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Abstract.We give different notions of Liouville forms, generalized Liouville forms and verti-
cal Liouville forms with respect to a locally trivial fibration π : E →M . These notions are linked
with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of
these forms; we also investigate the relations with momentum maps.

0. Introduction. The source of this paper is the article due to D. Alekseevsky, J. Gra-
bowski, G. Marmo and P. W. Michor [A.G.M] on “Poisson structures on the cotangent
bundle of a Lie group or a principal bundle and their reductions”.

Our purpose is to recover and complete some of their results by utilizing the tools
introduced in the book [L.M], mainly the semi-basic forms with respect to a locally trivial
fibration π : E → M . Such a form η on E is the pull-back of the natural Liouville form
θM on M by a morphism f : E → T ∗M . This morphism associated with a semi-basic
form is underlying the paper [A.G.M].

The Liouville forms and generalized Liouville forms are semi-basic forms η such that
dη is symplectic on E. So the fibers are Lagrangian, or at least isotropic (in the generalized
case). We study the infinitesimal automorphisms of these forms.

When dealing with generalized Liouville forms we prescribe the extra condition: the
foliation defined by the fibration π : E →M is symplectically complete. Then we have a
single local model if the dimension of E is given. In the case of a Liouville form, we have
a Lagrangian foliation and the condition is satisfied.

We introduce the “vertical Liouville forms”. In the case of a principal G-bundle π :
P → M , they are linked with the momentum map J : T ∗P → G∗ associated with the
Hamiltonian action of G on T ∗P . In particular the submanifold J−1(0) of T ∗P is the
vector subbundle P̃ = P ×M T ∗M of T ∗P whose sections are the semi-basic forms. The
reduced manifold J−1(0)/G is symplectically diffeomorphic to T ∗M . We compare our
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results with those of Kummer [K] and Weinstein [W]. We thank P. Urbański for his
counter-example.

Notations. All manifolds and maps are supposed to be C∞. The objects which do
not depend upon a connection (semi-basic forms, vertical forms) will be called natural.
The horizontal objects depend upon a connection.

The projections TN → N and T ∗N → N will be denoted by p and q. The Lie
derivative with respect to a vector field X will be denoted L(X). We shall distinguish

R∗ = multiplicative group of non-zero real numbers,
R∗ = dual of the 1-dimensional vector space R.

1. Some facts about Pfaffian semi-basic and vertical forms [L.M]

1.1. Let π : E →M be a locally trivial fibration, V E = kerTπ be the vertical bundle.
We have the exact sequence of vector bundles with base E:

0→ V E
ι→ TE → TE/V E = E ×M TM → 0 ;

by duality we obtain

0→ E ×M T ∗M = π∗T ∗M
ψ→ T ∗E

j→ V ∗E → 0,

where ψ is defined by ψ(y, ϕ) = T ∗y π(ϕ); so E×M T ∗M , kernel of the projection j, is the
annihilator (V E)0 of the vertical bundle V E. Let η be a Pfaffian form on E. We have
proved in [L.M, ch. II] that the following properties are equivalent:

1) For every vertical vector field X on E, i.e. for every section of V E → E,

i(X)η = 0.

2) For every y ∈ E, there exists a unique form ϕ in T ∗π(y)M such that

ηy = T ∗y π(ϕ).

3) η is a section of the vector fibration

pr1 : E ×M T ∗M → E.

A Pfaffian form η on E is said to be semi-basic if it has any one of these three
properties.

A basic form η is the pull back π∗µ of a Pfaffian form on M ; a basic form is semi-
basic, which is what justifies the terminology introduced by G. Reeb [R]. See also [G]. In
[A.G.M] a semi-basic form is called horizontal according to the terminology introduced
by Kobayashi-Nomizu.

To any semi-basic form η, there corresponds a fiber morphism f = pr2 ◦ η from E

to T ∗M (pr2 being the projection E ×M T ∗M → T ∗M). Conversely if f : E → T ∗M is
given, the form η such that

ηy = T ∗y π
(
f(y)

)
is semi-basic. In particular for the vector bundle q : T ∗M → M , the semi-basic form
corresponding to the identity mapping of T ∗M is the natural Liouville form θM , as was
proved by G. Reeb [R]. In [L.M] it is also proved that the relation between η and f can
be explained in the following way: for any semi-basic form η on E, there exists a fiber
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morphism f : E → T ∗M such that η = f∗θM . Conversely if f is a morphism E → T ∗M ,
then the form f∗θM is semi-basic.

By means of adapted coordinates (x1, . . . , xn, y1, . . . , yk) on π−1(U) and (x1, . . . , xn,

p1, . . . , pn) on q−1(U), where U is an open set in M , the forms η and θM may be written

η =
n∑
1

ai(x1, . . . , xn, y1, . . . , yk) dxi, θM =
n∑
1

pi dx
i.

Then the morphism f is defined locally by

ai = pi.

It is also proved in [L.M] that the forms induced on the manifold E ×M T ∗M by the
Liouville forms θE on T ∗E and θM on T ∗M coincide. In other words we have

ψ∗θE = pr∗2 θM .

This can be checked using local coordinates (x1, . . . , xn, p1, . . . , pn) on T ∗M , (x1, . . . , xn,

y1, . . . , yk, p1, . . . , pn, r1, . . . , rk) on T ∗E. The submanifold E×M T ∗M of T ∗E is defined
locally by r1 = · · · = rk = 0. We have

θE =
n∑
1

pi dx
i +

k∑
1

rα dy
α, θM =

n∑
1

pi dx
i,

hence

ψ∗θE = pr∗2 θM =
n∑
1

pi dx
i.

The form η = pr∗2 θM is by definition basic with respect to the projection E ×M T ∗M →
T ∗M . It could be called the transverse Liouville form.

1.2. A section µ of the vector bundle V ∗E → E is called a vertical 1-form (or a 1-form
along the fibers of π : E →M). As V ∗E is not a subbundle of T ∗E, µ is not a differential
form in the usual sense; µ acts only on vertical vectors.

The projection j : T ∗E → V ∗E associates a vertical 1-form µ with any 1-form on E.
If η is semi-basic, then µ = 0.

By means of local coordinates (x1, . . . , xn, y1, . . . , yk) the vertical 1-form may be re-
presented by

µ =
∑

bi(x1, . . . , xn, y1, . . . , yk) dyk.

Let π1 : E1 → M and π2 : E2 → M be locally trivial fiber bundles. As a morphism
g : E1 → E2 maps fibers into fibers, Tg transforms vertical vectors into vertical vectors.
We can thus define the pull-back g∗µ of a vertical form µ on E2, as the vertical form on
E1 satisfying the condition: for every y ∈ E1 and every v ∈ VyE1,〈

(g∗µ)y, v
〉

=
〈
µg(y), Tyg(v)

〉
.

2. On various notions of “Liouville forms”

2.1. In [L.M, chapter V] a Liouville structure on a manifold P is defined by a closed
2-form Ω without zeros which is homogeneous of degree 1 under the action h of the
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multiplicative group R∗ i.e. h∗λΩ = λΩ for every λ ∈ R∗. Then the vector field Z on P ,
opposite of the fundamental vector field satisfies the relation

L(Z)Ω = Ω.

The form η = i(Z)Ω is called the Liouville form of the Liouville structure. This form
satisfies the relations

dη = Ω, L(Z)η = η.

If Ω is symplectic, the Liouville structure is said to be symplectic.
When the action of R∗ is free and regular, the projection π of P on the space M of

orbits defines a R∗-principal bundle (P, π,M). The fibers being the trajectories of the
vector field Z, the Liouville form η is semi-basic with respect to the projection π. For
instance let E be a Pfaffian equation on a manifold M i.e. E is a subbundle of rank 1
of T ∗M ; let us consider the complement E0 of the zero section of E ; then (E0, q,M) is a
principal bundle. The Liouville form η on E0 is the form induced by the natural Liouville
form θM on T ∗M . The form dη is symplectic if and only if E is a contact structure i.e.
if any nonzero section of E is a contact form; in this case the manifold E0 is called by
Arnold [A] the symplectification of the contact manifold M .

2.2. In this paper, a semi-basic form η such that dη is symplectic will be called a
generalized Liouville form with respect to a locally trivial fibration π : E →M .

Then the fibers are isotropic submanifolds of E; so each fiber is of dimension k ≤ n,
where n = dimM .

For k = 1, we recover in particular the Liouville form, in the sense of 2.1, of a
symplectic Liouville structure.

2.3. For k = n, the generalized Liouville form η will be called the Liouville form
according to the terminology of [A.G.M]. This is the case of the natural Liouville form
θM on T ∗M .

When π : E → M is endowed with a Liouville form, then the rank of Ω = dη is 2n
and the morphism f : E → T ∗M such that dη = f∗dθM is locally a diffeomorphism. The
fibration π : E →M could be called a cotangent-like bundle.

The fibers are Lagrangian submanifolds of E. It is known that the leaves of a Lagran-
gian foliation on a symplectic manifold are locally affine. In the case of a Liouville form,
the proof is easy. Let U and U ′ be open subsets of M with local coordinates (x1, . . . , xn)
in U , (y1, . . . , yn) in U ′. If in an open subset U of π−1(U), η is written

∑n
i=1 ai dx

i,
then dη =

∑n
i=1 dai ∧ dxi being of rank 2n, the functions (x1, . . . , xn, a1, . . . , an) are

independent and constitute a system of local coordinates. Similarly in an open subset U ′
of π−1(U ′), dη is written

∑n
j=1 dbj ∧ dyj , where (y1, . . . , yn, b1, . . . , bn) are local coordin-

ates. Suppose that U ∩ U ′ is not empty. Then in U ∩ U ′ we have dyj =
∑
Aji dx

i, hence
ai =

∑n
1 A

j
i bj , where the Aji are functions in U ∩U ′. In the connected components of the

intersection of U ∩ U ′ with each fiber, the functions Aji are constant.

2.4. Let π : E →M be endowed with a generalized Liouville form. Moreover suppose
that M is parallelizable, i.e. there exists a diffeomorphism Φ : TM →M × V such that,
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p1 and p2 being the projections of M × V on M and V , the following conditions are
fulfilled.

a) p1 ◦ Φ = p;
b) the restriction αx to TxM of α = p2 ◦ Φ is an isomorphism.

By duality we get a diffeomorphism Ψ : T ∗M → M × V ∗ such that, q1 and q2 being
the projections of M × V ∗ on M and V ∗,

a) q1 ◦Ψ = q;
b) the restriction βx to T ∗xM of β = q2 ◦Ψ is the contragredient of αx.

Then any morphism f : E → T ∗M induces a mapping g = β ◦ f from E to V ∗.
Conversely a mapping g : E → V ∗ induces the morphism f : E → T ∗M such that

f(z) = Ψ−1
(
q(z), g(z)

)
.

The corresponding semi-basic form f∗θM is the form Θg introduced in [A.G.M]. This
form f∗θM is a Liouville form if and only if f is a local diffeomorphism.

For any manifold M the natural Liouville form θM is the form on T ∗M which asso-
ciates with any v ∈ TT ∗M the scalar〈

p(v), T q(v)
〉
.

When there exists a parallelism Φ : TM → M × V , the form θM may be defined as the
form associating with v ∈ TT ∗M the scalar〈

β ◦ p(v), α ◦ Tq(v)
〉
.

In particular this is the case when the base manifold M is a Lie group G, with Lie
algebra G. Then the tangent bundle TG and the cotangent bundle T ∗G are endowed
with two trivializations, corresponding to the liftings to TG and T ∗G of the left and
right translations on G.

Let TLs and L̂s be the liftings to TG and T ∗G of the left translation by s ∈ G. Then
the left trivializations

ΦL : TG→ G× G,, ΨL : T ∗G→ G× G∗

are defined by the morphisms αL : TG→ G and βL : T ∗G→ G∗ such that

αL(z) = TLq(z)−1(z), βL(z) = L̂q(z)−1(z).

So for z ∈ T ∗G and v ∈ TzT ∗G, we obtain

〈θG|z, v〉 = 〈L̂q(z)−1z, TLq(z)−1 ◦ Tq(v)〉,

where θG|z is the restriction of θG to TzT ∗G; if we consider θG as a section of the bundle
T ∗T ∗G→ T ∗G, then θG|z may be written θG(z). We recover a formula of [L.M, ch.IV].

Similarly the Liouville form θG can be expressed in terms of right translations.

3. Infinitesimal automorphisms of a generalized Liouville form

3.1. Let Z be a vector field on a manifold N . A differential r-form µ on N (with
r ≥ 0) is said to be homogeneous of degree m with respect to Z if

(∗) L(Z)µ = mµ.
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A vector field X on N is said to be homogeneous of degree s if

(∗∗) [Z,X] = (s− 1)X.

In particular, Z is homogeneous of degree 1.
In contrast to the definition in 2.1, Z is not necessarily complete.
Simple calculations show the following:

a) if µ is homogeneous of degree m, so is dµ;
b) if µ is homogeneous of degree m and X homogeneous of degree s, then i(X)µ and

L(X)µ are homogeneous of degree m+ s− 1;
c) if X1 and X2 are homogeneous of degrees s1 and s2, then [X1, X2] is homogeneous

of degree s1 + s2 − 1.

In particular for forms and vector fields homogeneous of degree 1, i(X)µ, L(X)µ,
[X1, X2] are homogeneous of degree 1.

From now on homogeneous will mean homogeneous of degree 1.

3.2. Let (N,Ω, Z) be a symplectic manifold such that Ω is homogeneous with respect
to a vector field Z. Then the symplectic duality transforms homogeneous vector fields
into homogeneous 1-forms. The converse is true. More precisely

Lemma 1. Let (N,Ω, Z) be a homogenous symplectic manifold, and X be a vector field
on N such that i(X)Ω is homogeneous; then X is homogeneous.

Proof. From the formula

(∗) i[X,Z]Ω = i(X)L(Z)Ω− L(Z)i(X)Ω,

we deduce, when Ω and i(X)Ω are homogeneous,

i[X,Z]Ω = i(X)Ω− i(X)Ω = 0 ;

as Ω is nondegenerate, the bracket [X,Z] vanishes.

On the manifold (N,Ω, Z) the form

η = i(Z)Ω

is homogeneous and satisfies the relation

Ω = dη.

Conversely if a Pfaffian form η on a manifold N has a symplectic differential dη, then η

is homogeneous with respect to the vector field Z such that η = i(Z)dη.
An infinitesimal automorphism of the form η is a vector field X such that

L(X)η = 0 ;

it follows that L(X)dη = 0.
Formula (∗) may also be written

(∗∗) i[X,Z]Ω = −i(Z)L(X)Ω + L(X)i(Z)Ω = −i(Z)L(X)Ω + L(X)η.

We deduce

Lemma 2. An infinitesimal automorphism X of Ω is also an infinitesimal automor-
phism of η if and only if X is homogeneous.
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Moreover as
L(X)η = i(X)dη + di(X)η,

if L(X)η = 0, then X is the hamiltonian vector field Xh corresponding to the function
h = i(X)η.

Conversely given a homogeneous function h, the hamiltonian vector field Xh such
that i(Xh)dη = −dh is homogeneous in view of lemma 1 and Xh is an infinitesimal
automorphism of η. The homogeneous functions h and i(Xh)η which have the same
differential coincide.

The homogeneous symplectic structure on N induces by duality a homogeneous Po-
isson structure (N,Λ, Z). We have (see [D.L.M])

(∗∗∗) L(Z)Λ = −Λ,

which is equivalent to the relation

(∗∗∗∗) L(Z){h, g} −
{
L(Z)h, g

}
−
{
h,L(z)g

}
= −{h, g},

where {h, g} is the Poisson bracket of the functions h and g defined by

{h, g} = Ω(Xh, Xg) = Λ(dh, dg).

This relation proves that the Poisson bracket of two homogeneous functions is homoge-
neous.

The preceding discussion may be summarized in the following theorem.

Theorem. Let (N,Ω, Z) be a homogeneous symplectic manifold; set η = i(Z)Ω.

a. There exists an isomorphism Φ from the vector space L of the infinitesimal au-
tomorphisms of the form η onto the vector space L′ of the real differentiable functions
defined on N , that are homogeneous. This isomorphism is determined by

Φ(X) = i(X)η.

Its inverse Φ−1 satisfies

Φ−1(h) = Ω]dh, i.e. i(X)Ω = −dh.

b. The bijection Φ is a Lie algebra isomorphism, with the usual bracket of vector fields
as the bracket on L and the restriction of the Poisson bracket as the bracket on L′.

This theorem has been formulated by Arnold [A] in the case of the symplectification of
a contact manifold. It was proved in [L.M] in the case of a fibered Liouville structure in the
sense of 2.1 which is not necessarily symplectic. The proof given here is a simplification.

3.3. In [L.M] we have proved that an infinitesimal automorphism X of a fibered
Liouville structure is projectable onto the base manifold; in particular when we consider
the symplectification of a contact structure, the projection Y of X is an infinitesimal
automorphism of the contact structure; conversely any infinitesimal automorphism of the
contact structure is lifted to an infinitesimal automorphism of the symplectic Liouville
structure.

The proof utilizes the fact that an infinitesimal automorphism of the Liouville struc-
ture is an infinitesimal automorphism of Ω which is invariant under the action of R∗;
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this proof is valid even when the fibers are not connected; this is the case of a principal
R∗-bundle.

3.4. Let us consider the case of a Liouville form η relative to the fibration π : E →M

(see 2.3). By means of adapted coordinates (xi, ai), the vector field Z may be written as∑n
1 ai∂/∂ai. It is a vertical vector field which could be called the Liouville vector field

associated with η.
Let Xh be a hamiltonian vector field on E. Its trajectories satisfy the Hamilton

equations
dxi

dt
=

∂h

∂ai
,

dai
dt

= − ∂h
∂xi

.

The function h will be called strongly homogeneous if ∂2h/∂ai∂aj = 0; then the ∂h/∂ai
are constant on the connected components of each fiber; this is independent of the choice
of local adapted coordinates as the leaves are locally affine. So the vector field Xh is
projectable along the leaves of the foliation onto a vector field Y tangent to M .

Conversely let Y be a vector field on M . According to [A.G.M], this vector field
Y defines a function h on E and the corresponding hamiltonian vector field Xh is an
infinitesimal automorphism of η. This can be proved as follows: the vector field Y defines
a section Ỹ of the bundle E ×M TM → E; on the other hand the semi-basic form η is a
section of E ×M T ∗M → E; so we may define the function h = 〈η, Y 〉 by

〈η, Y 〉 = 〈η, Ỹ 〉.

From the local expression of Y =
n∑
i=1

Xi ∂

∂xi
, we deduce that h =

n∑
i=1

aiX
i; so h is

strongly homogeneous. From the Hamilton equations

dxi

dt
= Xi,

it follows that Y is the projection of Xh. We remark that Xh is the only infinitesi-
mal automorphism of η which is projectable onto Y . Otherwise we could have a non-
zero vertical infinitesimal automorphism X of η; it is impossible because of the formula
L(X)η = i(X)dη + di(X)η, where η is semi-basic and dη nondegenerate.

The preceding discussion may be summarized as follows.

Theorem. Let η be a Liouville form relative to a locally trivial fibration π : E →M .
Any vector field Y on M may be lifted in a unique fashion to an infinitesimal automor-
phism of η. Conversely if the fibers are connected, any infinitesimal automorphism of η
corresponding to a strongly homogeneous function is projectable on M .

Remark. If h is homogeneous but not strongly homogeneous, Xh may not be pro-
jectable. P. Urbański has exhibited the following counter-example. Let θ = a1 dx

1+a2 dx
2

and Z = a1∂/∂a1+a2∂/∂a2 be the Liouville form and the dilation vector field in R2×R2.
The function h = (a1)2/a2 is not defined at the common zeros of θ and Z. In the open
set U = {(x1, x2, a1, a2) | a2 > 0} the fibers are connected and h is homogeneous with
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respect to Z. Indeed

dh =
2a1

a2
da1 −

(
a1

a2

)2

da2 and L(Z)h = i(Z) dh = h.

The vector field

Xh = 2
a1

a2

∂

∂x1
−
(
a1

a2

)2
∂

∂x2

such that i(Xh) dθ = −dh is an infinitesimal automorphism of θ. From Lemma 2 of 3.2
we deduce that Xh is an infinitesimal automorphism of θ but Xh is not projectable on
R2.

3.5. We now consider a generalized Liouville form η relative to a fibration π : E →M

such that the dimension of the fibers is strictly inferior to the dimension of M . To simplify
we shall assume that we have a simple foliation F (i.e. the fibers are connected).

A particular case of symplectic foliated manifold is discussed in [L1]. The foliation is
said to be symplectically complete if the Poisson bracket (induced by the dual Λ of Ω) of
two first integrals of F is also a first integral of F (eventually a constant). Moreover the
foliation is symplectically regular if the rank of the form induced on the leaves by Ω is
constant.

Let F be the subbundle of TE tangent to the foliation F . We have proved [L1] that F
is symplectically complete if and only if the orthogonal distribution orthF is completely
integrable defining a foliation F⊥ which also is symplectically complete.

In the case of a generalized Liouville form, the leaves are isotropic hence the foliation
is symplectically regular; F is the vertical subbundle V E and orth(V E) contains V E.

For a symplectically complete foliation there exists on the base M a unique Poisson
structure Λ such that π : E →M is a Poisson morphism. Indeed the first integrals of the
foliation being the pull-backs of the functions on M , the bracket {h, g} of two functions on
M is the unique function such that π∗{h, g} = {π∗h, π∗g}. For any first integral h = π∗h,
the hamiltonian vector field Xh is projectable on M onto a vector field Xh such that
L(Xh)g = L(Xh)g.

Moreover we shall assume that the foliation F is homogeneous in the sense of [L2], i.e.
the vector field Z (such that i(Z)Ω = η) satisfies the condition: L(Z)h is a first integral
whenever h is a first integral. It follows that Z is projectable onto a vector field Z and the
Poisson structure Λ is homogeneous with respect to Z. This property is a consequence of
formula (∗∗∗∗) of 3.2. When h and g are first integrals, by projection we obtain

L(Z){h, g} − {L(Z)h, g} − {h,L(Z)g} = −{h, g}.

From formula (∗∗∗∗) we deduce also that if Z is tangent to the foliation (or equivalently
Z = 0), then {h, g} = 0 for any pair of first integrals and the foliation is co-isotropic.
As this foliation was assumed to be isotropic, it is lagrangian and we are in the situation
investigated in 3.4.

For a Liouville structure as defined in 2.1, the vector field Z generates the fibers; so
the foliation defined by the fibration is homogeneous but not symplectically complete.
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3.6. As was done in the preceding sections except 3.5 we shall use the same letter for
a function on the base and its pull-back to E.

On a symplectic manifold (E,Ω) endowed with a symplectically regular foliation, the
Cartan-Darboux theorem (see [L1], [L.M] chapter III under the name of “second version
of Cartan’s theorem”) gives a local expression of Ω in terms of first integrals of the
distributions F and F⊥. This theorem is utilized in [L2] to give a local expression of
η = i(Z)Ω when the foliation is moreover homogeneous. The results of [L2] applied to
the case of an isotropic foliation may be stated as follows.

Theorem . Let η be a generalized Liouville form relative to a locally trivial fibration
π : E → M . If the foliation F defined by the fibration is symplectically regular and
homogeneous, then in the neighbourhood of every y ∈ E, there exist local coordinates
x1, . . . , x2s, x2s+1, . . . , xn, z1, . . . , zk (with n = dimM , n+ k = dimE, 2s = n− k) such
that η may be written η = η1 + η2 with

η1 = x1 dx2 + · · ·+ x2s−1 dx2s,

η2 = z1 dx2s+1 + · · ·+ zk dxn,

where x1, . . . , x2s, x2s+1, . . . , xn are first integrals of F , x2s+1, . . . , xn being also first in-
tegrals of the foliation F⊥.

The form η1 is basic with respect of the fibration π : E →M . It represents the form
induced by the form η on each fiber of the foliation F⊥. If this foliation is simple, i.e.
there exists a fibration π̃ : E → N = E/F⊥, then η1 represents a vertical form (in the
sense of 1.2) and η2 is a Liouville form with respect of the fibration π̃ : E → N .

The vector field Z such that i(Z)Ω = η is written Z = Z1 + Z2 with

Z1 = x1 ∂

∂x1
+ · · ·+ x2s−1 ∂

∂x2s−1
,

Z2 = z1 ∂

∂z1
+ · · ·+ zk

∂

∂zk
.

The vector field Z1 represents the projection of Z onto M and Z2 is vertical.
A generalized Liouville form with k = 1 occurs in Mechanics. Let N be a manifold

such that T ∗N is endowed with a time-dependent Hamiltonian Ht, i.e. there exists a
function H : T ∗N ×R→ R. The Poincaré-Cartan integral invariant

ω = θN −H dt

is a contact form on M = T ∗N ×R if the function A = i(ZN )dH −H has no zeros; here
ZN means the dilations vector field on T ∗N . Let us consider the manifold Q = N ×R
(configuration space-time). For its cotangent bundle T ∗Q we get

T ∗Q = T ∗N × T ∗R = T ∗N ×R×R∗ = M ×R∗ ;

the natural Liouville form θQ is written:

θQ = θN + p0 dt

where p0 and t are coordinates on R∗ and R.
For the trivial fibration π : T ∗Q→ M , the form θQ is a generalized Liouville form η

with η1 = θN and η2 = p0 dt. The vector field Z = Zn + p0 ∂/∂p0.
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Let Φ : T ∗N ×R→ T ∗Q be defined by

Φ(ζ, t) =
(
ζ, t,−H(ζ, t)

)
.

Then the image V of M = T ∗N ×R by Φ is the submanifold of T ∗Q defined by V =
K−1(0) where

K(ζ, t, p0) = H(ζ, t) + p0.

On V , the restriction XK |V of the hamiltonian vector field XK of T ∗Q is tangent to V .
The projections on the factor R∗ of the trajectories of XK |V satisfy the equation

p0 +H = 0

which is called the energy equation in Mechanics.
The diffeomorphism π|V : V → M projects XK |V onto the vector field YH = YHt +

∂/∂t, where YHt
on T ∗N is defined by i(YHt

)dθN = −dHt.
Fore more details see [L.M, chapter V].

Remark. The symplectification E0 of the contact manifold M = T ∗N×R is endowed
with the form λ(θN −H dt); as was noticed in 3.5, the foliation defined by the projection
E0 →M is not symplectically complete.

4. The vertical Liouville form and the momentum map

4.1. Let π : E →M be a locally trivial fibration, where E is not necessarily symplectic.
As the vertical bundle V E is a completely integrable vector subbundle of TE, it is

endowed with a Lie algebroid structure whose bracket is the induced bracket and whose
anchor map is the inclusion ι : V E → TE. According to [D.S], its dual V ∗E is endowed
with a homogeneous Poisson structure (V ∗E,Λ, Z) where Z is the dilation vector field
on V ∗E; the projection j : T ∗E → V ∗E is a homogeneous Poisson morphism. The
symplectic leaves of this Poisson structure are the cotangent bundles to the connected
components of the fibers of π : E → M ; these symplectic leaves are also the connected
components of the fibers of the fibration r : V ∗E →M . With each fiber Fx = r−1(x) we
associate the natural Liouville form θFx . Thus we obtain a differentiable family of forms
θFx

. Their union ΘF is a vertical form with respect to r, in the sense of 1.2.
The map j : T ∗E → V ∗E is a morphism of vector bundles with base E; as π◦q = r◦j,

this map is also a morphism of fiber bundles with base M . So according to 1.2, we may
define the pull-back Σ = j∗ΘF . This pull-back is a vertical form on T ∗E which could be
called the natural vertical Liouville form with respect to α = π ◦ q.

4.2. Let π : P → M be a principal G-bundle. The action of the Lie group G on P

being free and regular, any y ∈ P determines a diffeomorphism from the fiber Px (where
x = π(y)) onto G which maps y onto e; hence we get an isomorphism $y from TyPx onto
TeG = G (where G is the Lie algebra of G).

We deduce a map $ : V P → G such that the restriction of $ to TyPx is $y. This
vertical form $ satisfies the relation

$ys = Ad(s−1)$y for any s ∈ G.
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If for every y ∈ P , we consider the contragredient t$−1
y of $y, we obtain a map J̌ :

V ∗P → G∗.
The natural Liouville form θPx

on the fiber T ∗Px is the form which, for any z ∈ T ∗Px
and any v ∈ TzT ∗Px, associates the scalar〈

J̌(z), $(v)
〉
.

When x generates M we thus obtain a vertical form ΘF with respect to r : V ∗P →M .
The vertical Liouville form Σ = j∗ΘF on T ∗P may be defined as follows. Let

J : T ∗P → G∗

be the composed map J̌ ◦ j.
The vertical Liouville form Σ = j∗ΘF (with respect to α = π ◦ q) is the form which

associates with every u ∈ kerTα the scalar〈
J(z), $

(
Tj(u)

)〉
,

where z is the image of u by the projection TT ∗P → T ∗P .
The right action ofG on P lifts to a symplectic right action on T ∗P and the momentum

map is the map J defined above. Indeed A. Weinstein [W] and M. Kummer [K] have
remarked that the momentum map T ∗P → G associates with any ϕ ∈ T ∗y P the element
Φ∗yϕ, where Φy is the mapping G → TyP extending the isomorphism $−1

y : G → VyP .
The submanifold J−1(0) of T ∗P is the kernel of the map j : T ∗P → V ∗P . According

to 1.1, the submanifold J−1(0) is P̃ = P ×M T ∗M , the space of semi-basic forms on P .
Let us consider the vector bundleTP/G, with baseM , whose sections are the G-equi-

variant vector fields on P . It is known that TP/G may be identified with the Lie algebroid
of the gauge groupoid, quotient of P × P by the diagonal action of G. The anchor map
is the submersion TP/G → TM . Hence the dual T ∗P/G is endowed with a Poisson
structure such that the injection T ∗M → T ∗P/G is a Poisson morphism.

If we limit ourselves to the subbundle P̃ = P ×M T ∗M , the injection T ∗M → P̃ /G

is an isomorphism and P̃ /G is endowed with a symplectic structure. We have here an
example of the reduction procedure. It follows from 1.1 that the 2-form Ω

P̃
induced by

dθP on the submanifold P̃ = J−1(0) is of constant rank; the characteristic foliation comes
from the projection pr2 : P̃ → T ∗M and Ω

P̃
= (pr2)∗dθM .

4.3. Let ω : TP → G be a connection form on P inducing a principal connection
on π : P → M . Let Σω be the differential 1-form on T ∗P which associates with each
v ∈ TT ∗P the scalar 〈

J(z), q∗ω(v)
〉

with z = p(v).
This form Σω which is a differential form in the usual sense has been called the “ver-

tical Liouville form” in [A.G.M]. As the restriction of ω to V P is the form $ introduced
in 4.2, the projection T ∗T ∗P → V ∗T ∗P sends Σω onto Σ.

The principal connection defines a splitting

(∗) TP = V P ⊕H

where the horizontal bundle H = kerω is G-invariant.
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By duality we get

(∗∗) T ∗P = V ∗P ⊕H∗.

We may identify H∗ with the annihilator (V P )0 of V P , i.e. with P̃ = P ×M T ∗M ;
similarly V ∗P may be identified with H0. So we obtain

(∗∗∗) T ∗P = P̃ ⊕H0.

Utilizing the ideas of M. Kummer [K], we shall make precise this decomposition for
any y ∈ P . As Φy : G → TyP is the extension of $−1

y : G → VyP and $y is the restriction
of ωy to VyP , we have

ωy ◦ Φy = idG , Φ∗yω
∗
y = idG∗ .

Let ϕ ∈ T ∗y P ; as J(ϕ) = Φ∗yϕ, we get

Jω∗yJ(ϕ) = Φ∗yω
∗
yJ(ϕ) = J(ϕ)

and
J
(
ϕ− ω∗yJ(ϕ)

)
= 0.

So the form ϕ − ω∗yJ(ϕ) belongs to P̃ while the form ω∗yJ(ϕ) which vanishes on kerω
belongs to H0. The vector subspace H0

y of T ∗y P is the vector space ω∗yG.
M. Kummer [K] has studied the submanifold J−1(µ) where µ ∈ G∗ is G-invariant.

For y ∈ P , the subspace J−1(µ) ∩ T ∗y P is an affine subspace of T ∗y P deduced from the
vector subspace J−1(0) ∩ T ∗y P = {y} × T ∗yM by the translation ϕ → ϕ + ω∗yµ. So the
connection ω induces a diffeomorphism Dω from J−1(µ)/G onto T ∗M . In general Dω
is not a symplectomorphism for the symplectic structure (T ∗M,dθM ). The symplectic
structure of the reduced manifold J−1(µ)/G is symplectomorphic to (T ∗M,dθM +q∗Ωµ),
where Ωµ is the µ-component of the curvature of ω, considered as a form on M . Moreover
Kummer has proved that the additional term can be transformed away if and only if the
bundle π : P →M admits a connection such that Ωµ is exact.

Before Kummer’s investigations, A. Weinstein [W], by using the reduction procedure,
had built a “universal” symplectic manifold in the following situation: he considered
a principal G-bundle and a manifold Q on which G acts by a Hamiltonian action; then
T ∗P×Q admits a Hamiltonian action, hence a momentum map J . The reduced symplectic
manifold associated with the zero value of J is the “universal” symplectic manifold (T ∗P×
G)0. The choice of a principal connection on P defines a diffeomorphism from (T ∗P×G)0
to the associated bundle P̃ ×G Q → T ∗M , where P̃ is T ×M T ∗M as was seen before.
The symplectic structure on the bundle P̃ ×G Q → T ∗M associated with a connection
on P was introduced by S. Sternberg dealing with a classical particle in Yang-Mills field.

Remarks. 1) If P is the trivial bundle M × G, the curvature of the natural con-
nection vanishes. The condition stated by Kummer for J−1(µ)/G to be symplectically
diffeomorphic to (T ∗M,dθM ) is fulfilled.

2) A principal connection on π : P → M (where the bundle is no more trivial) may
be defined as a map c : TM → TP/G such that ρ ◦ c = idTM where ρ is the anchor map
TP/G→ TM . By duality the connection may be defined by a map f : T ∗P/G → T ∗M

which is a morphism of vector bundles with base M . Then the manifold T ∗P/G which
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is already endowed with a natural Poisson structure (as seen in 4.2) has a presymplectic
structure given by the form f∗dθM which is of rank 2n. The form η=f∗θM is semi-basic.
Conversely a 1-form η on T ∗P/G which is semi-basic with respect to the projection
T ∗P/G→M and such that dη is of rank 2n determines a connection on P .
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