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Abstract. We study the group of diffeomorphisms of a 3-dimensional Poisson torus which
preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.

1. Introduction. A scaling vector field on a Poisson manifold (M,π) is a vector
field X such that the Lie derivative LXπ is a constant multiple of π. The set of all these
vector fields forms a Lie algebra L = L(M,π) containing the Poisson vector fields L0 as
an ideal. The quotient L/L0 has dimension 1 if π is exact and dimension 0 otherwise. If
we think of L and L0 as Lie algebras of infinitesimal transformations, the corresponding
groups of finite transformations are the self-similarities G, i.e. the diffeomorphisms of M
which preserve π up to a constant multiplier, and the normal subgroup G0 of Poisson
automorphisms. The quotient G/G0 is naturally isomorphic to the scaling group S(M,π),
the subgroup of the nonzero real numbers consisting of the possible similarity ratios (i.e.
multipliers). By convention, the similarity ratio for any self-similarity of π = 0 is declared
to be 1.

The scaling group of R2n with the standard symplectic structure is all of R×. For a
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compact symplectic manifold, the scaling group is constrained by the finiteness of volume
to be either {1} or {−1, 1}. Iglésias [1] showed that the scaling groups are countable
for nonexact symplectic manifolds. For general Poisson manifolds, scaling groups were
introduced and discussed, with somewhat different names and notation, in Section 10
of [7] and Section 5 of [8] in connection with related quantum constructions. They are
also related, though somewhat distantly, to the “von Neumann fundamental groups” of
operator algebras (see the discussion in [5]).

In this paper, we study constant (i.e. translation-invariant) Poisson structures on the
3-dimensional torus and show that their scaling groups are finitely generated subgroups
of R× having rank 0, 1, or 2.

As in Iglésias and Lachaud’s study of singular “irrational tori” [2], we use homology
theory to reduce the problem from geometry to linear algebra. We prove a result (Lemma
1 below) in elementary linear algebra (replacing some of the considerations in Section 2
of [2]), and then apply the Dirichlet unit theorem. We check and refine the results by
direct calculation in several examples.

An alternative approach to finding centralizers in SL3(Z) would be to use results of
Prasad and Raghunathan [4] on Cartan subgroups of algebraic groups. We do not pursue
this approach here.

Acknowledgments. We dedicate this paper to the memory of our friend Stan Za-
krzewski. We thank Ken Ribet, Klaus Schmidt and Dimitry Shlyakhtenko for helpful
discussions. Mikami would also like to thank the University of California at Berkeley
for hospitality while he was a visiting scholar from April 1997 till March 1998, and the
Banach Center at Warsaw for hospitality and support during his two week stay there in
August 1998.

2. Invariant geometry on the 3-torus. As a basis for the constant vector fields on
the torus T3 we take the coordinate vector fields ∂1, ∂2, and ∂3; the naturally associated
basis for the constant bivector fields is ∂∗i = ∂i+1∧∂i+2 (indices modulo 3). For a constant
Poisson structure π =

∑
ai∂
∗
i , the symplectic leaves are the integral manifolds of the

1-form
∑
aidxi. They are 2-tori, cylinders, or planes according to whether the rational

vector space Qa1 + Qa2 + Qa3 has dimension 1, 2, or 3. We will refer to this dimension
as the class of the Poisson structure π.

For a structure of class 1, the symplectic leaves all have the same finite volume, from
which it follows that S is contained in {−1, 1}. In fact, when the class is 1, some real mul-
tiple of (a1, a2, a3) has relatively prime integer entries. This 3-vector can be taken as one
column of a matrix in GL3(Z), which defines an automorphism of the torus transforming
π into a multiple of ∂2 ∧ ∂3. The map (x1, x2, x3) 7→ (x1, x2,−x3) is then a self-similarity
with similarity ratio −1. Thus the scaling group S is equal to {−1, 1} for any structure
of class 1. In particular, any such structure is reversible in the sense that −1 belongs to
the scaling group. The group G itself is quite large; it is the semidirect product of the
diffeomorphisms of the circle of symplectic leaves (all contained in G0) by the group of
maps from the circle to the area preserving diffeomorphisms of a 2-torus (containing in
particular the constant map to (x2, x3) 7→ (x2,−x3)). It is an extension of G0 by Z2.
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Having disposed of the class 1 case, we will henceforth restrict our attention to struc-
tures of classes 2 and 3, which are much more rigid by virtue of the density of their
symplectic leaves. In fact, each such structure is uniquely unimodular in the sense that
it admits an invariant measure which is unique up to a constant multiple. According
to Section 9 of [6], a uniquely unimodular Poisson manifold (M,π) with finite invariant
volume admits a well defined normalized fundamental cycle [π] in H2(M,R). If φ is a
self-similarity of (M,π) with similarity ratio ρ, then the induced map [φ]2 on the second
homology satisfies [φ]2([π]) = ρ[π], i.e. [π] is an eigenvector of [φ]2 with eigenvalue ρ.

To apply the general ideas above to the case of the 3-torus, we will use the natural
identifications (valid for any torus)

H2
∼= (H2)∗ ∼= (constant 2-forms)∗ ∼= constant bivector fields,

under which the fundamental class [π] becomes identified with π itself. Also, [φ]2 is the
second exterior power ∧2[φ]1 of the induced map on H1

∼= constant vector fields. Finally,
we identify H1 and H2 with R3, so that [φ]1 and [φ]2 are represented by 3×3 matrices B
and A respectively, which belong to GL3(Z). In fact, in dimension 3, A = ∧2B is simply
the classical adjoint (detA)(tA)−1, which belongs to SL3(Z). (In other words, the second
exterior power of a 3-dimensional vector space carries a natural orientation!) We also
note that the map A 7→ (detA)(tA)−1 is surjective with kernel {−I, I}.

As a consequence of this analysis, we have the following reduction of our problem for
classes 2 and 3.

Definition 1. The projective stabilizer of a vector a ∈ Rn is the subgroup of SLn(Z)
having a as an eigenvector; i.e. it is the stabilizer SLn(Z)<a> of the line < a > through
a for the action of SLn(Z) on RPn−1. The group of possible eigenvalues (naturally
isomorphic to the quotient of the projective stabilizer by the stabilizer SLn(Z)a of a
itself) is the scaling group S(a) ⊆ R× of a.

Proposition 1. Let π =
∑
ai∂
∗
i be a Poisson structure of class 2 or 3 on T3. Then

S(T3, π) = S(a1, a2, a3).

The question of reversibility is rather easily disposed of.

Proposition 2. A Poisson structure is reversible if and only if it is of class 1 or 2.

Proof. We have already seen that a structure of class 1 is reversible. Supposing now
that the structure is of class 2 or 3, we will apply Proposition 1. If −1 is an eigenvalue
of A ∈ SL3(Z) with eigenvalue −1, then the kernel of the integer matrix A + I has a
basis of rational eigenvectors. If −1 is a simple eigenvalue, any eigenvector is a multiple
of a rational vector, and the corresponding Poisson structure is of class 1. If −1 is a
double eigenvalue, then the third eigenvalue must be 1 since A is unimodular. There is
an eigenvector for the eigenvalue 1 with rational entries, and hence one with relatively
prime integer entries. It follows that A is conjugate in SL3(Z) to a matrix of the form

A =

 1 a b

0 c d

0 e f

 .
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Since −1 is still a double eigenvalue, the matrix must in fact have the form

A =

 1 a b

0 −1 0
0 0 −1

 .
Now we may assume (using the torus automorphism corresponding to the conjugating

matrix) that A had this triangular form to begin with. If (x, y, z) is an eigenvector with

eigenvalue −1, then x = −1
2

(ay + bz); since a and b are integers, the corresponding
Poisson structure is of class 1 or 2.

For the converse, assuming that the Poisson structure has class 2, its cylindrical
symplectic leaf contains a circle which can be transformed by an element of SL3(Z) to
the standard “first coordinate circle.” This means that a = (0, a2, a3), which is reversed
by the matrix

A =

 1 0 0
0 −1 0
0 0 −1

 .
3. An algebraic lemma. The analysis of class 2 structures in the proof above im-

plies that the scaling group of such a structure is equal to the scaling group of a vector in
R2 for the action of GL2(Z). Thus the structures of class 2 and class 3 can be studied in
a very similar way. The following lemma will be useful in both cases. Although it could be
derived from the results in Section 2 of [2], we prefer to give a direct, elementary proof.

Lemma 1. Assume that the characteristic polynomial of A ∈ GLn(Z) is irreducible
over Q. If B ∈ GLn(Z) has at least one eigenvector in common with A, then B has the
same eigenvectors as A and is a rational polynomial in A, in particular, AB = BA.

Furthermore, if B has a rational eigenvalue, then B is a scalar matrix, and hence,
B = kI for some k ∈ {±1}.

Proof. If λ is an eigenvalue of A, the last row of A − λI is a linear combination of
the others, so to find an eigenvector

t [x1 · · ·xn]

it suffices to solve the system a11 − λ · · · a1n′

...
. . .

...
an′1 · · · an′n′ − λ


 x1

...
xn′

 = −xn

 a1n

...
an′n

 (1)

where n′ = n− 1.
Since the characteristic polynomial of A is irreducible, λ is not a root of any polynomial

of degree n′, so

D :=

∣∣∣∣∣∣∣
a11 − λ · · · a1n′

...
. . .

...
an′1 · · · an′n′ − λ

∣∣∣∣∣∣∣ 6= 0.
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Taking xn = D in (1), we get by Cramer’s rule a unique solution vector whose entries
are polynomials of degree n − 1 in λ and the matrix entries aij . (The last entry of the
solution is xn = D.) It follows that we get an eigenvector of the form

t [p1(λ) · · · pn′(λ)pn(λ)]

where the same polynomials pj ∈ Z[x] work for all the eigenvalues λi of A. Thus, an
eigenvector for each λi is given by

ei = t [p1(λi) · · · pn(λi)] .

Now let B ∈ GLn(Z) have ei as an eigenvector for some i. The eigenvector condition
can be written as (Bei) ∧ ei = 0, which when written in terms of the pj ’s is a set of(
n
2

)
polynomial equations with integer coefficients, of degree (2n − 2), all satisfied by

λi. Since any polynomial with integer coefficients having λi as a root is divisible by the
(irreducible) characteristic polynomial of A, such a polynomial has all of the λj

′s as roots;
hence Bej ∧ ej = 0 for each j, and each ej is an eigenvector for B. Thus B commutes
with A.

To show that B ∈ Q[A], we note first that at least one pj is not identically zero
and hence, since its degree is less than n, has no λi as a root. The eigenvalue equation
Bej = ρjej implies that ∑

Bjkpk(λi) = ρipj(λi),

so ρi =
∑
Bjkpk(λi)/pj(λi) is a rational function q/r of λi with integer coefficients

independent of i. Hence B = q(A)/r(A), and since Q[A] is a field (the minimal polynomial
of A being irreducible), B ∈ Q[A].

Finally, if some ρi is rational, the polynomial q − ρir has rational coefficients and
degree n−1, and has λi as a root, so q−ρir is identically zero, and hence q/r is constant,
so all ρi are equal, and B is a scalar matrix.

4. Structures of class 3. Let π =
∑
ai∂
∗
i be a Poisson structure of class 3, and

suppose that S(a1, a2, a3) is nontrivial; i.e. Aa = ρa for some a ∈ SL3(Z), ρ 6= 1. If A
had a rational eigenvalue, it would have to be ±1, and then A would have class 1 or 2, so
we can assume that the characteristic polynomial of A is irreducible over Q. By Lemma
1, the projective stabilizer of A consists of those matrices in SL3(Z) which are rational
polynomials in A. That is, if B ∈ SL3(Z) shares one of the eigenvectors of A, Lemma 1
implies that

B = (r0I + r1A+ r2A
2)/r3

for some integers r0, r1, r2 and r3 6= 0, so that B belongs to the field Q[A] generated by
A, which is an algebraic number field. Since we assume that B ∈M3Z, its characteristic
polynomial has integer coefficients, and hence B is an algebraic integer. From the defini-
tion (see [3]) of the norm operator N of the number field Q[A] as a product of conjugates,
we have

N(B) =
3∏

j=1

(r0 + r1λj + r2λj
2)/r3 .
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Since A and B are simultaneously diagonalizable, (r0 + r1λj + r2λj
2)/r3 (j = 1, 2, 3) are

the eigenvalues of B, so
∏3

j=1(r0+r1λj +r2λj
2)/r3 = det(B), and we get N(B) = det(B).

Thus, our B ∈ SL3(Z) is a unit with norm 1.
According to Dirichlet’s Theorem on the units in number fields [3], the group of units

is U × Zr+s−1 where

r = the number of real roots of χA, 2s = the number of complex roots of of χA

and U ={roots of 1 in the number field}. Since the degree of the characteristic polynomial
is 3 (and so odd), the finite cyclic group U is just {±1}. If we assume that the eigenvalues
of A are all real, the rank of the group of units is 2. If a generator g of the free abelian group
has norm −1, then −g is a generator of norm 1. Thus, we can get a set of generators of
norm 1. Since norm 1 is equivalent to determinant 1, the arrive at the following description
of the scaling group of a Poisson structure of class 3.

Proposition 3. Let A ∈ SL3(Z) be diagonalizable with (real) irrational eigenvalues.
The subgroup of B ∈ SL3(Z) which shares one fixed eigenvector e of A is written as
{PmQn | m,n ∈ Z}, where P,Q ∈ SL3(Z) are given by rational polynomials of A as

P =
p0I + p1A+ p2A

2

p3
, Q =

q0I + q1A+ q2A
2

q3
.

The set S of eigenvalues is equal to {ρ1
mρ2

n | m,n ∈ Z} where

ρ1 =
p0λ+ p1λ+ p2λ

2

p3
, ρ2 =

q0λ+ q1λ+ q2λ
2

q3
.

Remark 1. We know of no general way to specify P and Q. The problem is close to
that of determining which algebraic integers in Q[A] are matrices with integer entries.
Here are two examples.

(1) Take the matrix A =
[

3 1 0

1 1 1

0 1 2

]
. As generators of the group of units, we can take

g1 = −3I + A and g2 = 2I − A. Then we may set P = g1 and Q = g2. We see that
A = P−2.

(2) Take A =
[

3 2 3

2 −1 −1

−2 −2 −3

]
. As generators of the group of units, we can take (A− I)/2

and (−A− I)/2. They are not integer matrices, and we have to set

P = ((A− I)/2) ((−A− I)/2)2 = A and

Q = ((A− I)/2)4 ((−A− I)/2) = (3A2 − 8A− I)/2.

We consider next the case where two eigenvalues of A are non-real. In this case, the
group of units is free of rank 1, and we get a result similar to that in Proposition 3.

Proposition 4. Let A ∈ SL3(Z) have one irrational and two non-real eigenvalues.
Let e be a eigenvector for a non-real eigenvalue, and consider the Poisson structure π

given by π =
√
−1e ∧ e. The subgroup G of B ∈ SL3(Z) with the property

∧2(B)(π) = ρπ
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is written as {Pm | m ∈ Z}, where P ∈ SL3(Z) is a rational polynomial in A:

P =
p0I + p1A+ p2A

2

p3
.

The set S of eigenvalues is equal to {ρm | m ∈ Z} where

ρ =
p0λ+ p1λ+ p2λ

2

p3

and λ is the real eigenvalue of A.

Remark 2. (1) Take the matrix A =
[

1 1 1

1 1 0

−1 0 −1

]
. As generator of the group of units,

we can take A itself and G = {Am | m ∈ Z}.

(2) Take A =
[

0 0 1

1 0 −8

0 1 0

]
. As generator of the group of units, we can take (A2 − 2A +

2I)/5, which is not a Z-matrix, and A =
(
(A2 − 2A+ 2I)/5

)2
. Now we see that

G = {Am | m ∈ Z}.
(3) If we start with A2 for A in (2), then G is generated by A, not by A2.

5. Structures of class 2. The analysis of structures of class 3 is similar to that for
class 3, except that we only need to consider 2× 2 matrices. The relevant number field is
now quadratic, and our conclusion is the following.

Proposition 5. If a Poisson structure of class 2 is a nontrivial eigenvector for a
matrix A ∈ SL3(Z), then the scaling group of this structure has the form {±(ρk)m |
m ∈ Z} where ρ = (r0 + r1λ)/r2 is the fundamental unit of the number field Q[λ] of
λ2 − (traceA− ε)λ+ ε = 0 and k is some integer.
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