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Abstract. In this paper we describe the close relationship between invariant evolutions of
projective curves and the Hamiltonian evolutions of Adler, Gel’fand and Dikii. We also show
how KdV evolutions are related as well to invariant evolutions of projective surfaces.

1. Introduction. Consider one parameter families of projective curves φ(t, x) : R2 →
RPn−1. Consider the projective action of SL(n,R) on RPn−1. We ask ourselves the
following question: what is the most general form of an evolution on t for φ of the form

(1.1) φt = F (φ, φ′, φ′′, . . .),

invariant under the SL(n,R) action? (that is, for which evolutions does the SL(n,R)
action map solutions into solutions?). Here ′ = d

dx and t = d
dt . This question was answered

successfully in [6] where a formula was found for such a general evolution, using the
theory of differential invariance. In fact, one can easily show that any invariant evolution
of projective curves of this kind is always of the form

φt = ηI

where I is a vector of differential invariants for the action, and where η is certain nonde-
generate matrix whose columns are relative invariants. The same question can be posed
for surfaces on RPn−1, and one can take an identical approach to it.

At the beginning of this century a description of general differential invariants of
projective curves under the SL(n,R) action was given by Wilczynski in [12]. An explicit
formula for the matrix η was found in [6]. In the case of surfaces, a description of general
differential invariants of projective surfaces under the SL(n,R) action was found in [9].
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These concepts belong to the theory of Klein geometries and differential and geometric
invariants which had its high point towards the end of last century until the appearance of
Cartan’s approach to differential geometry. Differential invariants arise also in equivalence
problems, where one faces the question of equivalence of two geometrical objects under
the action of certain group. For example, given two curves on the plane, when are they
equal up to an Euclidean motion?, or up to parametrization? One tries to answer those
questions in terms of invariants, or expressions depending on the objects that do not
change upon the action. If two objects are to be equivalent, their invariants ought to
be the same. If, besides, these invariants are functions on some jet space (in the case of
curves, if they depend on the curve and the derivatives with respect to the parameter x),
then we call them differential invariants. If they classify the object up to the action of
the group so that they will generate any other differential invariant, they are called basic
differential invariants. In the case of curves on the plane under the action of the Euclidean
group, the basic differential invariant is the Euclidean curvature. For an account on the
modern state of this subject, see Olver’s book [10].

A subject which seems unrelated to this theory is the study of Hamiltonian structures
of partial differential equations, integrability and, in general, infinite dimensional Poisson
Geometry. Is to this area that the so–called Adler–Gel’fand–Dikii Hamiltonian structures
belong. They were defined originally by Adler ([1]) as a second Hamiltonian structure for
the so–called higher dimensional KdV differential equations, to be used as a tool to prove
their complete integrability. He could not prove Jacobi’s identity for these brackets, but
Gel’fand and Dikii proved it in [5]. Since then several definitions have been provided by
different authors, aiming for a more intuitive and comprehensive way of defining these
brackets than the original one. Equivalent definitions have been given by Kupershmidt
and Wilson in [7] and by Drinfel’d and Sokolov in [2]. In this hierarchy of Poisson brackets
the lowest dimensional case corresponds to the Lie–Poisson bracket on the dual of the
Virasoro algebra, the only instance in which the bracket is linear.

In this paper I give a brief description of the theory of differential invariance needed
to describe the invariant evolution (1.1), and provide its explicit formula. I will also give a
short definition of the Adler–Gel’fand–Dikii bracket, the original one of Adler. At the end
of section 2 I will explain how, surprisingly enough, these two evolutions are essentially the
same under a 1–to–1 (up to the action of SL(n,R)) correspondance between projective
curves and Lax operators. This result was conjectured in [6] and finally proved in [8].
Invariant evolutions were also linked to KdV evolutions in [11] and [13] from totally
different points of view.

In the last section, section 3, I show how, in the same fashion as is done for curves,
one can also describe invariant evolutions for projective surfaces, under the action of
SL(n,R). We focus on the case of families of maps s(t, x, y) : R3 → RPn−1, the straight
generalization of the KdV case for projective curves. We prove how, as it happens for
curves, invariant evolutions of these maps are also related to a family of Hamiltonian
evolutions: one can obtain a Lie-Poisson bracket on the dual of the Virasoro algebra on
each linear direction on the (x, y) plane. We also comment on the case of the KP equation,
one of the best known examples of complete integrability in two independent variables.
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2. Invariant evolutions of projective curves and KdV Hamiltonian evolu-
tions. Before analyzing our case we will define briefly the situation in which we will be
working. Let M me an m-dimensional manifold. Consider p-dimensional parametrized
submanifolds, u : Rp → M . Let G be an r-dimensional Lie group acting smoothly on
M (the action will not affect the parameter x ∈ Rp). Let J (n) = J (n)(Rp,M) be the
nth order jet bundle (that is, the equivalence classes of submanifolds modulo nth order
contact). Since G preserves the order of contact, there exists an induced action of G on
the jet bundle known as its nth prolongation, which is defined as

G(n) × J (n) → J (n)

(g, uK)→ (gu)K
for any differential subindex K.

Definitions 1. Given any infinitesimal generator of the action, v, we define its nth

order prolongation as the infinitesimal generator of the prolongation action on J (n). In
fact, if v =

∑n−1
i=1 νi(φ) ∂

∂φi
, then one can check that its nth order prolongation, an element

on the tangent of J (n), is given by the formula

(2.1) pr(v) =
∑
K

n−1∑
i=1

DKνi(φ)
∂

∂φKi

where the first sum is over all differential subindices K of order less or equal to n, and
where D indicates the total derivative (see [10]).

2. An nth order differential invariant is a function I : J (n) → R which is invariant
under the nth prolongation action of G.

2.1. Invariant evolutions of projective curves. Consider one parameter families of
projective curves φ(t, x) : R2 → RPn−1 such that the Wronskian of their derivatives
does not vanish, that is, if φ = (φ1, φ2, . . . , φn−1), then

W (φ′1, φ
′
2, . . . , φ

′
n−1) =

∣∣∣∣∣∣∣
φ′1 φ′2 . . . φ′n−1

...
... . . .

...
φ

(n−1)
1 φ

(n−1)
2 . . . φ

(n−1)
n−1

∣∣∣∣∣∣∣ 6= 0.

The need for this condition will be clear later on. As we indicated in the introduction, we
want to find a formula for the most general evolution of these families of the form (1.1),
which is invariant under the SL(n,R) projective action on RPn−1.

Following [10], equation (1.1) is invariant if and only if the following vector equality
holds

pr(v)(φt) = pr(v)(F )

for all infinitesimal generators v of the SL(n,R) action. One can easily check that, if
v =

∑n−1
i=1 νi(φ) ∂

∂φi
, then

(2.2) pr(v)(φt) = Dtνφt=F =
∂ν

∂φ
F,

and, therefore, F must satisfy the relationship

(2.3) pr(v)(F ) =
∂ν

∂φ
F
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for all infinitesimal generators of the action v. In such a case we say that F is a re-
lative differential invariant with weight ∂ν

∂φ . Thus, our problem is equivalent to that of
finding relative invariants with certain weight. To simplify our task we apply the following
Theorem.

Theorem 2.1 ([10]). Every relative differential invariant with weight ∂ν
∂φ must be of

the form ηI, where η is a nondegenerate matrix whose columns are relative invariants
with weight ∂ν

∂φ , and where I is any general differential invariant vector.

This way, the problem splits into two: first find the form of the most general differential
invariant, and second find a formula for the nondegenerate matrix η.

The description of a general differential invariant of projective curves under the
SL(n,R) action is due to Wilczynski ([12]) and can be summarized as follows. Let’s lift
φ uniquely to a family of curves on Rn with Wronskian equals 1. That is, ξ : R2 → Rn

is a unique lift defined by

ξ = W (φ′1, . . . , φn−1)−
1
n (1, φ).

Let the vector u = (u0, . . . , un−2) be defined through the relationship

(2.4) y(n) + un−2y
(n−2) + . . .+ u1y

′ + u0 =

∣∣∣∣∣∣∣∣∣∣∣

y(n) ξ
(n)
1 . . . ξ

(n)
n

y(n−1) ξ
(n−1)
1 . . . ξ

(n−1)
n

...
... . . .

...
y

′
ξ

′

1 . . . ξ
′

n

y ξ1 . . . ξn

∣∣∣∣∣∣∣∣∣∣∣
that is, u is formed by the coefficients of the unique differential equation of the form (2.4)
which has as solutions each one of the components of the lift ξ (this is normally refered
to as ξ is a solution curve for the equation). Wilczynski’s theorem states that u provides
a set of basic differential invariants for the action.

Theorem 2.2 ([12]). Let I be a differential invariant of curves on RPn−1 for the
projective action of SL(n,R). Then I must be a function of ui, i = 0, . . . , n − 2 and of
their derivatives (of any order) with respect to the parameter x.

This would solve the first part of the problem. To find the matrix η in Theorem 2.1
we need some definitions.

Definitions 1. Define ωi1...ik to be the following determinant

ωi1...ik =

∣∣∣∣∣∣∣
φ

(i1)
1 . . . φ

(ik)
1

... . . .
...

φ
(i1)
k . . . φ

(ik)
k

∣∣∣∣∣∣∣
2. Let qrk be defined as the quotient of determinants

qrk =
ω1...r̂...k

ω1...(k−1)

where r̂ indicates that the index r has been removed.

The following theorem gives the solution as to the form of η.
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Theorem 2.3 ([6]). Let η = Φ(Id + A), where Id is the Identity matrix, Φ is the
matrix

Φ =

 φ′1 . . . φ
(n−1)
1

... . . .
...

φ′n−1 . . . φ
(n−1)
n−1


and where A is strictly upper triangular, A = (aji ), with aji = 0 whenever j ≤ i and

aji = (−1)j−i

(
j
i

)
(

n
j − i

)qn−(j−i)
n

whenever i < j. Then, each column of η is a relative differential invariant for the SL(n,R)
projective action with weight ∂ν

∂φ , for all v = ν ∂
∂φ infinitesimal generators of the action.

Obviously η is nondegenerate.

As a consequence of these theorems, we obtain the final result of this subsection.

Corollary 2.4 ([6]). If an evolution of projective curves of the form (1.1) is invariant
under the SL(n,R) projective action, then the evolution must be of the form

(2.5) φt = Φ(Id+A)I

where Φ and A are defined as in Theorem 2.3, and where I is a vector function of ui,
i = 0, . . . , n− 2 as in (2.4) and their derivatives with respect to the parameter.

Example. In the case n = 2, Wilczynski’s invariant is found as follows. We lift the
curve φ : R → RP1 uniquely to ξ = (ξ1, ξ2) = ((φ′)−

1
2 , (φ′)−

1
2φ). Then we pose the

differential equation

y′′ + uy =

∣∣∣∣∣∣
y′′ (ξ1)′′ (ξ2)′′

y′ (ξ1)′ (ξ2)′

y ξ1 ξ2

∣∣∣∣∣∣ = y′′ +
1
2
S(φ)y

so that the differential invariant is the Schwarzian derivative of φ, S(φ) = φ′′′φ′− 3
2 (φ′′)2

(φ′)2 .
Now, the choices in (2.5) are Φ = φ′ and A = 0 so that the most general invariant
evolution is φt = φ′I, where I is any function depending on the Schwarzian derivative
and its derivatives with respect to x. When I = S(φ), we obtain the so–called Schwarzian
KdV equation.

2.2. The Adler–Gel’fand–Dikii Hamiltonian evolutions. In this subsection I will give
the definition of the Adler–Gel’fand–Dikii Poisson bracket. The definition below is the
original one; even though it is not the most comprehensive, it is perhaps the shortest,
making use of the formalism of Lax operators and pseudodifferential symbols. Definitions
have also been given by Kupershmidt and Wilson ([7]) and by Drinfel’d and Sokolov ([2]),
the latter being geometrically the most beautiful one.

Let A be the Fréchet manifold of Lax operators of the form

(2.6) L =
dn

dxn
+ un−2

dn−2

dxn−2
+ . . .+ u1

d

dx
+ u0
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with smooth and periodic coefficients. Given a linear functional ` on A, one can associate
a symbol of the form H =

∑n
i=1 hi∂

−i, where hi are all periodic, such that

`(L) = `H(L) =
∫
S1

res(HL)dx,

where res(
∑
ai∂

i) = a−1 is called the residue of the symbol. The AGD Poisson bracket
is defined as

{`H , `G}(L) =
∫
S1

res(GVH(L))dx.

The Hamiltonian vector field VH(L) is defined as VH(L) = (LH)+L−L(HL)+, where ()+
selects the differential (positive) part of the operator. The coefficients hi, i = 1, . . . , n− 1
depend on the Fréchet differentiation of `H while hn is determined once we ask VH to be
tangent to the manifold A. This bracket determines a Hamiltonian evolution on A of the
form

(2.7) Lt = VH(L)

which can indeed be written as a Hamiltonian evolution of the coefficients ui, i =
0, . . . , n − 2, of L. This evolution is normally referred to as the Adler–Gel’fand–Dikii
evolution, or the second generalized KdV Hamiltonian evolution.

2.3. The relationship between evolutions of curves and AGD. Before describing how
the two evolutions above are, up to SL(n,R), essentially the same evolution, I want to
make a few comments that will put our minds to rest with respect to certain details.

Remark 1. If L as in (2.6) has periodic coefficients, any solution curve ξ has a
monodromy M ∈ SL(n,R), that is, ξ(x+ T ) = Mξ(x) for all x, where T is the period of
L. (In fact, M is a conjugate of the transposed of the Floquet matrix associated to L.

Remark 2. If the initial condition φ(0, x) has monodromy M ∈ SL(n,R) and φ(t, x)
is a unique solution of (2.5) with that initial condition, then ([6]) φ(t, x) has M as
monodromy for all t.

Remark 3. If we impose on ξ the condition of having Wronskian equals one, then
the correspondance between u, coefficients of the equation, and ξ solution curve is 1-to-1
up to an element of SL(n,R). It suffices to realize that ξ defines a fundamental matrix
of solutions and any other solution curve will be ξ up to SL(n,R). This identically holds
for the projectivization of ξ.

Theorem 2.3 ([8]). Let φ(t, x) ∈ RPn−1 be a solution of the invariant evolution (2.5)

φt = Φ(Id +A)I

with monodromy M ∈ SL(n,R). Let L(t, x) be a one parameter family of periodic Lax
operators associated to φ(t, x) so that their coefficients are the projective curvatures of
φ(t, x), that is, related to φ as in (2.4). Then, there exists an invariant matrix M, such
that, if

I =M

 h1
...

hn−1


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and if H =
∑n
i=1 hi∂

−i, then
Lt = VH(L),

so that, if I satisfies certain integrability conditions, the evolution of L is the AGD
Hamiltonian evolution with Hamiltonian symbol H.

That is, there exists a matrix of invariants (thus depending on u and its derivatives)
relating the invariant I and the Hamiltonian symbol H, and, under that relationship,
both evolution are, essentially the same.

Example. If n = 2, we have already seen that the most invariant evolution of φ
is given by φt = φ′I, where I is any function of the Schwarzian derivative S(φ) ad its
derivatives with respect to the parameter. A straightforward calculation shows that, if
φt = φ′I, then

(S(φ))t =
DS(φ)
Dφ

φt = (
d3

dx3
+ 2S(φ)

d

dx
+ S(φ)′)I

which is exactly the coadjoint action of the Virasoro algebra on its dual, the second KdV
Hamiltonian evolution as far as I is the Hamiltonian. In particular, if I = S(φ) = u,
then we obtain the KdV equation ut = uxxx + 3uux.

3. Invariant evolutions of projective surfaces. The next natural question is, of
course, whether or not this is a property intrinsically tied to projective curves, or will we
find similar properties in, say, projective surfaces.

The situation described at the beginning of section 2 is valid for any parametrized
submanifold, and therefore we can apply it equally to the case of surfaces. Thus, consider
one parameter families of projective surfaces s(t, x, y) : R3 → RPn−1. We want to find,
again, an evolution for s, invariant under the projective action of SL(n,R) and of the
form

st = F̂ (s, sx, sy, sxx, sxy, . . .)

where F̂ is a function of s and its derivatives with respect to the parameters (x, y). Again,
a short calculation as in (2.2) shows that F̂ must necessarily be a relative differential
invariant of the action with weight ∂ν

∂s , for all infinitesimal generators v = ν ∂
∂s of the

SL(n,R) action. (Notice that we denote the coordinates in RPn−1 as s = (s1, . . . , sn−1)
instead of the notation φ = (φ1, . . . , φn−1) of the previous section. Of course, this is simply
to be coherent with the notation of the coordinates in the jet bundle of parametrized
surfaces and, hopefully, will not lead to confusion.)

Here also, we can apply Theorem 2.1 to split the problem into two fronts, the search
for invariants and the search for relative invariants with the Jacobian of the components
of infinitesimal generators as weights. But, unlike in the case of curves, the invariants
of projective parametrized surfaces have not been known until fairly recently. In fact, in
[9] we found a set of generating differential invariants for projective surfaces in RPn−1,
under the action of SL(n,R), for any n. We also found all the algebraic relationships
among the derivatives of the invariants. These are normally called the syzygies of the
invariants. There are no syzygies in the case of projective curves, but they naturally
appear in higher dimensions. The method used to find these invariants is a modification
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of Cartan’s method of moving frames, more practical in many instances, that has been
recently developed by Olver and Fels in [3] and [4]. The method bypasses many of the
complications, most notably the process of normalization, inherent in the traditional
approach. From now on I will focus on the case n = 3, the straightforward generalization
of the KdV (nongeneralized) case.

If n = 3, assume that, as in the case of curves (for n = 2 we had the condition φ′ 6= 0
imposed on φ), we have the nondegeneracy condition

D =
∣∣∣∣ s1x s1y
s2x s2y

∣∣∣∣ 6= 0,

where s = (s1, s2) ∈ RP2. The problem of finding a basic set of generating invariants is
thus solved in [9]. We find 4 basic invariants given by

(3.1) I1 =
1
D

∣∣∣∣ s1x s1xx
s2x s2xx

∣∣∣∣ I2 =
1
D

∣∣∣∣ s1y s1yy
s2y s2yy

∣∣∣∣
I3 =

1
D

(∣∣∣∣ s1xy s1y
s2xy s2y

∣∣∣∣− 1
2

∣∣∣∣ s1x s1yy
s2x s2yy

∣∣∣∣) I4 =
1
D

(∣∣∣∣ s1x s1xy
s2x s2xy

∣∣∣∣− 1
2

∣∣∣∣ s1xx s1y
s2xx s2y

∣∣∣∣) ,
which again solves the first part of our problem. These basic differential invariants carry
two syzygies, which will generate any other algebraic relationship among themselves and
their derivatives. These are

3(I2)xx − 2(I3)yy − 4(I4)xy = 4I4(I3)y + 6I2(I3)x + 4(I2
4 )x

+ 6I3(I2)x − 3I2(I1)y − 3(I1I2)y
3(I1)yy − 2(I4)xx − 4(I3)xy = 4I3(I4)x + 6I1(I4)y + 4(I2

3 )y
+ 6I4(I1)y − 3I1(I2)x − 3(I1I2)x.

Finding the matrix of relative invariants is also easy in this case.

Proposition 3.1. Let

µ =
(
s1x s1y
s2x s2y

)
.

Then µ is a nondegenerate matrix whose columns are relative differential invariants for
the action of SL(3,R) on parametrized surfaces on RP2, with weight ∂ν

∂s , for all v = ν ∂
∂s

infinitesimal generators of the action.

Proof. Consider the generating set of infinitesimal generators of the action

vi =
∂

∂si
vji = si

∂

∂sj
wj = sj(

n−1∑
i=1

∂

∂si
)

with i, j = 1, 2. Apply them to the columns of µ to obtain the relationship (2.3).

And so, we obtain again that the most general invariant evolution of these surfaces
(which perhaps is better to call maps, since they lie on RP2) is of the form

(3.2) st =
(
s1x s1y
s2x s2y

)(
J1

J2

)
,

for any J1, J2 functions of Ii, i = 1, 2, 3, 4 as in (3.1) and their derivatives with respect
to the parameters (x, y).
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If we are to identically follow the process of the previous section we ought to write
the evolution for the invariants (3.1) induced upon them by the evolution in s (3.2). But
soon one realizes that one can never get a Hamiltonian evolution that way. For once we
only have a 2-dimensional vector of invariants (J1, J2), versus 4 invariants. And even if
we choose only two of them we can never find an independent Hamiltonian evolution:
the invariants depend on the second jet of the surfaces, rather than on the third jet,
or higher which is the case of curves. In view of these problems we need to find other
invariants (third order) that will evolve following a Hamiltonian system. The following
three invariants will generate an entire family of Hamiltonian evolutions on the dual of
the Virasoro algebra, one per direction on the (x, y)-plane. Consider the following three
invariants:

I = 3(I1)y − 2(I3)x − 2I2
3 − 3I1I4,

(3.3) J = 3(I2)y − 2(I4)x − 2I2
4 − 3I2I3,

K = 4(I4)x + 4(I3)y + 2I3I4 −
9
2
I1I2.

We can now prove the following theorem

Theorem 3.2 Given any combination ∂z = α∂x + β∂y, α, β ∈ R, there exists an
invariant functional Eα,β such that, if J1 = αh and J2 = βh, and if

st =
(
s1x s1y
s2x s2y

)(
J1

J2

)
then Eα,β evolves following the KdV Hamiltonian evolution

(Eα,β)t = hzzz + 2Eα,βhz + (Eα,β)zh.

Proof. It suffices to choose Eα,β = α2I + αβK + β2J , where I, J,K are given as in
(3.3), to obtain the result. The rest is a straightforward calculation.

In this sense Eα,β would be generalizations of the traditional Schwarzian derivative.
Of course, no one working in infinite Hamiltonian systems in two independent variables

would resist the search for classical Hamiltonian systems such as the KP equation. In
that search one finds one unavoidable complication: the nonlocal character of either the
Hamiltonian functional or of the Poisson structure itself.

Theorem 3.3. Consider the invariant I defined in (3.1). Then there exists h(x, y) :
R2 → R, analytic on (x, y), such that, if J1 = I + h and J2 = h, then whenever

(3.4) st =
(
s1x s1y
s2x s2y

)(
J1

J2

)
I will satisfy the KP equation

(3.5) (It)x = (Ixxx + 3IIx)x +
3
2
k2Iyy.

Proof. We can find straightforwardly that the evolution of I induced by (3.2) is

It = [(J1)xxx + 2I(J1)x + IJ1] + [(J2)xxy +K(J2)x + IyJ2 − L1(J2)]

where L1 = 3
2I1∂

2
y − I4∂2

x − 2I3∂2
xy and K is as in (3.3). If we consider J1 = I + h and

J2 = h, and we impose upon I to be a solution of the KP equation (3.5), we obtain an
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equation for h. This equation can be written in vectorial form as

(3.6) gx = G(g, gy)

where g = (h, hy, hx, hxy, hxx, hxxy, hxxx), and where G is an analytic function. The stan-
dard theorem of existence of Cauchy and Kovalewsky gives us a unique and analytic
solution of (3.6) for any choice of analytic initial condition along the x axis. An appro-
priate choice of constant initial condition will result in the proof of the theorem.

Of course, h in the Theorem will never be a local functional, and, therefore, we will
never be able to define it as a functional on the jet space. We can’t talk about the differ-
ential invariance of h, since it is not well defined for such purposes (a differential invariant
is always a functional on the jet space). That is, a more general theory would be necessary
to include these nonlocal systems in the framework we have presented in this paper. The
higher order cases, and the cases of higher dimension parametrized submanifolds are still
unresolved.
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