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Abstract. Dirac structures are characterized in terms of their characteristic pairs defined in
this note and then Poisson reductions are discussed from the point of view of Dirac structures.

1. Introduction. Dirac structures on manifolds include closed 2-forms, Poisson
structures, and foliations which were introduced by Courant and Weinstein and tho-
roughly investigated in [2]. Their Lie algebroid version was developed by Weinstein, Xu
and the author in [6] and [7].

In this note, we characterize a Dirac structure in terms of its characteristic pair
(D, Ω), which consists of a subbundle and a bivector field. One can see that it becomes
more convenient to check the integrability and to study the reduction of a Dirac structure
described this way. In the Lie bialgebra case, such a description is given by Diatta and
Menida in [3].

As natural generalizations of symplectic reductions, Poisson reductions admit many
applications. There are already several versions and different approaches for doing it,
e.g., Marsden and Ratiu’s theorem in [10] and that in [13] given by Weinstein by means
of the coisotropic calculus. In fact, it is also an original purpose of the construction of
Dirac structures to describe Poisson reductions. Of course, the same conclusion can be
obtained from all of other approaches. But, anyway, we wish to illuminate more geometric
pictures and algebraic relations behind the Poisson reduction in order to construct a
unified framework for its various generalizations (e.g., [1], [4], [8], [11] and [12]) by use of
the theory of Dirac structure, which has been shown to be a powerful tool as well as a
beautiful theory.
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2. Preliminaries. In this section, we recall some basic facts concerning Lie bialge-
broids and Dirac structures, which will be used below.

A Lie bialgebroid is a pair of Lie algebroids (A, A∗) satisfying the following compat-
ibility condition (see [9], [5] for more details):

d∗[X,Y ] = [d∗X,Y ] + [X, d∗Y ], ∀X,Y ∈ Γ(A), (1)

where the differential d∗ on Γ(∧∗A) comes from the Lie algebroid structure on A∗.
Given a Lie algebroid A over P with anchor a and a section Λ ∈ Γ(∧2A), denote by

Λ# the bundle map A∗ → A defined by Λ#(ξ)(η) = Λ(ξ, η),∀ξ, η ∈ Γ(A∗). Introduce a
bracket on Γ(A∗) by

[ξ, η]Λ = LΛ#ξη − LΛ#ηξ − d[Λ(ξ, η)]. (2)

By a∗ we denote the composition a ◦ Λ# : A∗ → TP . Thus, A∗ with the bracket and
anchor a∗ defined above becomes a Lie algebroid if

[Λ,Λ] = 0. (3)

In this situation, the induced differential on Γ(∧∗A) has the form d∗ = [Λ, ·], which satis-
fies condition (1) naturally. The Lie bialgebroid arising in this way is called a triangular
Lie bialgebroid and denoted as (A,A∗, Λ). When P is reduced to a point, i.e., A is a
Lie algebra, equation (3) is just the classical Yang-Baxter equation, i.e., Λ is a classical
r-matrix. On the other hand, when A is the tangent bundle TP with the standard Lie
algebroid structure, equation (3) is equivalent to Λ being a Poisson tensor.

For any vector bundle A with the dual bundle A∗, there exist two natural nonde-
generate bilinear forms on the direct sum bundle A ⊕ A∗, one symmetric and the other
antisymmetric, which are defined as follows:

(X1 + ξ1, X2 + ξ2)± =
1
2

(〈ξ1, X2〉 ± 〈ξ2, X1〉). (4)

When (A,A∗) is a Lie bialgebroid over P , with anchors a and a∗ respectively, a bracket
is introduced in [6], on the section space Γ(A⊕A∗), as follows:

[e1, e2] = ([X1, X2] + Lξ1X2 − Lξ2X1 − d∗(e1, e2)−)
+([ξ1, ξ2] + LX1ξ2 − LX2ξ1 + d(e1, e2)−),

(5)

where e1 = X1 + ξ1 and e2 = X2 + ξ2. The bundle A ⊕ A∗ together with this bracket
and the bundle map ρ := a + a∗ : A ⊕ A∗ → TP satisfies certain properties as listed in
[6] and is called the double of Lie bialgebroid (A,A∗). Such an object is also named a
Courant algebroid since if A is the tangent bundle Lie algebroid TP and A∗ = T ∗P with
zero bracket, then equation (5) takes the form:

[X1 + ξ1, X2 + ξ2] = [X1, X2] + {LX1ξ2 − LX2ξ1 + d(e1, e2)−}, (6)

which was first introduced by Courant in [2]. On the other hand, when (A,A∗) is a Lie
bialgebra (g, g∗), the bracket above is reduced to the well known Lie bracket on the double
g⊕ g∗.

A Dirac structure for a Lie bialgebroid (A, A∗) is a subbundle L ⊂ A ⊕ A∗, which
is maximally isotropic with respect to symmetric bilinear form (·, ·)+ defined in (4) and
integrable in the sense that Γ(L) is closed with bracket operation (5). Two important
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classes of Dirac structures are given in the following two propositions, which are studied
in [6].

First, let Ω ∈ Γ(∧2A) and Ω# : A∗ → A, the corresponding bundle map. Then the
graph of Ω#,

L = graph(Ω#) = {Ω#ξ + ξ| ∀ξ ∈ A∗},

defines a maximal isotropic subbundle of A⊕A∗.

Proposition 2.1. With the notation above, L is a Dirac subbundle iff Ω satisfies the
Maurer-Cartan type equation:

d∗Ω +
1
2

[Ω,Ω] = 0. (7)

Such an Ω is called a Hamiltonian operator. Another class of Dirac structures related
to Poisson reduction and dual pairs of Poisson manifolds, called null Dirac structures, is
characterized in the following way.

Proposition 2.2. Let D ⊆ A be a smooth subbundle of A, and D⊥ ⊆ A∗ its conormal
bundle. Then L := D ⊕ D⊥ ⊂ A ⊕ A∗ is a Dirac structure iff both D and D⊥ are
respectively Lie subalgebroids of A and A∗.

3. Characteristic pairs of Dirac structures. It is seen that a null Dirac structure
is characterized by a subbundle and a graph Dirac structure is characterized by a bivector
field. For more general construction of Dirac structures, they can be characterized by their
characteristic pairs defined below.

Let A be a vector bundle. Any pair (D,Ω) of a smooth subbundle D ⊆ A and bivector
field Ω ∈ Γ(∧2A) corresponds to a maximal isotropic subbundle of A ⊕ A∗ with respect
to the inner product (·, ·)+ defined in (4) as follows:

L = {X + Ω#ξ + ξ | ∀X ∈ D, ξ ∈ D⊥} = D ⊕ graph(Ω#|D⊥). (8)

where D⊥ ⊆ A∗ is the conormal bundle of D. We call such a pair the characteristic pair
of L, where D = L ∩A is called the characteristic subbundle of L.

Conversely, any maximal isotropic subbundle L ⊂ A such that L∩A is of constant rank
can be always described by such a characteristic pair. In general, the rank of L∩A is not
necessarily constant. But, sometimes, L can also be described by its singular characteristic
subbundle with a smooth bivector field. For simplicity, we consider the regular case only
in this note.

Notice that the restricted bundle map Ω#|D⊥ is equivalent to a bivector field on
quotient bundleA/D. Thus, taking pr : A→ A/D as the natural projection, we see that
two pairs (D1,Ω1) and (D2,Ω2) define the same subbundle by equation (8) iff

D1 = D2 and pr(Ω1) = pr(Ω2), i.e., Ω1 − Ω2 ≡ 0(modD),

where pr denotes also its induced map Γ(∧∗A) → Γ(∧∗A/D). In the above equation as
well as in the sequel, a section Ω ∈ Γ(∧∗A) is said to equal zero modulo D, denoted as
Ω ≡ 0(modD), if its projection under pr vanishes in Γ(∧∗A/D).
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Even though L is related only to pr(Ω) ∈ Γ(∧2A/D) instead of Ω itself, it is convenient
to characterize the integrability conditions of L in terms of Ω since sections of ∧∗A admit
nice operations such as the exterior derivative and the Schouten bracket.

Theorem 3.1. Let (A,A∗) be a Lie bialgebroid, L ⊂ A ⊕ A∗ a maximal isotropic
subbundle defined by a characteristic pair (D, Ω). Then L is a Dirac structure if and
only if the following three conditions hold:

1. D is a Lie subalgebroid.
2. Ω satisfies the Maurer-Cartan type equation (mod D), i.e.,

d∗Ω +
1
2

[Ω,Ω] ≡ 0(modD). (9)

3. D⊥ is integrable for the sum bracket [·, ·] + [·, ·]Ω where [·, ·]Ω is given by expression
(2), i.e.,

[ξ, η] + [ξ, η]Ω ∈ Γ(D⊥), ∀ξ, η ∈ Γ(D⊥). (10)

Proof. By definition, L is a Dirac structure iff L is closed with respect to bracket
(5). First, for ∀ξ, η ∈ Γ(D⊥), by straightforward calculation, we can get the following
formula:

[Ω#ξ + ξ,Ω#η + η] = −(d∗Ω + 1
2 [Ω,Ω])#(ξ, η)

+Ω#([ξ, η] + [ξ, η]Ω) + ([ξ, η] + [ξ, η]Ω).
(11)

Comparing with (8), the definition of L, we have [Ω#ξ + ξ,Ω#η + η] ∈ Γ(L) iff

(d∗Ω +
1
2

[Ω,Ω])#(ξ, η) ∈ Γ(D) and [ξ, η] + [ξ, η]Ω ∈ Γ(D⊥),

which are just conditions (9) and (10). Moreover, for ∀X ∈ Γ(D) and ξ ∈ Γ(D⊥), we
have

[X,Ω#ξ + ξ] = [X,Ω#ξ] + [X, ξ]
= [X,Ω#ξ] + LXξ − LξX + 1

2 (d∗ − d) < X, ξ >

= [X,Ω#ξ]− LξX − Ω#(LXξ)
+Ω#(LXξ) + LXξ

(12)

It is easy to see that LXξ ∈ Γ(D⊥), if D is integrable. Thus, [X,Ω#ξ + ξ] ∈ Γ(L) iff

[X,Ω#ξ]− LξX − Ω#(LXξ) ∈ Γ(D). (13)

Now, we take any η ∈ Γ(D⊥) and calculate the following expression, which means that
condition (13) is equivalent to condition (10).

< [ξ, η] + [ξ, η]Ω, X > = < [ξ, η], X > + < LΩ#ξη,X >

− < LΩ#ηξ,> −X < Ω#ξ, η >

= − < η,LξX > + < η, [X,Ω#ξ] > − < η,Ω#(LXξ) >
= < η , [X,Ω#ξ]− LξX − Ω#(LXξ) > .

That is, [Γ(D), Γ(graph(Ω#|D⊥))] ⊆ Γ(L) is equivalent to condition (10) and the inte-
grability of D. This concludes the proof.

In the Lie bialgebra case, D becomes a Lie subalgebra and the other two conditions
(9) and (10) are reduced to those given by Diatta and Menida in [3]. For the triangular Lie
bialgebroids, we have an alternative statement of the theorem above, which is particularly
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helpful to discuss Poisson reductions since to any Poisson manifold there corresponds
naturally a triangular Lie bialgebroid. First, note that, for a triangular Lie bialgebroid
(A,A∗, Λ), there are the following formulas:

d∗Ω +
1
2

[Ω,Ω] = [Λ,Ω] +
1
2

[Ω,Ω] =
1
2

[Λ + Ω,Λ + Ω]

and

[·, ·]Λ + [·, ·]Ω = [·, ·]Λ+Ω.

Corollary 3.2. Let (A,A∗,Λ) be a triangular Lie bialgebroid, L ⊂ A⊕A∗ a maximal
isotropic subbundle with a fixed characteristic pair (D, Ω). Then L is a Dirac structure
iff the following three conditions hold:

1. D is a Lie subalgebroid.
2. [Λ + Ω,Λ + Ω] ≡ 0(modD).
3. Λ + Ω is D-invariant (modD), i.e., [X, Λ + Ω] ≡ 0(modD), ∀X ∈ Γ(D).

Proof. From the analysis above, we need only show that Λ + Ω being D-invariant
(modD) is equivalent to D⊥ ⊂ A∗ being closed under the bracket operation [·, ·]Λ+Ω.
This fact can be checked directly.

Example. An integrable Jacobi structure on a manifold P is a pair (X,Ω) of a vector
field and a bivector field such that

[Ω,Ω] = 2X ∧ Ω and [X,Ω] = 0.

Suppose that X is nondegenerate everywhere and, by D, denote the 1-dimensional dis-
tribution of TP generalized via X, which is certainly integrable. Then, [Ω,Ω] = 2X ∧ Ω
means that [Ω,Ω] ≡ 0(modD) Thus, by Corollary 3.2, (D,Ω) is the characteristic pair of
a Dirac structure for the ordinary Lie bialgebroid (TP, T ∗P, 0).

Remark 3.3. Let (P,Λ) be a Poisson manifold. Then (TP, T ∗P,Λ) is a triangular
Lie bialgebroid. For a characteristic pair (D, Ω), D is called reducible if, for the induced
foliation F , the quotient space P/F is a nice manifold and the projection is a submersion.
Then, in this case, it is clear that Λ + Ω being D-invariant (modD) is equivalent to that
Λ + Ω can be reduced to a bivector field on P/F and the condition [Λ + Ω,Λ + Ω] ≡
0(modD) is equivalent to the fact that the reduced bivector field is a Poisson tensor
on P/F .

To construct the Poisson reduction in terms of Dirac structures, we need to study the
pullback Dirac structrues. In [7], with A. Weinstein and P. Xu, we studied such kind of
Dirac structures by means of the Lie bialgebroid morphisms which are supposed to be
surjective. Here we give a special kind of pullback Dirac structures with some alternative
conditions, which will be used in the next section.

Proposition 3.4. Let A be a Lie algebroid, (B,B∗, Λ) a triangular Lie bialgebroid
and Φ : A → B a Lie algebroid morphism with constant rank, which covers a surjective
map between the bases. Then the following two statements are equivalent.

1. There exists a Dirac structure for the Lie bialgebroid (A,A∗, 0) such that its cha-
racteristic pair is (kerΦ, Λ̄), where Φ(Λ̄) = Λ,i.e., Λ̄ and Λ are Φ-related.
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2.

Im(Λ#) ⊆ Im(Φ). (14)

Proof. It is clear that kerΦ ⊆ A is an integrable subbundle and kerΦ⊥ = Im(Φ∗) ⊆
A∗ can be identified as the dual bundle of A/kerΦ. Note that, for α, β ∈ Γ(kerΦ⊥),
there exist ξ, η ∈ Γ(B∗) such that α = Φ∗ξ and β = Φ∗η. By definition, if there is some
Λ̄ ∈ Γ(∧2A/kerΦ) which is Φ-related to Λ, it should be defined as

Λ̄(α, β) = Λ(ξ, η) =< Λ#ξ, η >, ∀α, β ∈ Γ(kerΦ⊥).

It is easy to see that such a Λ̄ is well-defined iff kerΦ∗ ⊆ kerΛ#, i.e., Im(Λ#) ⊆ Im(Φ).
In this case, Λ̄ is a section of the quotient bundle ∧2(A/kerΦ). We take the same symbol
to denote an arbitrary representative of Λ̄ in Γ(∧2A). Moreover, we have

Φ[Λ̄, Λ̄] = [ΦΛ̄,ΦΛ̄] = [Λ,Λ] = 0 ⇐⇒ [Λ̄, Λ̄] ≡ 0(mod kerΦ)

since Φ is Lie algebroid morphism and Λ is triangular. Morover, for any X ∈ Γ(ker Φ) we
have

Φ[X, Λ̄] = [ΦX,ΦΛ̄] = [0,ΦΛ̄] = 0 ⇐⇒ [X, Λ̄] ≡ 0(mod kerΦ).

Thus, by Corollary 3.2, (kerΦ, Λ̄) corresponds to a Dirac structure for the Lie bialgebroid
(A,A∗, 0).

4. Poisson reductions. In this section we consider the Poisson reductions in terms
of Dirac structures as an application of the characteristic pairs. As mentioned at the
beginning of this note, the conclusion is essentially the same with all the others, e.g., in
[10] and [13]. But we wish to construct a general framework for the Poisson reduction
and its various generalizations by use of the theory of Dirac structure.

Let (P,Λ) be a Poisson manifold, N ⊂ P a submanifold and i : N → P the inclusion.
Suppose that D ⊂ TP is a smooth subbundle and both D and D0 := D∩TN are reducible
(see Remark 3.3) with their induced foliations F on P and F0 on N respectively. This
implies that we have the following commutative diagram:

N
i

−−−→ P

ρ

y
yπ

N/F0 −−−→
ϕ

P/F

(15)

where ρ and π are the projections. Notice that any leaf of F0, i.e., a point in N/F0, is
just a connected component of the intersection between N and some leaf of F , so that
under some clean intersection condition, we can always suppose ϕ : N/F0 → P/F is an
immersion (locally injective).

Now let L = D + D⊥ be a null Dirac structure for the triangular Lie bialgebroid
(TP, T ∗P, Λ). So there is a reduced Poisson structure Λr = π∗Λ on P/F such that π is
Poisson map. By the regularity assumption , the map, π ◦ i : N → P/F , has constant
rank. Thus, its tangent map Φ := (π ◦ i)∗ : TN → T (P/F) can be considered a Lie
algebroid morphism with the constant rank and kerΦ = D0. Thus, by Proposition 3.4,
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there exists a Dirac structure for the Lie bialgebroid (TN, T ∗N, 0) with its characteristic
pair, (D0, Λ̄r), and Φ(Λ̄r) = Λr iff Im(Λ#

r ) ⊆ Im(Φ) holds on T (P/F). Equivalently, on
the submanifold N ⊂ P , the condition above is expressed as follows:

Λ#(D⊥) ⊆ TN +D, (16)

where TN is identified with i∗(TN). Furthermore, from this pullback Dirac structure,
we get a reduced Poisson structure Λ0 on N/F0 such that Λ0 = ρ∗Λ̄r (see Remark 3.3).
Notice that commutative diagram (15) means:

Λr = ΦΛ̄r = (π ◦ i)∗Λ̄r = (ϕ ◦ ρ)∗Λ̄r = ϕ∗Λ0.

This implies that ϕ : N/F0 → P/F is a Poisson map. We summarize the result above in
the following theorem.

Theorem 4.1. With the notation above, let (P,Λ) be a Poisson manifold, N ⊂ P a
submanifold. D ⊂ TP is a smooth subbundle such that D+D⊥ is a null Dirac structure
and both D and D0 = D ∩ TN are reducible. Then the following two statements are
equivalent.

1. There exists a Poisson structure Λ0 on N/F0 such that

π∗Λ = ϕ∗Λ0. (17)

2. Λ#(D⊥) ⊆ TN +D holds on N .

Here, two Poisson manifolds (P,Λ) (the phase space) and (N/F0,Λ0) (the reduced
phase space) are connected by means of the Poisson manifold (P/F ,Λr) (induced from
the null Dirac structure) with two Poisson maps π and ϕ.

Remark 4.2. In fact, not only for a null Dirac structure but also for any Dirac
structure L ⊂ TP ⊕T ∗P with its characteristic pair (D, Ω), we can get a twisted Poisson
structure, Λr + Ωr on P/F . Thus, if condition (14) holds for Λr + Ωr or, equivalently,
(16) holds for Λ+Ω, there is a pullback Dirac structure on N with its characteristic pair,
(D0, Λ̄r+Ω̄r), which is Φ-related to Λr+Ωr Furthermore, there still is a reduced Poisson
structure Λ0 + Ω0 on N/F0. It is easy to see that ϕ : N/F0 → P/F is always a Poisson
map. But π : P → P/F is a Poisson map iff Ω ≡ 0(modD), i.e., the corresponding Dirac
structure is null.

When the Poisson tensor Λ is nondegenerate, i.e., (P,Λ−1) is a symplectic manifold,
it is not difficult to justify the following statement.

Corollary 4.3. With the notation above, the reduced Poisson structure Λ0 on N/F0

is nondegenerate iff Im(Λ#
r ) = Im(Φ) holds in T (P/F) or, equivalently, iff

Λ#(D⊥) +D = TN +D ⇐⇒ ker(Λ#|D⊥) = TN⊥ ∩D⊥

holds on N ⊂ P . In this situation, (N/F0,Λ−1
0 ) is a symplectic manifold and its any

connected component can be identified with a symplectic leaf of (P/F ,Λr).
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A well-known situation is as follows:

G× {µ}
i

−−−→ T ∗G

ρ

y
yπ

G/Gµ −−−→
ϕ

g∗

(18)

for a Lie group G and T ∗G identified with G × g∗ by left translation. This commuta-
tive diagram represents the famous Lie-Poisson reduction as a special situation of the
Marsden-Weinstein reduction theorem. More general situations can be found in [8] for
Poisson Lie group action and in [11] for symplectic groupoid action.

The Poisson reduction theorem above can be formulated in the dual form, i.e., by the
Poisson bracket. For g0, h0 ∈ C∞(P/F) , we pull them back to P and N/F0 respectively
and denote them by

g = ϕ∗g0, h = ϕ∗h0 ∈ C∞(N/F0), G = π∗g0, H = π∗h0 ∈ C∞(P ).

By means of commutative diagram (15) and the fact that both π and ϕ are Poisson maps,
we get the following relationship between the two Poisson manifolds:

ρ∗{g, h}N/F0 = i∗{G,H}P . (19)

Since ϕ is locally injective, any g ∈ C∞(N/F0) can be considered locally (globally when
ϕ is injective) as the pullback of some g0 ∈ C∞(P/F) as above. Moreover, G = π∗g0 is,
in fact, a local extension of ρ∗g from N to P . It is easy to see that equations (17) and
(19) are equivalent. Thus we have

Corollary 4.4. With the same notations as in Theorem 4.1, the following state-
ments are equivalent.

1. There exists a Poisson structure Λ0 on N/F0 such that equation (19) holds for all
g, h ∈ C∞(N/F0) and their local extensions G,H.

2. Λ#(D⊥) ⊆ TN +D.
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