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Abstract. We obtain conditions under which a submanifold of a Poisson manifold has an
induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21]
and the Poisson structures on the phase space of a mechanical system with kinematic constraints
of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi
manifold are briefly sketched.

1. Introduction. Let (P,Λ) be a Poisson manifold, and D be a submanifold of P .
In [21], A. Weinstein indicates two different cases in which there exists on D a Poisson
manifold structure naturally induced by the Poisson structure of P . Let us recall these
two cases.

First case. The submanifold D of P is called a Poisson submanifold of the first kind
if, for each x ∈ D,

TxD ⊃ Cx = Λ](T ∗xP ).

We have denoted by Λ] : T ∗P → TP the vector bundle map associated with the Poisson
tensor Λ, defined by

〈β,Λ]α〉 = Λ(α, β),

where α and β are two elements of T ∗P which belong to the same fibre. The Poisson
tensor ΛD of D is such that, for each x ∈ D, and each η and ζ ∈ T ∗xD,

ΛD(η, ζ) = Λ(η̂, ζ̂),

where η̂ and ζ̂ are elements of T ∗xP , i.e., linear forms on TxP whose restrictions to the
subspace TxD of TxP are equal to η and to ζ, respectively. That definition makes sense
since Λ(η̂, ζ̂) depends only on the restrictions of η̂ and ζ̂ to TxD.
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Geometrically, a Poisson submanifold of the first kind of (P,Λ) is a submanifold whose
intersection with each symplectic leaf of (P,Λ) is an open subset of that leaf.

Second case. The submanifold D of P is called a Poisson submanifold of the second
kind if, for each x ∈ D,

TxP = TxD ⊕ Λ](TxD
0),

where TxD
0 is the annihilator of TxD, i.e., the set of elements α ∈ T ∗xP such that

〈α, v〉 = 0 for all v ∈ TxD. For each η ∈ T ∗xD, let η̂ be the unique element of T ∗xP such
that

〈η̂, v〉 =
{
〈η, v〉 if v ∈ TxD,
0 if v ∈ Λ](TxD

0).

The Poisson tensor ΛD of D is such that, for each x ∈ D, η and ζ ∈ T ∗xD,

ΛD(η, ζ) = Λ(η̂, ζ̂).

Geometrically, a Poisson submanifold of the second kind of (P,Λ) is a submanifold of
D such that, for each symplectic leaf S of (P,Λ), the intersection D ∩ S is everywhere
transverse and is a symplectic submanifold of S.

Van der Schaft and Maschke [20] have shown that in the geometric theory of mechan-
ical systems with kinematic constraints, it is natural to introduce, on the submanifold of
the phase space of the system which corresponds to the constraint, a pseudo-Poisson ten-
sor (i.e., a two times contravariant skew-symmetric tensor), and that in some cases which
belong neither to the first, nor to the second case described above, that pseudo-Poisson
tensor is in fact a true Poisson tensor. Let us recall their main results.

Let N be a smooth manifold (the configuration manifold of the mechanical system),
L : TN → R a smooth function (the Lagrangian of the system) and C a (maybe noninte-
grable) vector sub-bundle of TN (the kinematic constraint). Let L : TN → T ∗N be the
Legendre transformation associated with the Lagrangian L. We assume that L is regular,
i.e., that L is a diffeomorphism. Let H =

(
i(Z)dL − L

)
◦ L−1 be the Hamiltonian (we

have denoted by Z the Liouville vector field on TN). Then D = L(C) is a submanifold of
T ∗N . Let Λ be the (nondegenerate) Poisson tensor on T ∗N associated with its canonical
symplectic structure dαN (we have denoted by αN the Liouville 1-form on T ∗N).

In [17], we introduced a vector sub-bundle W of the tangent bundle T (T ∗N), called
the projection bundle, which can be defined by the following procedure (equivalent to
that used in [17]). Let C0 be the annihilator of C. It is a vector sub-bundle of T ∗N . Let
q∗C0 be its pull-back by the canonical projection q : T ∗N → N . We see that q∗C0 is a
vector sub-bundle of the cotangent bundle T ∗(T ∗N), generated by the pullbacks q∗ξ of
all the sections ξ of C0, i.e., of all the 1-forms ξ on N which vanish on the sub-bundle C
of TN . The projection bundle W is defined as

W = Λ](q∗C0).

We assume that L is a classical Lagrangian, i.e., that for each x ∈ N , the restriction of
L to TxN is a positive definite quadratic form. Then it is easy to prove (see for example
[17]) that for each z ∈ D, Tz(T ∗N) splits into a direct sum,

Tz(T ∗N) = TzD ⊕Wz,
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where Wz is the fibre at z of the vector sub-bundle W . Therefore, for each z ∈ D and
each η ∈ T ∗zD, there is a unique η̂ ∈ T ∗z (T ∗N) such that

〈η̂, v〉 =
{
〈η, v〉 if v ∈ TzD,
0 if v ∈Wz.

We can then define a two times contravariant skew-symmetric tensor ΛD on D by setting,
for each z ∈ D, η and ζ ∈ T ∗zD,

ΛD(η, ζ) = Λ(η̂, ζ̂).

The tensor ΛD is the pseudo-Poisson tensor on the submanifold D of T ∗N , introduced
by Van der Schaft and Maschke. Their main result is the following theorem.

Theorem 1 (Van der Schaft and Maschke [20]). The tensor ΛD is a Poisson tensor
(i.e., the bracket of functions defined by means of that tensor satisfies the Jacobi identity)
if and only if the vector sub-bundle C of TN is completely integrable (i.e., involutive).

Several researchers (Koon and Marsden [10], Cantrijn, de León and Mart́ın de Diego
[1]) have used the pseudo-Poisson tensor of Van der Schaft and Maschke for the study
of mechanical systems with nonholonomic kinematic constraints. When C is completely
integrable, the above theorem yields an example of a Poisson submanifold D of the
(nondegenerate) Poisson manifold (T ∗N,Λ) which does not belong to the first kind, nor
to the second kind of Poisson submanifolds described above. Indeed, it does not belong
to the first kind since Λ]

(
T ∗z (T ∗N)

)
= Tz(T ∗N) is not contained in TzD; and it does not

belong to the second kind, since in general Wz is not equal to Λ](TzD
0).

We shall see in Section 2 that Van der Schaft and Maschke’s Theorem 1 is closely
related to a result due to P. Libermann [12] about the quotient of a symplectic manifold
by a suitable foliation. In Section 3, we will generalize the result of P. Libermann for
quotients of Poisson manifolds. Then in Section 4 we will obtain (Lemmas 1 and 2 and
Proposition 2) conditions under which a submanifold of a Poisson manifold has a Poisson
structure, which include the two kinds of Poisson submanifolds described by Weinstein,
as well as the new kinds of Poisson submanifolds obtained by application of the Van der
Schaft and Maschke’s theorem. Finally, in Section 5, we will look at what happens when
we replace Poisson manifolds by Jacobi manifolds.

2. Foliated symplectic manifolds. Let (M,Ω) be a symplectic manifold and F a
completely integrable sub-bundle of TM . We assume that the set of leaves M/F of the
foliation defined by F has a smooth manifold structure and that the canonical projection
π : M →M/F is a submersion. Let us recall the theorem:

Theorem 2 (P. Libermann [12]). Let orthF be the symplectic orthogonal of the vector
sub-bundle F . The three properties below are equivalent:

(i) the vector bundle orthF is completely integrable (involutive);
(ii) for every pair (f, g) of smooth functions, defined on an open subset of M , whose

differentials df and dg vanish on F , the differential d{f, g} of their Poisson bracket
vanishes on F ;
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(iii) the quotient manifold M/F has a Poisson structure for which the projection π :
M →M/F is a Poisson map.

When these equivalent properties are satisfied, the Poisson structure on M/F for
which Property (iii) is satisfied is unique.

Let us briefly sketch the proof. The vector bundle map Λ] : T ∗M → TM is a vector
bundle isomorphism which maps the annihilator F0 of F onto orthF (we have denoted by
Λ the nondegenerate Poisson tensor associated with the symplectic form Ω). Therefore,
F0 is generated by the differentials df , and orthF by the Hamiltonian vector fields Λ](df),
for all smooth functions f on open subsets of M whose differentials vanish on F . The
results follow directly from the fact that, for every pair (f, g) of smooth functions defined
on an open subset of M , we have

[
Λ](df),Λ](dg)

]
= Λ]

(
d{f, g}

)
.

Remark. Under the assumptions of Theorem 2, when both M/F and M/ orthF have
smooth manifold structures for which the canonical projections M → M/F and M →
M/ orthF are submersions, these two quotient manifolds, equipped with the Poisson
structures for which the canonical projections are Poisson maps, make a dual pair in
the sense of A. Weinstein [21]. Properties of dual pairs are thoroughly discussed by
M.V. Karasev and V.P. Maslov in their book [7], which also contains many new results
about Poisson manifolds, symplectic groupoids and applications to quantization. Dual
pairs were considered earlier by C. Carathéodory [2], under the name of function groups,
polar of each other.

Application. Let us now explain why Van der Schaft and Maschke’s Theorem 1 is
a direct consequence of Libermann’s Theorem 2. With the notations of Theorem 1, let
us first prove that the projection bundle W is always an isotropic, completely integrable
vector sub-bundle of T (T ∗N). It is generated by vector fields on T ∗N of the type Λ](q∗η),
where η is a section of C0, i.e., a 1-form on N which vanishes on C. Let (x1, . . . , xn) be a
system of local coordinates on N and (x1, . . . , xn, p1, . . . , pn) be the correspondig system
of canonical local coordinates on T ∗N . We have, locally,

η =
n∑

i=1

ηi(x1, . . . , xn)dxi, Λ =
n∑

i=1

∂

∂pi
∧ ∂

∂xi
,

therefore

Λ](q∗η) = −
n∑

i=1

ηi(x1, . . . , xn)
∂

∂pi
,

and we see that W is isotropic. Let us now consider two sections η and ζ of C0, and the
corresponding vector fields Λ](q∗η) and Λ](q∗ζ). Their local expressions are

Λ](q∗η) = −
n∑

i=1

ηi(x1, . . . , xn)
∂

∂pi
, Λ](q∗ζ) = −

n∑
i=1

ζi(x1, . . . , xn)
∂

∂pi
,

and therefore
[
Λ](q∗η),Λ](q∗ζ)

]
= 0, since the ηi and ζi do not depend on the coordinates

p1, . . . , pn. This shows that W is completely integrable. In fact, it is easy to see that the
quotient manifold T ∗N/W , i.e., the manifold of leaves of the foliation of T ∗N defined by
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W , is simply the vector bundle T ∗N/C0, quotient of the cotangent bundle T ∗N by its
vector sub-bundle C0, annihilator of C.

Since the submanifold D has a transverse intersection with each leaf of the foliation of
T ∗N defined by W , that submanifold can be identified, at least locally, with the manifold
of leaves T ∗N/W .

Let us now determine the symplectic orthogonal of W . Let z ∈ T ∗N , and v ∈
Tz(T ∗N). We have v ∈ (orthW )z if and only if 〈q∗η, v〉 = 0 for all η ∈ C0

q(z), that
means, if and only if Tq(v) ∈ Cq(z). Therefore,

orthW = (Tq)−1(C).

Observe now that C is a completely integrable vector sub-bundle of TN if and only
if (Tq)−1(C) = orthW is a completely integrable vector sub-bundle of T (T ∗N). When
that is true, Libermann’s Theorem 2 shows that there exists on T ∗N/W a unique Poisson
structure for which the canonical projection T ∗N → T ∗N/W is a Poisson map. But we
have seen that at least locally, T ∗N/W can be identified with the submanifold D, and
under that identification, ΛD is the Poisson tensor of T ∗N/W , and therefore, is a true
Poisson tensor.

Conversely, let us assume that ΛD is a Poisson tensor. Here our proof follows closely
the original one given by Van der Schaft and Maschke [20], but in a more intrinsic,
coordinate free form. Every vector field X on N can be considered as a smooth function
on T ∗N , whose restriction to each fibre is a linear form; we will denote that function by
fX , in order to distinguish whether X is considered as a vector field or as a function.
According to well known properties (see for example [13], chapter III, exercise 17.5), the
Hamiltonian vector field Λ](dfX) on T ∗N is projectible by q : T ∗N → N , and has X as
its projection on N ; moreover, for two vector fields X and Y on N , the Poisson bracket
{fX , fY } is equal to f[X,Y ]. When the vector field X is a section of C, the corresponding
function fX is constant on each leaf of the foliation defined on T ∗Q by W . Therefore,
fX can be considered as a function on T ∗N/W . Using the direct sum deconmposition
TD(T ∗N) = TD⊕WD, we can split the Hamiltonian vector field Λ]dfX , restricted to D,
as

(Λ]dfX)|D = (Λ]dfX)D + (Λ]dfX)W ,

where in the right hand side the first term is a vector field on the submanifold D and the
second term a section of WD. Using the very definition of ΛD, we see that

Λ]
Dd
(
fX |D

)
= (Λ]dfX)D.

We observe that q : T ∗N → N , when restricted to D, is a submersion of D onto an
open subset of N . The projections on N of (Λ]dfX)D and of (Λ]dfX)|D are equal, since
the projection of the other term (Λ]dfX)W vanishes. Therefore, the projection on N of
Λ]

Dd(fX |D) is X.
Now we use the fact that ΛD is a Poisson tensor. For two sections X and Y of C, we

have [
Λ]

Dd(fX |D),Λ]
Dd(fY |D)

]
= Λ]

Dd{fX |D, fY |D}D.

Since the projections on N of Λ]
Dd(fX |D) and Λ]

Dd(fY |D) are X and Y , respectively, we
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see that the bracket [X,Y ] belongs to the projection on N of the span of Λ]
D. But it is

easy to see that the projection on N of the span of Λ]
D is C. Therefore, for every pair

(X,Y ) of sections of C, the bracket [X,Y ] is a section of C, and we conclude that C is
completely integrable.

Remark. The fact that the submanifold D of T ∗N is the image of C under the
Legendre transformation L : TN → T ∗N does not play an important role for what
regards the properties of the tensor ΛD: any submanifold of T ∗Q whose intersection
with every leaf of the foliation defined by W is transverse can be locally identified with
the quotient T ∗N/W , and therefore has the same properties as D. However, the precise
definition of D is important when we compare Λ]

Dd(H|D) with the projection on D of
(Λ]dH)|D: these two vector fieds on D would not be equal in general if D were not
the image of C by the Legendre transformation. This fact, and other properties of the
pseudo-Poisson tensor ΛD are discussed at length by Cantrijn et al. [1].

3. Foliated Poissson manifolds. We will consider in this section foliations of a
Poisson manifold whose properties generalize, in a sense, Libermann’s Theorem 2. We
will need some properties of Poisson manifolds, whose proofs may be found for example
in the book by I. Vaisman [19]. Let us recall them briefly, just to indicate the appropriate
notations and sign conventions.

Let (P,Λ) be a Poisson manifold, and Ω(P ) = ⊕kΩk(P ) be the exterior algebra of
differential forms on P . There exists on Ω(P ) a graded Lie algebra structure, for which
the bracket of a k-form η and a l-form ζ is the k + l − 1-form [η, ζ] given by

[η, ζ] = (−1)k
(
∆(η ∧ ζ)− (∆η) ∧ ζ − (−1)kη ∧ (∆ζ)

)
.

We have set ∆ = i(Λ)d−di(Λ). By definition i(Λ) is the graded endomorphism of degree
−2 of Ω(P ) such that, for η ∈ Ωk(P ) and Q ∈ Ak−2(P ) (space of (k− 2)-multivectors on
P ), 〈

i(Λ)η,Q
〉

= 〈η,Λ ∧Q〉.

The space Ω1(P ) of differential 1-forms on P is stable by that bracket, for which it is a
Lie algebra. The bracket of two differential 1-forms α and β is the differential 1-form

[α, β] = −dΛ(α, β) + L(Λ]α)β − L(Λ]β)α.

When α = df and β = dg are exact 1-forms, their bracket is related to the Poisson bracket
{f, g} by

[df, dg] = d{f, g}.

The cotangent bundle T ∗P equipped with the bracket of 1-forms on the space of its
sections is a Lie algebroid in the sense of Pradines [18], with anchor map Λ] : T ∗P → TP .
It means that when extended to sections, Λ] is a Lie algebra homomorphism and that,
for α and β ∈ Ω1(P ) and f ∈ C∞(P,R),

[α, fβ] =
(
L(Λ]α)f

)
β + f [α, β].

Let A(P ) = ⊕kA
k(P ) be the graded exterior algebra of multivectors on P . Let us

denote by [Q,R] the Schouten-Nijenhuis bracket of the two elements Q and R of A(P ),
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and by dΛ : A(P )→ A(P ) the graded endomorphism of degree 1:

dΛ(Q) = [Λ, Q].

Then dΛ is a cohomology operator, i.e., it satisfies dΛ ◦ dΛ = 0. The corresponding
cohomology is called the Lichnerowicz-Poisson cohomology of (P,Λ). When extended
naturally to sums of exterior products, the anchor map Λ] becomes an exterior algebras
homomorphism from Ω(P ) into A(P ). Moreover, Λ] is a graded Lie algebras homomor-
phism (when A(P ) is equipped with the graded Lie algebra structure defined by the
Schouten-Nijenhuis bracket) and a differntial complex homomorphism from

(
Ω(P ), d

)
into

(
A(P ), dΛ

)
. It means that, for η and ζ ∈ Ω(P ),

Λ]
(
[η, ζ]

)
=
[
Λ]η,Λ]ζ

]
, Λ](dη) = dΛ(Λ]η) = [Λ,Λ]η].

Remarks. The Lie algebra structure of Ω1(P ) was discovered by Gel’fand and Dorf-
man [6] and independently Magri and Morosi [16]. It was extended by Koszul [11] into a
graded Lie algebra structure on Ω(P ) = ⊕k∈NΩk(P ). The concept of a Lie algebroid is
due to Pradines [18], and the Lie algebroid structure of T ∗P was obtained by Coste, Da-
zord, Weinstein and Sondaz [3, 5]. The Lichnerowicz-Poisson cohomology was discovered
by A. Lichnerowicz [14].

We may now state the following result.

Proposition 1. Let (P,Λ) be a Poisson manifold, Y a vector sub-bundle of TP , Y 0

its annihilator and W = Λ](Y 0). Then W is a smooth generalized distribution on P

(which may not be of constant rank), and we have the following properties:

(i) if for every pair (α, β) of smooth sections of Y 0, the bracket [α, β] (for the Lie
algebra structure of Ω1(P )) is a section of Y 0, then W is involutive;

(ii) if for every smooth section α of Y 0, the exterior differential dα belongs to the
ideal generated by the space of smooth sections of Y 0 or, equivalently, if Y is a
completely integrable vector sub-bundle of TP , then for every smooth section X of
W , the Lie derivative L(X)Λ belongs to the ideal generated by the space of smooth
sections of W .

When Y 0 satisfies Property (i) and when, in addition, W is of constant rank, the
vector sub-bundle W is completely integrable. When in addition Y 0 satisfies Property
(ii) and when the space P/W of leaves of the foliation of P defined by W has a smooth
manifold structure for which the canonical projection π : P → P/W is a submersion,
there exists on P/W a unique Poisson structure for which π is a Poisson map.

Proof. The generalized distribution W is smooth, since it is spanned by the smooth
vector fields Λ]α, for all smooth sections α of Y 0.

Let us assume that Y 0 satisfies Property (i). For a pair (α, β) of smooth sections of
Y 0, we have

Λ][α, β] = [Λ]α,Λ]β].

Since [α, β] is a section of Y 0, [Λ]α,Λ]β] is a section of Λ]Y 0 = W . Since W is generated
by the smooth vector fields Λ]γ, for all smooth sections γ of Y 0, we see that W is
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involutive (i.e., the set of its smooth sections is closed under the bracket operation). If
in addition W is of constant rank, by Frobenius’ theorem it is completely integrable.

Let us assume that Y 0 satisfies Property (ii): for every smooth section α of Y 0, dα
belongs to the ideal generated by the space of smooth sections of α. By the covariant
version of Frobenius’ theorem, that property is equivalent to the complete integrability
of Y . Le X be a smooth section of W = Λ](Y 0). There exists (at least locally, in a
neighbourhood of each point of P ) a smooth section α of Y 0 such that X = Λ]α. Using
the properties of Poisson manifolds indicated above, we have

L(X)Λ = [X,Λ] = −[Λ, X] = −dΛX = −Λ](dα).

But dα belongs to the ideal generated by the space of smooth sections of Y 0, and the
above formula proves that L(X)Λ belongs to the ideal generated by the set of smooth
sections of Λ](Y 0), that means, by the set of smooth sections of W .

When Y 0 satisfies both Properties (i) and (ii), and when in addition P/W has a
smooth manifold stucture for which the canonical projection is a submersion, Property (ii)
shows that the tensor field Λ can be projected onto P/W . Let ΛP/W be its projection. By
well known properties of the Schouten-Nijenhuis bracket, [ΛP/W ,ΛP/W ] is the projection
of [Λ,Λ]. Since Λ is a Poisson tensor, [Λ,Λ] = 0, and therefore [ΛP/W ,ΛP/W ] = 0, which
proves that ΛP/W is a Poisson tensor. By the very definition of ΛP/W , the projection
π : P → P/W is a Poisson map.

Remark. Under the assumptions of the above Proposition, one can easily prove that
the characteristic distribution of P/W (i.e., the span Λ]

P/W

(
T ∗(P/W )

)
of Λ]

P/W ) is the
image, by the projection π : P → P/W , of Y ∩Λ](T ∗P ). Observe that it is a generalized
distibution, which may not be of constant rank.

4. On submanifolds of a Poisson manifold. We consider in this section a subman-
ifold D of a Poisson manifold (P,Λ) and a vector sub-bundle W of TDP complementary
to TD. We therefore have the direct sum decomposition

TDP = TD ⊕W.

As indicated in the Introduction, we define a two-times contravariant, skew-symmetric
tensor field ΛD on D by setting, for each z ∈ D and each η and ζ ∈ T ∗zD,

ΛD(η, ζ) = Λ(η̂, ζ̂),

where η̂ is defined by

〈η̂, v〉 =
{
〈η, v〉 if v ∈ TzD,
0 if v ∈Wz,

and where ζ̂ is defined by a similar formula.
By using a suitable tubular neighbourhood of D in P , we see that there exists a

submersion π of an open neighbourhood U of D in P , onto D, such that π|D = idD and,
for all z ∈ D,

Tzπ(v) =
{
v if v ∈ TzD,
0 if v ∈Wz.

Of course, (U, π) is not unique.
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The following lemma indicates a necessary and sufficient condition under which ΛD

is a Poisson tensor.

Lemma 1. Let iD : D → P be the canonical injection. For every pair (f, g) of smooth
functions on D, let A(f, g) be the smooth function, defined on the open neighbourhood U
of D in P , by

A(f, g) = π∗i∗D{π∗f, π∗g} − {π∗f, π∗g}.

The bilinear map A takes its values in the ideal of smooth functions on U which vanish
on D, and the tensor field ΛD is Poisson if and only if, for every triple (f, g, h) of smooth
functions on D,

i∗D({A(f, g), π∗h}+ {A(g, h), π∗f}+ {A(h, f), π∗g}) = 0.

Proof. Let us first observe that for any pair (f, g) of smooth functions on D, the
functions π∗i∗D{π∗f, π∗g} and {π∗f, π∗g} are equal on D; therefore A(f, g) vanishes on
D.

The bracket {f, g}D of two smooth functions f and g on D being defined by {f, g}D =
ΛD(df, dg) we have, for every pair (f, g, ) of smooth function on D,

{f, g}D = i∗D{π∗f, π∗g},

and therefore, for every triple (f, g, h) of smooth functions on D,

{{f, g}D, h}D = i∗D{π∗i∗D{π∗f, π∗g}, π∗h} = i∗D{A(f, g) + {π∗f, π∗g}, π∗h}.

Since the bracket of functions on U satisfies the Jacobi identity, we get after summation

{{f, g}D, h}D + {{g, h}D, f}D + {{h, f}D, g}D
= i∗D({A(f, g), π∗h}+ {A(g, h), π∗f}+ {A(h, f), π∗g}).

The result follows immediately.

The following Lemma indicates another form of the same necessary and sufficient
condition, involving the bracket of 1-forms on P .

Lemma 2. For every pair (α, β) of closed 1-forms on D, let B(α, β) be the smooth
vector field on D:

B(α, β) = Tπ ◦ Λ](π∗i∗D − id)[π∗α, π∗β] ◦ iD.

The map B is bilinear, skew-symmetric and the tensor field ΛD is Poisson if and only if,
for every triple (α, β, γ) of closed 1-forms on D,〈

γ,B(α, β)
〉

+
〈
α,B(β, γ)

〉
+
〈
β,B(γ, α)

〉
= 0.

Proof. Let f , g and h be three smooth functions on D. We have

i∗D
{
A(f, g), π∗h

}
=
〈
d(π∗h),Λ]dA(f, g)

〉
◦ iD

=
〈
dh, Tπ ◦ Λ](π∗i∗D − id)d{π∗f, π∗g}

〉
◦ iD

=
〈
dh, Tπ ◦ Λ](π∗i∗D − id)[π∗df, π∗dg]

〉
◦ iD

=
〈
dh,B(df, dg)

〉
.

Closed 1-forms on D are locally exact, and the properties involved are local. Therefore,
Lemma 2 follows directly from Lemma 1.
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Remarks. The necessary and sufficient condition indicated in Lemma 2 is clearly a
cohomology condition expressing that the map B is a cocycle with values in the vector
space of smooth vector fields on D. Unfortunately, the definition of B involves some
amount of arbitrariness (the choice of the submersion π). It would be nice to obtain a
condition without any arbitrary choice.

The conditions indicated in Lemmas 1 and 2 are necessary and sufficient, but not very
easy to handle. However, the following Proposition indicates a condition much easier to
handle, but only sufficient.

Proposition 2. If for every pair (α, β) of closed 1-forms on D, we have B(α, β) = 0,
then ΛD is a Poisson tensor field.

Proof. It is an immediate consequence of Lemma 2.

Application. As we shall see, the Poisson submanifolds of the first and second kind fo-
und by A. Weinstein, as well as the Poisson submanifolds of Van der Schaft and Maschke,
are examples of applications of Proposition 2.

Poisson submanifolds of the first kind. Let D be a Poisson submanifold of the first
kind of (P,Λ). Then for every pair (α, β) of 1-forms on D, (π∗i∗D − id)[π∗α, π∗β] ◦ iD is a
section of (TD)0. But TD contains the span of Λ] along D, therefore (TD)0 is contained
in the kernel of Λ] along D. For that reason, Λ](π∗i∗D − id)[π∗α, π∗β] ◦ iD = 0, which
implies that B(α, β) = 0.

Poisson submanifolds of the second kind. Let D be a Poisson submanifold of the
second kind of (P,Λ). Then W = Λ]

(
(TD)0

)
, and for every pair (α, β) of 1-forms on D,

Λ] ◦ (π∗i∗D − id)[π∗α, π∗β] ◦ iD is a section of W , which is the kernel of TDπ. Therefore
Tπ ◦ Λ](π∗i∗D − id)[π∗α, π∗β] ◦ iD = 0, that means B(α, β) = 0.

Poisson submanifolds of Van der Schaft and Maschke. Let D be a Poisson submanifold
of the cotangent bundle T ∗N of the type considered by Van der Schaft and Maschke.
Let us take for π the canonical projection of T ∗Q onto the quotient manifold T ∗Q/W ,
identified with D. Then for every pair (α, β) of 1-forms on D, (π∗i∗D − id)[π∗α, π∗β] = 0.
Therefore B(α, β) = 0.

5. On submanifolds of a Jacobi manifold. Let us first recall that a Jacobi man-
ifold is a smooth manifold M whose space of smooth functions C∞(M,R) is equipped
with a Lie algebra structure, the bracket {f, g} of two smooth functions f and g being
given by a local bilinear operator (it means that if f , or g, vanishes on some open subset
of M , then {f, g} vanishes on that subset). A. Kirillov [9] has shown that on a Jacobi
manifold M , there exists a smooth vector field E and a smooth two times contravariant
skew-symmetric tensor Λ such that, for every pair (f, g) of smooth functions on M ,

{f, g} = Λ(df, dg) + 〈f dg − g df,E〉. (∗)

A. Lichnerowicz [15] has shown that E and Λ must satisfy

[E,Λ] = 0, [Λ,Λ] = 2E ∧ Λ, (∗∗)
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the bracket in these expressions being the Schouten bracket. A. Lichnerowicz has shown
that conversely, if on a manifold M a smooth vector field E and a smooth two times
contravariant skew-symmetric tensor Λ satisfy (∗∗), the bracket of functions given by (∗)
satifies the Jacobi identity, and therefore defines on M a Jacobi manifold structure. The
manifold M with that structure will be denoted by (M,Λ, E).

Let (M,Λ, E) be a Jacobi manifold. We define on P = R×M a two times contravariant
skew-symmetric tensor ΛP by setting

ΛP = t

(
Λ− t ∂

∂t
∧ E

)
where t is the canonical coordinate on the factor R of R × E. A. Lichnerowicz [15] has
shown that ΛP is a Poisson tensor on P , which satisfies

[Z,ΛP ] = −ΛP , with Z = −t ∂
∂t
.

Let J1(M,R) be the bundle of 1-jets of smooth functions on M . A smooth section of
that bundle is a pair (σ, η), where σ ∈ C∞(M,R) is a smooth function and η ∈ Ω1(M)
is a smooth 1-form on M . The map

(σ, η) 7→ ω =
1
t
η − σ

t2
dt

associates, with every smooth section (σ, η) of J1(M,R), a smooth 1-form on the open
subset (R\{0}) ×M of the Poisson manifold P = R ×M . That map is injective and
its image is the set of smooth 1-forms ω on (R\{0}) × M which satisfy L(Z)ω = ω.
That image is a vector subspace of the set of smooth 1-forms which is invariant by the
bracket of 1-forms. Using that property, it is easy to prove the following theorem, due to
Y. Kerbrat and Z. Souici-Benhammadi [8]:

Theorem 3 (Kerbrat and Souici-Benhammadi [8]). Let (M,Λ, E) be a Jacobi ma-
nifold. The bundle J1(M,R) of 1-jets of smooth functions on M has a Lie algebroid
structure, with anchor map

(σ, η) 7→ Λ]η + σE,

the bracket (σ′, η′) =
[
(σ1, η1), (σ2, η2)

]
of two sections of J1(M,R) being given by the

formulae:

σ′ = −Λ(η1, η2) + i(Λ]η1 + σ1E)dσ2 − i(Λ]η2 + σ2E)dσ1,

η′ = L(Λ]η1 + σ1E)η2 − L(Λ]η2 + σ2E)η1

− 〈η1, E〉(η2 − dσ2) + 〈η2, E〉(η1 − dσ1)− d
(
Λ(η1, η2)

)
.

By using the Poisson manifold P = R × M associated with the Jacobi manifold
(M,Λ, E), it should be possible to obtain, for foliations and for submanifolds of a Jacobi
manifold, results similar to those obtained in Sections 3 and 4 for foliations and subma-
nifolds of a Poisson manifold. Let us recall in particular the result, already obtained in
[4], which generalizes Poisson submanifolds of the second kind:

Proposition 3. Let D be a submanifold of the Jacobi manifold (M,Λ, E). We assume
that, for each x ∈ D,

TxM = TxD ⊕ Λ](TxD0).
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For every 1-form η on D, we denote by η̂ the section of T ∗DM defined by

〈η̂, v〉 =
{
〈η, v〉 if v ∈ TxD,
0 if v ∈ Λ](TxD

0), with x ∈ D.

We define a vector field ED and a two times contravariant skew-symmetric tensor ΛD

on D by setting, for all 1-forms η and ζ on D,

〈η,ED〉 = 〈η̂, E〉, ΛD(η, ζ) = Λ(η̂, ζ̂).

Then (D,ΛD, ED) is a Jacobi manifold.
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