relevant constant
is 1, and 2− when it is −1.

Example 1. The germ at 0 ∈ R9(x1, x2, . . . , x9) of (ω1, ω2, . . . , ω7), where ω1 =
dx2 − x3dx1, ω2 = dx3 − x4dx1, ω3 = dx1 − x5dx4, ω4 = dx5 − (1 + x6)dx4, ω5 =
dx4− x7dx6, ω6 = dx6− x8dx7, ω7 = dx8− (c+ x9)dx7 with c = 1 (−1) is coded
3.2.3.3.2 (3 .2.3 .3 .2−, respectively). These two local models form the exceptional pair
(∗ ∗ ∗) listed in [M1], Main Theorem.

We are going to consider KR pseudo-normal forms in arbitrary dimension n ≥ 3 not as
germs at 0 but as representatives defined on the whole Rn. By an automorphism of such
a differential system S we mean any diffeomorphism g : Rn←↩ preserving S: g∗S = S.
By an infinitesimal automorphism (i. a.) of S we mean any smooth vector field on Rn

whose flow (at least for small | t |) preserves S. The set of all i. a.’s of S will be denoted
– following the tradition established in [KR], [G] and [K] – by L(S).

2. Contact hamiltonians parametrizing i. a.’s of KR pseudo-normal forms

2.1. Dimension 3. What are i. a.’s of the Darboux contact structure ω1 = dx2 −
x3dx1 = 0 on R3(x1, x2, x3) ? The answer was given already by S. Lie [Li]. To reproduce

1The ‘pseudo’ refers to the fact that the constants are not, in general, invariants of the local
classification.
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it here, following the exposition in [Ly] (done for contact structures in arbitrary odd
dimension, in fact), let us replace the coordinates x1, x2, x3 by the coordinates q1, u, p1

in the bundle J1(R1) of the 1-jets of scalar functions u(q1) of one variable q1, with
p1 = du

dq1 . The contact distribution (dx2−x3dx1)⊥ becomes then the Cartan distribution
C on J1(R1) 2 deciding which sections of this bundle come from genuine functions of one
variable (those that are tangent to C). All i. a.’s of C are of the form

− ∂f

∂p1

∂

∂q1
+
(
f − p1 ∂f

∂p1

)
∂

∂u
+
(
∂f

∂q1
+ p1 ∂f

∂u

)
∂

∂p1
,

where f = f(q1, u, p1) is an arbitrary smooth function. Returning to our notation and
writing ∂k for ∂/∂xk, all i. a.’s of (R3, ω1) are of the form

−f3 ∂1 + (f − x3f3) ∂2 + (f1 + x3f2) ∂3 . (1)

An arbitrary smooth function f = f(x1, x2, x3) in (1) is called a contact hamiltonian
because of a natural (and deep) interpretation in terms of the symplectization of any
given contact manifold – see [A], App. 4.

Expression (1) for i. a.’s of Darboux is used, omitting references, in [G] and [K].

2.2. Parametrization of dimension n ≥ 4 by dimension 3. We recall in this section
that when a KR pseudo-normal form S is given on Rn(x1, . . . , xn), its first derived system
S(1) is defined on Rn−1(x1, . . . , xn−1) and suspended only in the direction ∂n, according
to the information quoted in Sec. 1. In consequence, abusing notation a bit, members of
L(S(1)) are understood as vector fields on Rn−1 only.

Proposition 1 ([G], [K]). (i) Every X ∈ L(S) has all but the last coordinate func-
tions depending only on x1, . . . , xn−1. In this way, denoting by [X]1 the truncation of X
by its last coordinate function, we have [X]1 ∈ L(S(1)).
(ii) Every Y ∈ L(S(1)) has a unique prolongation [Y ]1 ∈ L(S) s. t.

[
[Y ]1

]
1

= Y .
(iii) In the situation of (i), by the uniqueness in (ii), [[X]1]1 = X.

Proof. (i). The key factor is Cor. 3.1 of [M1].3 Because of that, the flow ϕt
X of X

can be written as

ϕt
X(x1, x2, . . . , xn) = ( f1(t, x1, . . . , xn−1), . . . , fn−1(t, x1, . . . , xn−1), fn(t, x1, . . . , xn) ) .

Therefore, writing horizontally the coordinates of a vector field,

X(x1, x2, . . . , xn) =
[
d

dt
f1 |t=0, . . . ,

d

dt
fn−1 |t=0,

d

dt
fn |t=0

]
.

This shows that all but last coordinate functions of X depend only on t, x1, . . . , xn−1,
hence only on x1, . . . , xn−1, X being time-independent.

(ii). We seek prolongation(s) of Y , Y +F∂n preserving (infinitesimally) the new Pfaf-
fian equation ωn−2 = 0 modulo (ω1, . . . , ωn−3):

LY +F∂n
(ωn−2) ∈ (ω1, . . . , ωn−2 ) . (2)

2Lychagin calls du−
∑k

i=1
pidqi a classifying element on J1(Rk).

3Stated there for diffeos g preserving 0, but with the condition g(0) = 0 not used in the
proof. That fact can be, essentially, retraced already in E. Cartan’s work [C], p. 10.
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Because the new variable (in the form of xn or Xn = cn + xn) enters the new equation,
while its derivative dxn does not, equation (2) is always a linear equation for F with
leading coefficient 1. A careful inspection of the KR pseudo-normal forms shows that the
free term uses just the first derivatives of coordinate functions of Y . Instead of abstract
writing, let us analyze in detail the initial cases n = 4 and 5. The general rules of pro-
longation do not differ much from them; as a consequence, the existence and uniqueness
of F follow.

n = 4; we write Y = A∂1 +B∂2 + C∂3, and name D∂4 the term prolonging Y . Then
(2) reads

dC − x4dA−Ddx1 = (C2 − x4A2)(dx2 − x3dx1) + (C3 − x4A3)(dx3 − x4dx1) ,

implying D = C1 − x4A1 + x3(C2 − x4A2) + x4(C3 − x4A3).

n = 5; Y = A∂1 +B∂2 + C∂3 +D∂4, the prolonging term denoted now by E∂5. If S
is 1, i. e., ω3 = dx4 − x5dx1, then (2) reads

dD − x5dA− E dx1 = (D2 − x5A2)(dx2 − x3dx1) + (D3 − x5A3)(dx3 − x4dx1) +

D4(dx4 − x5dx1) ,

or else E = D1 − x5A1 + x3(D2 − x5A2) + x4(D3 − x5A3) + x5D4.
When S is 3, that is, when ω3 = dx1 − x5dx4, (2) means

dA− x5dD − Edx4 = λ(dx2 − x3dx1) + µ(dx3 − x4dx1) +

(A1 − x5D1 + λx3 + µx4)(dx1 − x5dx4) ,

where λ = A2 − x5D2, µ = A3 − x5D3. Then E = x5(A1 − x5D1 + x3(A2 − x5D2) +
x4(A3 − x5D3)−D4) (the underlined terms have been forgotten in [G], p. 725 ).

Corollary 1. Keeping a KR pseudo-normal form S fixed, every i. a. Y of the Dar-
boux system S(n−3) has its unique prolongation [Y ]n−3 ∈ L(S) s. t.

[
[Y ]n−3

]
n−3

= Y .

Each i. a. X ∈ L(S) is obtained in this way: [[X]n−3]n−3 = X by the uniqueness of the
prolongation.

Therefore, the set L(S) is parametrized – in the way depending on S – by the i. a.’s
of Darboux, hence — by smooth functions on R3 (contact hamiltonians).4

Observation 1. L(g∗S) = g−1
∗ L(S) and L(S) is a module over R. Hence dimL(S)(0)

is an invariant of the classification of germs at 0 ∈ Rn of KR pseudo-normal forms S on
Rn. We call it the symmetry dimension of the germ of S at 0.

3. Symmetry dimension of members of the exceptional couples of models
in dimension 9. Local classification of GC in dimension 9 (obtained by analytic con-
siderations) consists of 93 pairwise non-equivalent models displaying altogether only 89

4L(S) is even a Lie algebra; also the contact hamiltonians can be Poisson-multiplied because
of their coming from hamiltonians on the symplectization of (R3, ω1). Their product is called
the Lagrange bracket, cf. for inst. [Ly], 1.4.4. In the present paper, however, we do not use those
additional structures.
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different small growth vectors at 0 ∈ R9: four pairs are ‘served’ by growth vectors coin-
ciding in those pairs ([M1], Main Theorem). We mean, sticking to the labels from [M1],
the pairs:

(∗) 1 .3 .1 .2.1 and 1 .3 .1 .2.2 ,
(∗∗) 3 .1 .3 .2.1 and 3 .1 .3 .2.2 ,
(∗∗∗) 3 .2.3 .3 .2− and 3 .2.3 .3 .2 ,
(∗∗∗∗) 3 .3 .3 .2.1 and 3 .3 .3 .2.2 .

Proposition 2. (i) Symmetry dimension is an additional invariant that distinguishes
geometrically local models in pairs (∗), (∗∗), and (∗∗∗∗) above.

(ii) Members of (∗∗∗) (see Ex. 1), however, are not discernible by symmetry dimension.

Proof. (i). Having recursive formulas for the coordinate functions of i. a.’s of any KR
pseudo-normal form (cf. proof of Prop. 1), we iterate those formulas backwards, always
evaluating them at 0. In this way, we eventually express i. a.’s at 0 in terms of certain jets
at 0 ∈ R3 of contact hamiltonians. In the particular cases discussed in (i) the outcome is
the following, writing horizontally the coordinates of v. f. and denoting, from now on, by
|0 the evaluation at 0. For the pair (∗):

L(1 .3 .1 .2.1 ) |0 = {[−f3, f, f1, f11, f111, 0, 0,−3f2 − 10f13, 0] |0, f(x1, x2, x3) smooth};
L(1 .3 .1 .2.2) |0 = {[−f3, f, f1, f11, f111, 0, 0,−3f2 − 10f13,−4f2 − 13f13] |0, f smooth}.

In view of the arbitrariness of f (Cor. 1), L(1 .3 .1 .2.1 ) |0 = (∂1, ∂2, ∂3, ∂4, ∂5, ∂8). On

the other hand, because
∣∣∣∣−3 −10
−4 −13

∣∣∣∣ 6= 0, L(1 .3 .1 .2.2) |0 = (∂1, ∂2, ∂3, ∂4, ∂5, ∂8, ∂9).

Hence the symmetry dimensions are 6 and 7, respectively.
For the pair (∗∗):

L(3 .1 .3 .2.1 ) |0 = {[−f3, f, f1, f11, 0, 0, 0, 5f2 + 12f13, 0] |0, f smooth};
L(3 .1 .3 .2.2) |0 = {[−f3, f, f1, f11, 0, 0, 0, 5f2 + 12f13, 7f2 + 17f13] |0, f smooth}.

Here dim (L(3 .1 .3 .2.1 ) |0) = 5, whereas dim (L(3 .1 .3 .2.2) |0) = 6 (because
∣∣∣∣ 5 12
7 17

∣∣∣∣ 6= 0).

For the pair (∗∗∗∗):

L(3 .3 .3 .2.1 ) |0 = {[−f3, f, f1, f11, 0, 0, 0,−5f2 − 13f13, 0] |0, f smooth};
L(3 .3 .3 .2.2) |0 = {[−f3, f, f1, f11, 0, 0, 0,−5f2 − 13f13,−7f2 − 18f13] |0, f smooth}.

So, dim (L(3 .3 .3 .2.1 ) |0) = 5 and dim (L(3 .3 .3 .2.2) |0) = 6 (as
∣∣∣∣−5 −13
−7 −18

∣∣∣∣ 6= 0).

(ii). Proceeding exactly as in (i) one obtains

dim (L(3 .2.3 .3 .2−) |0) = dim (L(3 .2.3 .3 .2) |0) = 6.

Open question. How to distinguish geometrically 3 .2.3 .3 .2− from 3.2.3.3.2 ?

Remark 1. (a) It is visible that symmetry dimension is a geometric invariant (cf.
Obs. 1) just complementary to small growth vector: it takes the same values 5 and 6 on
pairs (∗∗) and (∗∗∗∗) differing by the small gr. vector. (And not only by it; (∗∗) and
(∗∗∗∗) differ due to the very elementary reason of Cor. 3.2 of [M1].)
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(b) It is to be underlined that this invariant has already been used for GC in [G]. One
of the aims of Gaspar was to distinguish, in a different way than through so-called reduced
tensors of KR, the five Kumpera–Ruiz local models in dimension 6 ([KR], p. 226 –7).

That pioneering use occurred too early, in a sense,5 if having already pointed to a
limited discernment power of the symmetry dimension alone (taking on three values in
that occurrence: 1.1 — 6, 1.3 — 5, 3.1 — 4, 3.2 — 5, 3.3 — 4).

4. The first non-trivial branch of KR pseudo-normal forms in dimension
10. We want to supply some information concerning the true status of KR pseudo-normal
forms beyond dimension 9. In dimension 10 and only among codes having just one 3 in
the beginning (the simplest non-trivial pseudo-normal KR forms), the situation resembles
the general situation with GC in dimension 9: small gr. vector is not the only invariant
and the symmetry dimension is only partially complementary to it (cf. Prop. 2). In fact,

Theorem 3. In dimension 10, here is the list of all different local models among the
KR pseudo-normal forms having a unique 3 at the beginning of the code. Small growth
vectors at 0 ∈ R10 are given in the second column, with the numbers of repetitions of
an integer shown as subscripts. Symmetry dimensions at 0 ∈ R10 are given (only when
needed) in the third column.

3 .2.1 .1 .1 .1 [2, 3, 4, 5, 6, 7, 8, 92, 10]
3 .1 .2.1 .1 .1 [2, 3, 4, 5, 6, 7, 8, 93, 10]
3 .1 .1 .2.1 .2− [2, 3, 4, 5, 6, 7, 8, 94, 10] dim(L |0) = 7
3 .1 .1 .2.1 .1 [2, 3, 4, 5, 6, 7, 8, 94, 10] dim(L |0) = 6
3 .1 .1 .2.1 .2 [2, 3, 4, 5, 6, 7, 8, 94, 10] dim(L |0) = 7
3 .1 .1 .1 .2.1 [2, 3, 4, 5, 6, 7, 8, 95, 10]
3 .1 .1 .1 .1 .2 [2, 3, 4, 5, 6, 7, 8, 96, 10]
3 .1 .1 .1 .1 .1 [2, 3, 4, 5, 6, 7, 8, 97, 10]

Proof. That the small growth vector at the origin depends – in the branch in question
– only on the place of the first 2 in the code (i. e., on the index of the first non-zero
constant in the pseudo-normal form), amounts to a simple calculation. When that first
non-vanishing constant is NOT c8, its normalization to 1, and reductions to 0 of the
constants appearing after it, go in a way similar to [CM] (Thm. 27) and [M1] (Lemmas
[32111], [31211]).

For c8 6= 0, however, it is otherwise. The subsequent constant c9 can be annihilated by
[M1], Lem. [31121], while the last constant c10 hides an obstacle. It can only be reduced,
when keeping already c8 = 1 and c9 = 0, to exactly one of the values −1, 0, 1 (see the list
of proposed local models in Thm. 3). We will start (1o) with the possibility of reduction
(simple), then proceed (2o) to the non-equivalence of the three produced values of c10

(difficult).
As for the symmetry dimension in these exceptional cases, its computation is much

similar to the calculus done in Sec. 3. The results are written in the theorem table – the

5Small gr. vector is the only local invariant of GC up to dimension 8 inclusive, as has later
been shown in [CM].
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symmetry dimension distinguishes 0 from −1 and 1, whereas the last two values are not
discernible by this tool.

1o. A reduction of a non-zero c10 = c to sgn(c) is straightforward by passing to the
bar variables:

x10 = |c | x10, x9 = |c | 12 x9, x4 = |c |− 1
2 x4, x8 = x8, x7 = |c |− 1

2 x7

x6 = |c |−1 x6, x5 = |c |− 3
2 x5, x1 = |c |−2 x1, x3 = |c |− 5

2 x3, x2 = |c |− 9
2 x2 .

This change of coordinates preserves all but the last Pfaffian equations of the KR writing
of 3.1.1.2.1.2, while that last equation assumes the form

dx9 − (c+ x10)dx4 =
√
|c |dx9 − c+ | c | x10√

| c |
dx4 =

√
|c |
(
dx9 − (sgn(c) + x10)dx4

)
.

2o. The values −1, 0, and 1 of c10 are mutually non-equivalent.
In a rigid situation of keeping c8 = 1 and c9 = 0 fixed, we try to conjugate two a

priori arbitrary values c and c̃ of the constant c10.
The distributions D, D̃ dual to the KR pseudo-normal forms in question are spanned

by (X, Yc) and (X, Yc̃), where X = ∂10 and, in matrix notation (T – transpose),

Ya
T =

[
x5, x3x5, x4x5, 1, x6, x7, 1 + x8, x9, a+ x10, 0

]
.

For any diffeo g : (R10, 0)←↩ sending D to D̃, the linear subdistribution (X) common
for D and D̃ is preserved by g (a basic fact, used already in the proof of Prop. 1).
Therefore, for certain functions f̄ and h̄, f̄ |0 6= 0,

g∗Yc = f̄Yc̃ + h̄X .

Taking this identity at g(x) instead of x gives

Dg(x)Yc(x) = f(x)Yc̃(g(x)) + h(x) ∂10 (3)

for f = f̄ ◦ g, h = h̄ ◦ g; f |0 6= 0. At that, writing g = (g1, g2, . . . , g10), g1, g2, g3

depend only on x1, x2, x3, and for l ≥ 4 gl depends on x1, x2, . . . , xl (cf. [M1], Cor. 3.1 ).
Moreover,

g5(x1, . . . , x5) = x5G(x1, . . . , x5) (4)

for some function G, because the hypersurface E = {x5 = 0 } can be characterized in
invariant terms simultaneously for D and D̃. In fact, a short calculation shows that both
D and D̃ have at points of E the small gr. vectors of the type [2, 3, 4, 5, 6, 7, 8, 9, 9,. . .]
and off E – just the small vector [2, 3, 4, 5, 6, 7, 8, 9, 10]. The preserving of E means
g5(x1, x2, x3, x4, 0) = 0 identically, or else (4).

In the sequel we shall write simply gl
k for ∂gl

∂xk . For instance, the inequality ∂gl

∂xl |0 6= 0
will henceforth be denoted gl

l |0 6= 0.
Equating the coefficients of ∂9 in (3) (later we just say ‘taking scalar equation ”9” of

(3)’ ) and evaluating the result at 0, a cardinal relation linking c and c̃ reads

f−1(g9
4 + g9

7 + cg9
9) |0 = c̃ .
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Claim. g9
9 |0 = f−1 |0 .

Proof. In view of (4), eq. ”5” of (3) means

g6 = f−1
(

(x5)2G1 + x3(x5)2G2 + x4(x5)2G3 + x5G4 + x6(G+ x5G5)
)
,

implying

g6 ∈ (x5, x6) (†)

( (x5, x6) means the ideal in F10
0 generated by the functions x5 and x6 ). In turn, eq. ”6”

of (3) gives g7 in function of f and g6. In fact, by (†),

g7 ≡ f−1(x6g6
5 + x7g6

6) mod (x5, x6) ,

yielding

g7 ∈ (x5, x6, x7) . (††)

Observe also that g9 can be expressed by f and g8 (eq. ”8” of (3)), while g8 gets expressed
( eq. ”7” of (3) ) by g7 and again f as follows:

1 + g8 = f−1
(
x5g7

1 + x3x5g7
2 + x4x5g7

3 + g7
4 + x6g7

5 + x7g7
6 + (1 + x8)g7

7

)
. (5)

Evaluating this at 0, with (††) implying g7
4 |0 = 0, one gets an important piece of infor-

mation

f−1g7
7 |0 = 1 . (6)

As for f , it is explicitly given by eq. ”4” of (3) and visibly depends only on x1, . . . , x5:

f = x5g4
1 + x3x5g4

2 + x4x5g4
3 + g4

4 . (7)

Now that we have (5) through (7), we can compute: g9
9 |0 = f−1g8

8 |0 = f−1 ·f−1g7
7 |0 =

f−1 |0 . Claim is proved.
In view of Claim, the relation linking c and c̃ assumes the form

f−1(g9
4 + g9

7) + cf−2 |0 = c̃ . (8)

4.1. Basic Lemma. g9
4 + g9

7 |0 = 0 .

Proof. The fact that c8 = 1 and c9 = 0 are preserved by g means

g7
4 + g7

7 |0 = f |0 , g8
4 + g8

7 |0 = 0 . (a)

On using (5) and (7) for computing g8
7 |0, and – additionally – the first identity in (a)

in computing g8
4 |0, the second identity in (a) assumes the form

− f4 + g7
6 + 2g7

47 |0 = 0 . (b)

Continuing in this way, writing g7 in terms of g6 and f (eq. ”6” of (3)), one arrives from
(b), after a computation, at

− 3f4 + f−1g6
5 + 3f−1g6

46 |0 = 0 . (c)

What we eventually need is a relation between f and G. As g6 can be written in terms of
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f and g5 (eq. ”5” of (3)), another calculation leads from (c) to the (important) identity

− 3f4 + 2f−2G4 |0 = 0 . (d)

Now, putting x5 = x6 = x8 = x9 = 0 when computing the expression in Basic Lemma
(i.e., working with f−1(g8

4 + x7g8
6 + g8

7) instead of g9),

g9
4 |0 = − f4f−2( g8

4 + g8
7︸ ︷︷ ︸

= 0 by (a)

) + f−1(g8
44 + g8

47) |0 , g9
7 |0 = f−1(g8

47 + g8
6 + g8

77) |0 ,

so that we have so far

g9
4 + g9

7 |0 = f−1(g8
6 + g8

44 + 2g8
47 + g8

77) |0 . (9)

Given the summands to-be-computed in (9), we can put x5 = x8 = 0, i. e., replace g8 by
−1 + f−1(g7

4 + x6g7
5 + x7g7

6 + g7
7). In the course of computations we take into account

certain side facts such as g7
44 |0 = g7

444 |0 = g7
77 = 0 (caused by (††) and g7 being affine

wrt x7). As a result, g8
77 |0 = 2f−1g7

67 |0 , g8
6 |0 = f−1(g7

46 + g7
5 + g7

67) |0, and, using
also the first identity in (a),

g8
44 |0 = (f−1)44f + 2(f−1)4g7

47 + f−1g7
447 |0

= − f−1f44 + 2f−2(f4)2 − 2f−2f4g
7
47 + f−1g7

447 |0 ,

g8
47 |0 = − f−2f4(g7

47 + g7
6) + f−1(g7

447 + g7
46) .

Summing up the above,

g8
6 + g8

44 + 2g8
47 + g8

77 |0 =

f−1(3g7
46 + g7

5 + 3g7
67 − f44 + 3g7

447 − 2f−1f4(− f4 + g7
6 + 2g7

47)) |0 = 0 .

Therefore, by (9) and (b)

g9
4 + g9

7 |0 = f−2(3g7
46 + g7

5 + 3g7
67 − f44 + 3g7

447) |0 . (10)

One repeats, basically, the above procedure when reducing the RHS of (10) to g6. Firstly,
g7

7 |0 = f−1g6
6 |0, or else, by (a) and (††),

g6
6 |0 = f2 |0 . (e)

In turn, g7
5 |0 = f−1g6

45 |0, g7
67 |0 = f−1g6

66 |0 = 0 (g6 affine wrt x6),

g7
46 |0 = − f−2f4(g6

46 + g6
5) + f−1(g6

446 + g6
45) |0 ,

g7
447 |0 = (− f−2f44 + 2f−3(f4)2)g6

6 − 2f−2f4g
6
46 + f−1g6

446 |0
by (e)

= − f44 + 2f−1(f4)2 − 2f−2f4g
6
46 + f−1g6

446 |0
Summing up,

3g7
46 + g7

5 + 3g7
67 − f44 + 3g7

447 |0 =

f−1(4g6
45 + 6g6

446 − 4ff44 − 3(f4)2 − 3f4(− 3f4 + f−1g6
5 + 3f−1g6

46)) .

Therefore, by (10) and (c),

g9
4 + g9

7 |0 = f−3(4g6
45 + 6g6

446 − 4ff44 − 3(f4)2) |0 . (11)

Clearly, the RHS of (11) can be reduced down to g5 = x5G. Firstly g6
6 |0 = f−1G |0, or

else, by (e),



228 P. MORMUL

G |0 = f3 |0 . (f)

Secondly, g6
45 |0 = (f−1G4)4 |0 = − f−2f4G4 + f−1G44 |0. Thirdly,

g6
446 |0 = (f−1G)44 |0 = (− f−2f44 + 2f−3(f4)2)G− 2f−2f4G4 + f−1G44 |0.

Taking (f) into account and summing up,

4g6
45 + 6g6

446 − 4ff44 − 3(f4)2 =

f−1(10G44 − 10f2f44 + 9f(f4)2 − 24f(f4)2 − 8ff4(− 3f4 + 2f−2G4)) |0 .

Therefore, by (11) and (d),

g9
4 + g9

7 |0 = f−4(10G44 − 10f2f44 − 15f(f4)2) |0 . (12)

Now G can be eliminated from the RHS of (12). fG is only affine wrt x4, so 0 = (fG)44 =
f44G+2f4G4 +fG44. This, (d), and (f) yield G44 |0 = − f2f44−3f(f4)2 |0. Substituting
to (12),

g9
4 + g9

7 |0 = − 5f−3(4ff44 + 9(f4)2) |0 . (13)

The RHS of (13) can be further simplified using (7): the derivatives of f entering (13)
can be expressed by those of

g4 =
fGg4

fG
=
A(x1, x2, x3) +B(x1, x2, x3)x4

C(x1, x2, x3) +D(x1, x2, x3)x4
.

Remark 2. i). A |0 = A+B x4 |0 = fGg4 |0 = 0 .
ii). C |0 = fG |0 6= 0 .

iii). f |0 = g4
4 |0 =

BC −AD
C2

|0 =
B

C
|0 by i).

iv). B |0 6= 0 by iii).

v). f4 |0 = g4
44 |0 = − 2

BD

C2
|0 .

vi). f44 |0 = g4
444 |0 = 6

BD2

C3
|0 .

vii). G |0 =
C2

B
|0 (by ii) and iii)).

By Rem. 2 ( (iii), (v), and (vi) ) 4ff44 |0 = 24
B2D2

C4
|0 = 6(f4)2 |0 and (13) boils

down to

g9
4 + g9

7 |0 = − 75f−3(f4)2 |0 . (14)

On the other hand, G =
fG

f
=

C +Dx4

g4
4 + x5(?)

(see (7)). Hence, also by Rem. 2,

G4 |0 =
D

g44
− C g4

44

(g4
4)2
|0 =

CD

B
− C

(
−2

BD

C2

)(
C

B

)2

|0 = 3
CD

B
|0 .

Approaching the end, we are going to obtain a formula alternative to (d) for G4 |0. The

identity (f) reads now (see (iii) and (vii) of Rem. 2)
C2

B
|0 = (

B

C
)3 |0, or else

B4 |0 = C5 |0 . (g)
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Therefore,

3
CD

B
|0 = 3

(
B

C

)2
BC3D

B4
|0

by (g)
= 3

(
B

C

)2
BC3D

C5
|0 = − 3

2

(
B

C

)2(
−2

BD

C2

)
|0.

That is, by (iii) and (v) of Rem. 2,

G4 |0 = − 3
2f

2f4 |0 . (h)

Finally, (d) and (h) together give f4 |0 = 0 and Basic Lemma follows from (14).

4.2. Concluding part of the proof of Thm. 3. In view of Basic Lemma, because of the
factor f−2 |0 in (8), the values −1, 0, and 1 of c10 are mutually non-equivalent as asserted
in 2o.

The assessment of classes of local equivalence among the KR pseudo-normal forms
3.1.1.2. (1 or 2).(1 or 2), all covered by the small gr. vector [2, 3, 4, 5, 6, 7, 8, 94, 10], is
now finished. Thm. 3 is proved.

Addendum. A result obtained after the submission of the present paper underlines
clearly a special role of the constant c10 in the whole branch of KR pseudo-normal forms
3.1.1.2.1.(1 or 2).(1 or 2). . . in dimensions from 11 onwards. (In this notation c8 is
already normalized to 1 and c9 is annihilated – cf. the beginning of the proof of Thm. 3.)
Namely, in every dimension n > 10, any such given KR local form is equivalent to
exactly one of the following local models: 3 .1 .1 .2.1 .2−. 1 .1 . . . 1︸ ︷︷ ︸

n−10

, 3 .1 .1 .2. 1 .1 . . . 1︸ ︷︷ ︸
n−8

,

3 .1 .1 .2.1 .2. 1 .1 . . . 1︸ ︷︷ ︸
n−10

. That is, all subsequent constants in this branch are reducible to

0, i.e. are not important. A proof will be included in a paper in preparation (cf. Section 9
of [M2]).
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