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The notion of affinoid structure takes several different forms: as a ternary relation, and
in the context of dual pairs in symplectic geometry, they were introduced by Weinstein
[11]; as a generalization of principal bundles they were introduced by Kock [4] under the
name of pregroupoid; as a form of Morita equivalence for groupoids they were introduced
by Pradines [9] as butterfly diagrams. Forms of the notion, however, go back to the early
part of the century; see the references in [11] and [4].

In [6, §3] we gave proofs of the equivalences between affinoid structures, butterfly
diagrams and generalized principal bundles, using simple functorial constructions from
groupoid and double groupoid theory. The key there was to regard an affinoid structure as
a type of double groupoid, called principal in [6]. The interest of affinoid structures in the
context of double groupoids is that the other two equivalent formulations, which are not
overtly double structures, provide a means for testing the correctness of the Lie theory
for double groupoids begun in [6]. In this paper we calculate the infinitesimal invariants
associated with affinoid structures, butterfly diagrams and generalized principal bundles.
It turns out that these are not equivalent. We show in §2 that the infinitesimal analogue of
an affinoid structure, which we calculate by a procedure which is in fact a specialization of
the construction of the double Lie algebroid of a double Lie groupoid [7], is equivalent to a
pair of flat partial conjugate connections—as already indicated in [11, Remark 3.2]—and
this seems to us the correct infinitesimal concept. The infinitesimal analogues of both
butterfly diagrams and generalized principal bundles are significantly weaker.

Some of the results of §2 of this paper are special cases of results of Mokri [8]; this
reflects the fact that an affinoid structure may be regarded as a vacant double Lie groupoid
[6, §3]. The more direct proofs available in the present case are of independent interest,
however. Affinoid structures with symplectic or Poisson structures have been studied by
[12] and [1], amongst others.
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Although this paper is closely related to the author’s work on double Lie algebroids, it
requires no knowledge of double groupoid theory, or of the notion of double Lie algebroid.
We do make frequent use of the classes of morphisms for groupoids and Lie algebroids
introduced by Pradines [10]: the form we use comes from [3].

After the introductory §1, the main results of the paper are in §2, on infinitesimal
affinoid structures and infinitesimal butterfly diagrams. In §3 we briefly indicate that the
notion of generalized Atiyah sequence does not seem likely to be of much interest.

1. Affinoid structures. We recall the notion of affinoid structure from [11]; the
description given here also makes use of the account in [6, §3].

Suppose given a set M and two surjections h:M → H and v:M → V to sets H and
V . Call a pair (x, y) ∈M2 vertical if h(x) = h(y); that is, if it belongs to the kernel pair

R(h) = {(x, y) ∈M2 | h(x) = h(y)}

of h. Similarly say that (x, y) ∈ M2 is horizontal if v(x) = v(y); that is, if it belongs to
the kernel pair R(v) of v.

Further suppose that we are given a subset Λ ⊆ M4, whose elements are called
parallelograms; display (x, y, z, w) ∈ Λ as

w z

y x

Assume that if (x, y, z, w) ∈ Λ then (x, z) and (y, w) are vertical and (y, x), (w, z) are
horizontal. By way of converse, further assume that

Axiom I. Given any (x, y, z) ∈M3 such that (y, x) is horizontal and (x, z) is vertical,
there exists a unique w ∈M such that (x, y, z, w) ∈ Λ.

Following [11], denote w by yx−1z. Now define two elements (x, z), (y, w) ∈ R(h) to
be v-parallel if (x, y, z, w) ∈ Λ. Similarly, define (y, x), (w, z) ∈ R(v) to be h-parallel if
(x, y, z, w) ∈ Λ.

Axiom II. The relations of v-parallelism and h-parallelism just defined are equivalence
relations on R(h) and R(v) respectively.

Definition 1.1. An affinoid structure on a set M consists of two surjections h:M →
H and v:M → V , together with a subset Λ ⊆M4, which satisfy Axioms I and II above.
We refer to H and V as the bases of the affinoid structure. A set equipped with an affinoid
structure is an affinoid space.

To define a differentiable affinoid space, first suppose that M,H and V are manifolds,
and that h and v are surjective submersions. It follows that R(h) and R(v) are Lie
subgroupoids of the pair groupoid M2; in particular, the projection R(h)→M, (x, z) 7→
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x, and the three others like it, are surjective submersions. We can therefore form the
pullback R(h) ∗R(v) ∼= {(x, y, z) ∈M3 | (x, z) ∈ R(h), (y, x) ∈ R(v)}.

Definition 1.2. A differentiable affinoid structure on a manifold M is an affinoid
structure on M such that h and v are surjective submersions, and Λ is a submanifold of
M4 such that the bijection Λ→ R(h) ∗R(v) provided by Axiom I is a diffeomorphism.

Henceforth we will only be concerned with differentiable affinoid structures and we
will omit the adjective, unless emphasis is needed. Consider, then, an affinoid space
M over H and V . As in [11], denote the set of equivalence classes of horizontal pairs
modulo h-parallelism by Gh and the set of equivalence classes of vertical pairs modulo
v-parallelism by Gv, and denote the projections by h̃:R(v) → Gh and ṽ:R(h) → Gv.
Thus, modifying slightly the notation of [11], h̃(y, x) = yx−1 and ṽ(z, x) = z−1x.

The kernel pair of h̃ is precisely Λ ⊆ R(h) × R(h). Since Λ is a submanifold of
R(h)×R(h) and the projection Λ→ R(h), (x, y, z, w) 7→ (x, z), is a surjective submersion,
it follows that Gh has a manifold structure making h̃ a submersion. It is now easy to see
that, with the structure defined in [11] or [6, §3], Gh is a Lie groupoid over H, with h̃ a
morphism over h. Similar remarks apply to the vertical structure.

There is a natural left action of Gh on h:M → H given by

(yx−1)z = yx−1z,

where α(yx−1) = h(x) = h(z). Similarly there is a right action of Gv on v:M → V given
by

w(z−1x) = wz−1x,

where β(z−1x) = v(z) = v(w). These actions are free, and commute. The corresponding
action morphisms are h̃ and ṽ.

Now Λ may be given a groupoid structure with base M , called by Kock [4] the diagonal
structure. For (x, y, z, w) ∈ Λ the source is x and the target w. Given (w, u, v, s) ∈ Λ the
diagonal composition is

(w, u, v, s)(x, y, z, w) = (x, uw−1y, zw−1v, s).

When Λ is equipped with this structure we denote it by ΛD.
There are now morphisms

h: ΛD → Gh, (x, y, z, w) 7→ yx−1, v: ΛD → Gv, (x, y, z, w) 7→ z−1x.

These are groupoid morphisms over h and v respectively and, further, are inductors—
that is, the induced map into the groupoid pullback is a diffeomorphism [6, p.191]. Their
kernels are respectively R(h) and R(v), embedded in ΛD via the morphisms

1v:R(v)→ ΛD, (y, x) 7→ (x, y, x, y), 1h:R(h)→ ΛD, (z, x) 7→ (x, x, z, z).

All of this data is summarized in the butterfly diagram of Pradines shown in Figure 1.
A butterfly diagram [9] is a commutative diagram of groupoid morphisms of the form

of Figure 1, such that the two vertical arrows are action morphisms, the two upper
diagonals are closed embeddings over a fixed base, the two lower diagonals are inductors
over surjective submersions, and the two sequences are exact at their central term. Any
abstract butterfly diagram arises from an affinoid structure on the base of the central
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groupoid (see the end of [6, §3]). The concepts of affinoid structure and butterfly diagram
are accordingly equivalent.

A third equivalent concept is that of generalized principal bundle: we deal with this
in §3.

Example 1.3. Let P (B,G, p) be a principal bundle and define

Λ = {(x, yg, xg−1, y) | x, y ∈ P, g ∈ G}.

Then Λ is an affinoid structure on P with respect to h = p:P → B and v:P → {∗} the
constant map. Evidently Gv

∼= G and Gh
∼= (P × P )/G, the gauge groupoid of P (B,G).

Further, identifying (x, yg, xg−1, y) with (y, g, x), the diagonal groupoid ΛD is the trivial
groupoid P ×G× P .

There is a natural groupoid isomorphism R(h) = P ×
p
P → P ×G, (x, xg) 7→ (x, g).

Here P ×G is not the trivial group bundle but the action groupoid P ×7 G with structure
α(x, g) = xg, β(x, g) = x, (y, h)(yh, g) = (y, hg).

2. Infinitesimal structures associated with affinoids. We first show, developing
Remark 3.2 of [11], that associated with an affinoid structure on a manifold M , there
is a distinguished submanifold A2 ⊆ T 2M which is a double vector bundle with side
bundles ThM and T vM , and which may be regarded as a flat connection which is partial
with respect to the two foliations induced by h and v. We abstract the properties of this
structure into a concept of infinitesimal affinoid structure.

There is also a natural infinitesimal version of the concept of butterfly diagram. Pro-
vided that the fibres of h and v are simply connected, we show that there is a bijective
correspondence between infinitesimal affinoid structures and infinitesimal butterfly dia-
grams.

Consider an affinoid structure (Λ, H, V ) on a manifold M . The morphism ṽ:R(h)→
Gv defines a vertical subbundle T ṽ(R(h)) ⊆ T (R(h)) = R(T (h)) = TM ×

TH
TM. On

the other hand, applying the Lie functor to the morphism h̃:R(v) → Gh yields a Lie
algebroid morphism A(h̃):T vM → AGh.
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Proposition 2.1. T ṽ(R(h)) = R(A(h̃)).

Proof. Take (Z,X) ∈ T ṽ(R(h)). Thus Z ∈ Tz(M), X ∈ Tx(M) and

T (h)(Z) = T (h)(X), T (ṽ)(Z,X) = 0.

Now ṽ is a groupoid morphism over v:M → V and so, taking tangents,

T (ṽ)
T (R(h)) −−−−−−−−→ TGv

T (α′)
y y T (α)

TM −−−−−−−−→ TV

T (v)

commutes, where α′ and α are the source projections. Now T (α′)(Z,X) = X and so
it follows that T (v)(X) = 0. Similarly, Z ∈ T vM . It remains to prove that A(h̃)(Z) =
A(h̃)(X).

Regarding Λ = R(ṽ) as a groupoid on R(h), it is easy to see that the maps Λ →
R(v), t: (x, y, z, w) 7→ (w, z), and s: (x, y, z, w) 7→ (y, x), are morphisms. Applying the Lie
functor, we have A(s), A(t):T ṽ(R(h)) → T vM and A(s)(Z,X) = X, A(t)(Z,X) = Z.

Now all that is necessary is to observe that on the groupoid level we have h̃ ◦ s = h̃ ◦ t.
This proves that T ṽ(R(h)) ⊆ R(A(h̃)). Since the maps h, v, h̃, ṽ are all submersions,

a dimension count shows that equality holds.

Denote T ṽ(R(h)) by AHΛ. It is both a Lie algebroid on base R(h), being an involutive
distribution on R(h), and a Lie groupoid on base T vM , since it is the kernel pair of A(h̃).
In the terminology of [6, §4], AHΛ is an LA-groupoid associated to the double groupoid
structure on Λ.

Now define

A2 = TA(̃h)T vM.

This is an involutive distribution on T vM but we prefer to regard it as a submanifold of
T 2M . Recall that this is a double vector bundle

T (pM )
T 2M −−−−−−−−→ TM

pTM

y y pM

TM −−−−−−−−→ M,

pM

(1)

where the horizontal structure is obtained by applying the tangent functor to the oper-
ations in TM . We usually abbreviate pM to p and pTM to pT . It is easy to see from the
construction, or directly, that T (p) maps A2 to ThM , and we consequently have a double
vector bundle
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T (p)
A2 −−−−−−−−→ ThM

pT

y y p

T vM −−−−−−−−→ M,

p

(2)

which is a sub double vector bundle of (1).

Theorem 2.2. The map (T (p), pT ):A2 → ThM ⊕ T vM is a diffeomorphism.

The proof of the following lemma is straightforward.

Lemma 2.3. If ϕ: Ω′ → Ω is a morphism of Lie groupoids over f :M ′ → M , and
ϕ!: Ω′ → f !Ω is a diffeomorphism, then A(ϕ)!:AΩ→ f !AΩ is also a diffeomorphism.

Proof of 2.2. We know that R(ṽ) → R(h) ∗ R(v), (x, y, z, w) 7→ ((z, x), (y, x)), is
a diffeomorphism, so s:R(ṽ) → R(v), (x, y, z, w) 7→ (y, x), which is a morphism over
R(h)→M, (z, x) 7→ x, satisfies the condition of the lemma. Hence

T ṽ(R(h))→ R(h) ∗ T vM, (Zz, Xx) 7→ ((z, x), X),

is a diffeomorphism. Changing the point of view, it follows that the groupoid morphism
R(A(h̃)) → R(h), (Zz, Xx) 7→ (z, x), over T vM → M satisfies the condition of the
lemma. Hence A2 → T vM ⊕ ThM is a diffeomorphism.

Before proceeding, we recall some basic facts about connections [2, XVII§18]. Asso-
ciated with the double vector bundle (1) are two exact sequences

p!TM >−−−> T 2M
T (p)!

−−−�p!TM, p!TM >−−−> T 2M
p!

T

−−−�p!TM

where the central terms are respectively the vector bundles pT :T 2M → TM and T (p):
T 2M → TM . A connection in M is a map C:TM ⊕ TM → T 2M which is simultane-
ously a linear right–inverse for both sequences. We take it that T (p)(C(X,Y )) = Y and
pT (C(X,Y )) = X. Given a connection C and a vector field X on M , define a vector field
XC on TM by XC(Y ) = C(Y,X). The connection is flat if [X,Y ]C = [XC, Y C] for all
X,Y ∈ X (M).

Given X,Y ∈ X (M) and m ∈ M , consider T (Y )(X(m)) − XC(Y (m)). This is a
vertical tangent vector at Y (m) and so corresponds to an element of Tm(M), which is
denoted ∇X(Y )(m). This defines the associated Koszul connection ∇. There is a bijective
correspondence between connections and Koszul connections.

Given a connection C, the conjugate connection C′ is C′ = J ◦ C ◦ J0 where J is the
canonical involution in T 2M and J0:TM⊕TM → TM⊕TM interchanges the arguments.
The corresponding Koszul connection ∇′ is given by ∇′X(Y ) = ∇Y (X) + [X,Y ].

We now consider the inverse of the diffeomorphism in Theorem 2.2 as constituting
a “bipartial” connection in M adapted to the two foliations R(h) and R(v). More pre-
cisely, it is a partial connection in the vector bundle T vM adapted to R(h). The above
observations about connections in M apply with the obvious modifications.
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Let X h and X v denote the modules of sections of ThM and T vM . Given X ∈ X h

there is a unique X ∈ ΓT vM (A2) which projects to X, and this induces as above an
operator ∇v

X :X v → X v. We thus obtain a “bipartial Koszul connection”

∇v:X h ×X v → X v.

Since T (p):A2 → ThM is known to be a Lie algebroid morphism, we have [X1, X2] =
[X1, X2] and so A2 defines a flat bipartial connection. In terms of ∇v we have ∇v

[X1,X2]
=

[∇v
X1
,∇v

X2
] for all X1, X2 ∈ X h.

The construction of A2 can be repeated with h and v interchanged and we obtain
A2 = TA(ṽ)ThM which is a double vector bundle

pT

A2 −−−−−−−−→ ThM

T (p)
y y p

T vM −−−−−−−−→ M,

p

and a sub double vector bundle of (1). The proof of the following result is a straightforward
check.

Proposition 2.4. The canonical involution J :T 2M → T 2M carries A2 isomorphi-
cally onto A2.

A2 can be considered to be a flat partial connection in ThM adapted to R(v). In the
same way as above we obtain a flat partial Koszul connection ∇h:X v ×X h → X h.

The remainder of the section will be devoted to justifying the following definition.

Definition 2.5. Let M be a manifold and let h:M → H and v:M → V be two
surjective submersions. Then an infinitesimal affinoid structure on (M,h, v) is a sub
double vector bundle A2 of T 2M of the form (2) such that T (p):A2 → ThM is a Lie
algebroid morphism, and such that T (p):A2 = J(A2) → T vM is also a Lie algebroid
morphism.

Evidently any infinitesimal affinoid structure induces two partial Koszul connections
∇v and ∇h as above. By Proposition 2.4 and the definition of conjugate connections, we
have

Proposition 2.6. In any infinitesimal affinoid structure, ∇v and ∇h are conjugate
connections; that is, for all X ∈ X h, Y ∈ X v,

∇h
Y (X) = ∇v

X(Y ) + [X,Y ].

Proposition 2.7. For X,X1, X2 ∈ X h, Y, Y1, Y2 ∈ X v,

∇v
X [Y1, Y2] = [∇v

X(Y1), Y2] + [Y1,∇v
X(Y2)] +∇v

∇h
Y2

(X)(Y1)−∇v
∇h

Y1
(X)(Y2),

∇h
Y [X1, X2] = [∇h

Y (X1), X2] + [X1,∇h
Y (X2)] +∇h

∇v
X2

(Y )(X1)−∇h
∇v

X1
(Y )(X2).

Proof. Since this is a purely formal calculation, we may as well consider an ordinary
connection ∇ in M with conjugate connection ∇′. We calculate R′, the curvature of ∇′.
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By definition, R′(X,Y )(Z) = ∇′[X,Y ](Z) − [∇′X ,∇′Y ](Z). Substituting in ∇′X(Y ) =
∇Y (X) + [X,Y ], we obtain

R′(X,Y )(Z) = ∇Z [X,Y ]− [X,∇Z(Y )]− [∇Z(X), Y ]

−∇[Y,Z](X)−∇[Z,X](Y )−∇∇Z(Y )(X) +∇∇Z(X)(Y ).

So if R′ = 0 we get

∇Z [X,Y ] = [X,∇Z(Y )] + [∇Z(X), Y ] +∇∇′
Y

(Z)(X)−∇∇′
X

(Z)(Y ).

In the case of the bipartial flat connections of an infinitesimal affinoid we can apply
this calculation to both ∇v and ∇h.

The equations of 2.7 show that ThM and T vM are a matched pair of Lie algebr-
oids in the sense of Mokri [8]. The corresponding representations are ∇h and ∇v. Indeed
(ThM,T vM) is the matched pair of Lie algebroids arising from the vacant double group-
oid structure on Λ.

It is now clear that we could equivalently define an infinitesimal affinoid structure on
(M,h, v) to be a pair of partial flat connections ∇h and ∇v which satisfy the equations
of Proposition 2.7.

We now turn to the infinitesimal form of butterfly diagrams, which is easily defined.

Definition 2.8. An infinitesimal butterfly diagram is a diagram of Lie algebroid mor-
phisms of the form shown in Figure 2, such that the two vertical arrows are action mor-
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phisms over surjective submersions h:M → H and v:M → V , the two upper diagonals
are base-preserving embeddings over h and v, the two lower diagonals are inductors, and
the two sequences are exact at their central term.

Applying the Lie functor to a butterfly diagram clearly leads to an infinitesimal butter-
fly diagram, since the Lie functor sends action morphisms to action morphisms, inductors
to inductors, embeddings to embeddings, and is exact [3].

We now show that an infinitesimal affinoid structure gives rise to an infinitesimal
butterfly diagram, provided that the fibres of h and v are simply connected. The first
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step holds without any connectivity assumption. Its proof is a straightforward calculation.
(A more general result of this type is given in [8].)

Proposition 2.9. Let (M,h, v) have an infinitesimal affinoid structure with associ-
ated partial connections ∇h and ∇v. Denote by L the vector bundle direct sum ThM ⊕
T vM . Then L has a Lie algebroid structure over M with anchor a:L → TM given by
a(X ⊕ Y ) = X + Y , and bracket

[X ⊕ Y,X ′ ⊕ Y ′] = {[X,X ′] +∇h
Y (X ′)−∇h

Y ′(X)} ⊕ {[Y, Y ′] +∇v
X(Y ′)−∇v

X′(Y )}

for X,X ′ ∈ X h, Y, Y ′ ∈ X v.

Until Theorem 2.10, consider an infinitesimal affinoid structure on (M,h, v) for which
the fibres of h and v are simply connected. The partial connections ∇h and ∇v can be
considered as Lie algebroid morphisms T vM → CDO(ThM) and ThM → CDO(T vM)
and accordingly integrate to give linear actions of R(v) on the vector bundle ThM and
of R(h) on the vector bundle T vM . Denote these actions by θh and θv.

We need to show that L quotients over T vM and ThM to give Lie algebroids Av

on V and Ah on H. We follow the method of [3, §4]. Say that X ∈ X h is θh-stable if
θh(y, x)X(x) = X(y) for all (y, x) ∈ R(v). This is equivalent to the condition that X be
∇h-parallel, that is, that ∇h

Y (X) = 0 for all Y ∈ X v. We also say that X ⊕ Y ∈ ΓL is
θh-stable or ∇h-parallel if X is so.

To show that T vM is a v-ideal of L we need to verify the following three conditions:

(i). If X ⊕ Y, X ′ ⊕ Y ′ are θh-stable, then [X ⊕ Y,X ′ ⊕ Y ′] is also;
(ii). If X ⊕ Y ∈ ΓL is θh-stable, and Y ′ ∈ X v, then [X ⊕ Y, 0⊕ Y ′] is in T vM ;
(iii). The map L/T vM → TM/T vM induced by the anchor of L is equivariant with

respect to θh and the natural action of R(v) on TM/T vM ∼= v!TV.

The first two conditions are easily checked. For the third, note that the natural action
of R(v) on TM/T vM differentiates to DY (Z) = [Y,Z] where Y ∈ X v, Z ∈ X (M); here
the bar denotes the class modulo T vM . It therefore suffices to check that ∇h

Y (X) = [Y,X]
and this follows from the fact that ∇h

Y (X)− [Y,X] = ∇v
X(Y ) ∈ X v.

From [3, 4.5] it therefore follows that the vector bundle ThM ∼= L/T vM descends to
a vector bundle Av on V ; that is, ThM is the vector bundle pullback of Av over v. Denote
the map ThM → Av by ṽ and the map L→ L/T vM → Av by v. Further, Av has a Lie
algebroid structure over V with respect to which ṽ (and therefore v) is a Lie algebroid
morphism. The bracket of two sections x, x′ ∈ ΓAv is obtained by taking the inverse
image sections X,X ′ ∈ ΓL; by (i) above, [X,X ′] is θh-stable and therefore descends to a
section [x, x′] of Av.

The rank of Av is the same as that of ThM and so v is an action morphism. Since ṽ
has kernel T vM by construction, it is an inductor. Carrying out the same construction
with ThM as kernel, we have proved the following.

Theorem 2.10. Let (M,h, v) have an infinitesimal affinoid structure and assume that
h and v have simply connected fibres. Then the above construction yields an infinitesimal
butterfly diagram.
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Conversely consider an infinitesimal butterfly diagram as in Figure 2. An inductor of
Lie algebroids is essentially a pullback in the category of Lie algebroids, and so its kernel
is the vertical bundle of the base map. Thus we have Rv = T vM and Rh = ThM .

Since h:L→ Ah is an inductor over h, there is an isomorphism of Lie algebroids

L→ TM ×
h!TH

h!Ah, Z 7→ (aL(Z), h
!
(Z)),

where aL is the anchor of L. And since h̃:T vM → Ah is an action morphism, we know
that h̃!:T vM → h!Ah is an isomorphism; denote its inverse by η. Now it is readily checked
that

L→ ThM ⊕ T vM, Z 7→ (aL(Z)− η(h
!
(Z)))⊕ η(h

!
(Z))

is an isomorphism of vector bundles, and that ih and iv are now represented by X 7→ X⊕0
and Y 7→ 0⊕Y . We can therefore apply the following lemma, whose proof is purely formal.

Lemma 2.11. Let the vector bundle direct sum ThM ⊕ T vM have a Lie algebroid
structure over M with respect to which ThM and T vM are Lie subalgebroids. Define
∇h:X v ×X h → X h and ∇v:X h ×X v → X v by

[0⊕ Y,X ′ ⊕ 0] = ∇h
Y (X ′)⊕−∇v

X′(Y ).

Then ∇h and ∇v are flat partial connections and satisfy the relations in Proposition 2.7.

This completes the proof of the following result.

Theorem 2.12. Let L be an infinitesimal butterfly diagram over h:M → H and
v:M → V . Then the above construction yields an infinitesimal affinoid structure on M .

Theorems 2.10 and 2.12 establish an equivalence between infinitesimal affinoid struc-
tures and infinitesimal butterfly diagrams when the fibres of h and v are simply connected.

Proposition 2.13. Let L be an infinitesimal butterfly diagram over h:M → H and
v:M → V . Assume that Ah is integrable and that v has connected and simply connected
fibres. Then Av is also integrable.

Proof. In general we have an isomorphism

L ∼= TM ×
h!TH

h!Ah = h!!Ah.

So if Ah = A(Gh) then L is the Lie algebroid of the pullback groupoid h!!Gh. Since
R(v) has connected and simply connected fibres, T vM → L integrates to an injective
immersion R(v) → h!!Gh and Gv may be constructed as the quotient of h!!Gh over
R(v).

3. Appendix: Generalized principal bundles and their Atiyah sequences.
The following notion [9], [4] extends the concept of principal bundle to allow the structure
group to be replaced by a structure groupoid.

Definition 3.1. A generalized principal bundle consists of a Lie groupoid G−→−→V

acting smoothly and freely to the right on a surjective submersion f :P → V so that the
quotient manifold B = P/G exists. Denote the quotient map P → B by p.



AFFINOIDS AND CONNECTIONS 185

Given a generalized principal bundle P (B,G, p)(V, f), define an affinoid structure Λ
on P to consist of the parallelograms

y xg−1

yg x

where x, y ∈ P, g ∈ G, and βg = f(y), αg = f(x). As in Example 1.3, this gives
a differentiable affinoid structure with respect to h = p:P → B and v = f :P → V .
The vertical groupoid Gv identifies canonically with the original G by identifying each
y−1(yg) and each (xg−1)−1x with g. For clarity, denote the elements of Gh by 〈y, x〉
where x, y ∈ P, f(x) = f(y), and 〈y, x〉 = 〈yg, xg〉 for any g ∈ G with βg = f(x).

Since the data of 3.1 is presented as a generalization of the concept of principal
bundle, it is reasonable to extend the notion of Atiyah sequence to it. (The omitted
details in what follows may be found by extending the account in [5, App.A].) Consider
the vertical tangent bundle T fP . The action of G on P lifts to a right action of G on
T fP and remains free. Denote elements of T fP/G by 〈Xx〉 where Xx ∈ T f

x P . Then
T fP/G is a vector bundle over B; if 〈Xx〉 and 〈Yy〉 have p(x) = p(y), then there exists
g ∈ G with y = xg and we define 〈Xx〉 + 〈Yy〉 = 〈Xg + Y 〉, as in the standard case. An
f -vertical vector field X on P may be defined to be G–invariant if X(xg) = X(x)g for
all x ∈ P and g ∈ G with f(x) = βg; one obtains a C(B)–module of G–invariant vector
fields which is in bijective correspondence with the module of sections of T fP/G → B.
Now the bracket of G–invariant vector fields transfers to Γ(T fP/G) and makes it a Lie
algebroid with anchor the quotient to T fP/G → TB of T (p):T fP → TB. This might
be called the generalized Atiyah sequence of P (B,G, p)(V, f). As in the standard case,
T fP → T fP/G is an action morphism of Lie algebroids over p.

Theorem 3.2. The generalized Atiyah sequence just constructed is canonically iso-
morphic to A(Gh).

Proof. The morphism h̃:R(f) → Gh over p:P → B is (y, x) 7→ 〈y, x〉. It induces a
Lie algebroid morphism A(h̃):T fP → A(Gh) which is constant on the orbits of G and
therefore induces a Lie algebroid morphism R:T fP/G → A(Gh) over B. Since h̃ is an
action morphism, it is a fibrewise diffeomorphism, and this property is inherited by A(h̃)
and R. Since R is base–preserving, it is therefore an isomorphism of Lie algebroids.

Note that the method available in the standard case [5, III 3.20] cannot be used here,
since P cannot generally be embedded in Gh.

Theorem 3.2 rules out much interest in the notion of generalized Atiyah sequence.
Since any Lie groupoid G acts freely to the right on its target projection, yielding a
generalized principal bundle whose Gh is again canonically isomorphic to G, any Lie
algebroid which is the Lie algebroid of a Lie groupoid may be constructed as a generalized
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Atiyah sequence. There is no prospect of extending to generalized Atiyah sequences the
very rich theory known for the usual notion of Atiyah sequence, which depends essentially
on transitivity.

Although generalized principal bundles are equivalent to both affinoid structures and
butterfly diagrams (see [6, §3]), it is clear that generalized Atiyah sequences embody only
a part of the information in an infinitesimal butterfly diagram.
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