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Abstract. Let G be a complex reductive connected algebraic group equipped with the
Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy
subgroups is given. This result is based on Drinfeld’s correspondence between Poisson homoge-
neous G-spaces and Lagrangian subalgebras in the double D(g) (here g = LieG). A geometric
interpretation of some Poisson homogeneous G-spaces is also proposed.

1. Introduction. Let G be a Poisson-Lie group, g = LieG, let D(g) be the double
corresponding to the Lie bialgebra g. We say that a subalgebra l ⊂ D(g) is Lagrangian if
it is a maximal isotropic subspace with respect to the natural scalar product in D(g). It
follows from [3] that there is a one-to-one correspondence between Poisson homogeneous
G-spaces (up to isomorphism) with connected stabilizers and Lagrangian subalgebras
l ⊂ D(g) such that l ∩ g is a Lie algebra of a certain closed subgroup in G (up to
G-conjugacy).

Now let G be a connected complex reductive algebraic group equipped with the
Sklyanin bracket. By 〈· , ·〉 denote any nondegenerate symmetric invariant bilinear form
on g such that its restriction to a compact real form of [g, g] is positive definite. Then
D(g) = g×g, and the natural scalar product in D(g) is given by

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉 − 〈y1, y2〉, (1)

where x1, x2, y1, y2 ∈ g (see Section 2).
In this paper we obtain a description of orbits of the diagonal G-action on the set of all

Lagrangian subalgebras in g×g (see Theorem 3.1) and specify the orbits of Lagrangian
subalgebras l ⊂ g×g such that the subalgebra l ∩ gdiag ⊂ gdiag ' g corresponds to a
certain closed subgroup in G (see Theorem 3.2; here by gdiag we denote the diagonal
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image of g in g×g). Thus we get a classification of all Poisson homogeneous G-spaces
with connected stabilizers.

Note that the description of G-orbits on the set of Lagrangian subalgebras l ⊂ g×g

such that l ∩ gdiag = 0 was obtained in [1]; this result is related to a classification of the
solutions of the classical Yang-Baxter equation. A classification of structures of a Poisson
homogeneous space on G/H, where H is a Cartan subgroup, was independently obtained
by Jiang-Hua Lu; these structures are closely related to the solutions of the classical
dynamical Yang-Baxter equation (see [8]).

This paper is organized as follows. In Section 2 we recall the definition of the Sklyanin
bracket on G. In Section 3 we formulate the classification theorems. Section 4 presents
methods of the proof of Theorem 3.1. In Section 5 we propose a geometric interpretation
of some Poisson homogeneous G-spaces, i.e., we construct a Poisson manifold X with
a Poisson G-action such that G-orbits on X are Poisson homogeneous G-spaces, and
different orbits are not isomorphic (note that in the case when the Poisson bracket on G
is zero, an analogue of X is g∗ with the Kirillov bracket and the coadjoint action of G).

Note that in this paper we only formulate the main results and give a brief description
of methods of proofs. The complete proofs will be presented elsewhere.

The author is grateful to V. G. Drinfeld for constant attention to this work and to
L. L. Vaksman and S. Parmentier for useful discussions.

2. Poisson structure on G. Let us recall the definition of the Poisson structure on
G. Fix a Cartan subalgebra h ⊂ g. Let R be the root system of g with respect to h, R+

the set of positive roots with respect to a certain system of simple roots Γ ⊂ R. Set

n+ =
⊕
α∈R+

gα, n− =
⊕
α∈R+

g−α,

b+ = h⊕ n+, b− = h⊕ n−.
Consider r = 1

2 t0 + t1 (here the tensor t = t0 + t1 + t2 ∈ g ⊗ g corresponds to the
bilinear form 〈· , ·〉, t0 ∈ h ⊗ h, t1 ∈ n+ ⊗ n−, t2 ∈ n− ⊗ n+. We have r = rsym + ralt,
where rsym is symmetric and ralt is skew-symmetric. Let rµν be the components of the
tensor r in some basis {eµ} ⊂ g. Denote by ∂µ (respectively by ∂′µ) the right-invariant
(respectively left-invariant) vector field corresponding to eµ. Since r satisfies the classical
Yang-Baxter equation and rsym is g-invariant (see [4, §4]), we see that Sklyanin’s formula

{φ, ψ} = rµν(∂′µφ · ∂′νψ − ∂µφ · ∂νψ)

(here φ, ψ are regular functions on G) defines the structure of Poisson-Lie group on G. The
structure of a Lie bialgebra on g = LieG is defined by the Manin triple (g×g, gdiag,m),
where g×g equipped with the scalar product (1),

m = {(x, y) ∈ b− × b+ | xh + yh = 0},
xh (respectively yh) is the image of x (respectively of y) in h (see [4, §3, Example 3.2]).
In particular, the double D(g) is equal to g×g equipped with the scalar product (1).

3. Classification theorems. Fix a Cartan subalgebra h ⊂ g. Let R be the root
system of g with respect to h.
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Let P,P′ ⊂ R be parabolic subsets (see [2, Ch.6, §1.7]). Set

p = h⊕
(⊕
α∈P

gα

)
, p′ = h⊕

( ⊕
α∈P′

gα

)
.

Then p and p′ are parabolic subalgebras in g. Set A = P ∩ (−P), A′ = P′ ∩ (−P′).
Let a and a′ be the semisimple subalgebras in g generated by A and A′ respectively. Let
h̃ = a ∩ h, h̃′ = a′ ∩ h. Note that h̃ (respectively h̃′) is the linear span of the coroots
α∨ ∈ h such that α ∈ A (respectively α ∈ A′).

Let σ : A → A′ be an isomorphism of the root systems such that σ preserves the
scalar product. Set

U = {α ∈ A′ | σ−k(α) ∈ A′ ∀ k ∈ N}.
Since the sets A,A′ ⊂ R are finite, and σ : A→ A′ is a bijection, we have

U = {α ∈ A | σk(α) ∈ A ∀ k ∈ N} =

= {α ∈ A ∩A′ | σl(α) ∈ A ∩A′ ∀ l ∈ Z}.
It is easy to prove that

u = h⊕
(⊕
α∈U

gα

)
is a Levi subalgebra in g (i.e., a reductive Levi subalgebra of a certain parabolic subalgebra
in g), and U is the root system of u. We consider only the case when σ preserves a certain
system of simple roots in U.

Let ξ : a→ a′ be an isomorphism such that ξ(gα) = gσ(α) for all α ∈ A; then ξ(h̃) = h̃′,
and ξ preserves 〈· , ·〉. Let the linear map σ∨ : h̃→ h̃′ be given by σ∨(α∨) = σ(α)∨, where
α ∈ A; then ξ(x) = σ∨(x) for all x ∈ h̃. Note that

[u, u]ξ = {x ∈ [u, u] | ξ(x) = x}

is a reductive Lie algebra, and hξ = [u, u]ξ ∩ h is a Cartan subalgebra in [u, u]ξ (see [9,
Ch.4, §4.2]).

Consider a nilpotent element x ∈ [u, u]ξ (we say that an element x ∈ g is nilpotent if
x ∈ [g, g] and adx is nilpotent). Let h ∈ hξ be the characteristic of the nilpotent element x
(see [5, Ch.6, §2.1]; recall that one can reconstruct x from h uniquely up to conjugation).
Let the isomorphism θ : a→ a′ be given by θ = ξ · exp(adx).

Let z (respectively z′) be the orthogonal complement to h̃ (respectively h̃′) in h. Note
that the natural maps z → p/[p, p] and z′ → p′/[p′, p′] are isomorphisms. Consider z×z′

equipped with the scalar product (1). Let l0 ⊂ z×z′ be a Lagrangian subspace. Consider

l = {(x, y) ∈ g×g | x ∈ p, y ∈ p′, θ(xa) = ya′ , (xz, yz′) ∈ l0};

here xa is the image of x in a, xz is the image of x in z = p/[p, p], ya′ is the image of y
in a′, yz′ is the image of y in z′ = p′/[p′, p′]. Then l is a Lagrangian subalgebra in g×g.
By L(P,P′, σ, ξ, h, l0) denote the class of G-conjugacy of l.

Theorem 3.1. 1) Any G-orbit on the set of all Lagrangian subalgebras in g×g is of
the form L(P,P′, σ, ξ, h, l0).

2) L(P,P′, σ, ξ, h, l0) = L(P̃, P̃′, σ̃, ξ̃, h̃, l̃0) iff (P,P′, ξ, h, l0) and (P̃, P̃′, ξ̃, h̃, l̃0) are
N(h)-conjugate (here by N(h) we denote the normalizer of h in G).
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Remark 1. Let W be the Weyl group of the root system R. If (P,P′, ξ, h, l0) and
(P̃, P̃′, ξ̃, h̃, l̃0) are N(h)-conjugate, then (P,P′, σ, h) and (P̃, P̃′, σ̃, h̃) are W -conjugate.

Remark 2. Every class of G-conjugacy of Lagrangian subalgebras in g×g depends on
the discrete parameters (P,P′, σ, h) and the continuous parameters (ξ, l0). Fix (P,P′, σ)
and denote by Ξ (respectively by Λ) the space of parameters ξ (respectively l0) such that
ξ (respectively l0) corresponds to (P,P′, σ). Let 〈A〉 be the linear span of A, n = dim z.
It can be proved that

dim Ξ = dim {α ∈ 〈A〉 | σ(α) = α},
dim Λ = n(n−1)

2 (note that Λ is the Lagrangian Grassmann manifold for z×z′).

We shall say that a class of G-conjugacy L(P,P′, σ, ξ, h, l0) is integrable (respectively
algebraic integrable) if the subalgebra l ∩ gdiag ⊂ gdiag ' g corresponds to a closed
(respectively Zariski closed) subgroup in G for a certain (and then for every) Lagrangian
subalgebra l ∈ L(P,P′, σ, ξ, h, l0). Theorem 3.2 gives a test of the integrability and the
algebraic integrability of L(P,P′, σ, ξ, h, l0).

Let H ⊂ G be the connected subgroup such that LieH = h ⊂ g.

Theorem 3.2. A class of G-conjugacy L(P,P′, σ, ξ, h, l0) is integrable (respectively
algebraic integrable) iff the subspace

V = {x ∈ h | (xz, xz′) ∈ l0, σ
∨(xh̃) = xh̃′} ⊂ h

(here xz is the image of x in z, ets.) is the Lie algebra of a closed (respectively Zariski
closed) subgroup in H.

Remark 3. It follows from the Theorem 3.2 that the (algebraic) integrability of a
G-conjugacy class L(P,P′, σ, ξ, h, l0) depends only on σ and l0 (and is independent of ξ
and h).

Now we recall a well-known method to verify that a subspace V ⊂ h is the Lie algebra
of a closed (respectively Zariski closed) subgroup in H.

Consider the lattice

H = Ker (exp : h→ H) ⊂ h.

Proposition 3.3 (see [9, Ch.3, §2, Theorem 5]). A subspace V ⊂ h corresponds to a
Zariski closed subgroup in H iff V is defined over Q with respect to the lattice H, i.e.,
V = V ⊗ C for a certain sublattice V ⊂ H.

Let t = H⊗ R ⊂ h.

Proposition 3.4. A subspace V ⊂ h corresponds to a closed subgroup in H iff V ∩ t

is defined over Q with respect to the lattice H, i.e., V ∩ t = V ⊗R for a certain sublattice
V ⊂ H.

4. Methods of proof of Theorem 3.1. Now we present a way to prove Theo-
rem 3.1.

Let p, p′ ⊂ g be parabolic subalgebras. We have p/p⊥ = a⊕ z, where a is semisimple,
and z is abelian; the same holds for p′. Let θ : a → a′ be an isomorphism such that θ
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preserves 〈· , ·〉. We shall say that a triple (p, p′, θ) is admissible. By T (g) denote the set
of all admissible triples.

Consider (p, p′, θ) ∈ T (g). Let l0 ⊂ z×z′ be a Lagrangian subspace with respect to the
bilinear form (1). The quadruple (p, p′, θ, l0) is called admissible. Suppose (p, p′, θ, l0) is
an admissible quadruple; then set

l(p, p′, θ, l0) := {(x, y) ∈ p×p′ | θ(xa) = ya′ , (xz, yz′) ∈ l0} ⊂ g×g,

where xa is the image of x in a, xz is the image of x in z, ya′ is the image of y in a′, yz′

is the image of y in z′. It is not hard to prove the following proposition.

Proposition 4.1. 1) l(p, p′, θ, l0) is a Lagrangian subalgebra.
2) The correspondence (p, p′, θ, l0) 7→ l(p, p′, θ, l0) is a G-equivariant bijection between

the set of all Lagrangian subalgebras in g×g and the set of all admissible quadruples
(p, p′, θ, l0).

3) Lagrangian subalgebras l(p, p′, θ, l0) and l(p, p′, θ, l̃0) are G-conjugate iff l0 = l̃0.

Thus a classification of Lagrangian subalgebras is reduced to a classification of admis-
sible triples up to G-conjugacy. It can be shown that the theory of admissible triples is
quite similar to the theory of automorphisms of complex semisimple Lie algebras. In fact,
there exists a natural notion of a semisimple admissible triple; we can define a notion
of an invariant subalgebra for an admissible triple; for any semisimple admissible triple
there exists an invariant Cartan subalgebra; it is possible, using invariant Cartan subal-
gebras, to give a complete description of semisimple admissible triples up to G-conjugacy;
for any admissible triple there exists an analogue of the Jordan decomposition, etc. The
realization of this program leads us to Theorem 3.1.

5. A geometric interpretation. In this section we give a geometric interpretation
of some Poisson homogeneous G-spaces.

By Ḡ denote the group of all automorphisms g : g → g such that the following
conditions hold: (1) g preserves the scalar product 〈· , ·〉; (2) g is equal to the identity
mapping on the center of g. Suppose g ∈ Ḡ and set

lg = {(x, y) | x = g(y)} ⊂ g×g.

Then lg is a Lagrangian subalgebra. Note that the Lagrangian subalgebras lg form the
G-conjugacy classes L(P,P′, σ, ξ, h, l0) such that P = P′ = R and l0 is the image of the
center of g under the diagonal mapping g→ g×g.

Let us give a geometric interpretation of Poisson homogeneousG-spaces corresponding
to Lagrangian subalgebras of the form lg. Note that the connected component of the center
of G acts trivially on the subalgebras lg; therefore it is enough to consider the case when
G is semisimple, i.e., [g, g] = g. In the following part of this section we consider the case
G = Int g.

Let φ, ψ be regular functions on Ḡ. Consider

{φ, ψ} = −rµνalt · (∂
′
µφ− ∂µφ) · (∂′νψ − ∂νψ)

+ rµνsym · (∂′µφ− ∂µφ) · (∂′νψ + ∂νψ), (2)
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where r, ∂µ and ∂′µ are defined in Section 2. By X we denote the manifold Ḡ equipped
with the bracket (2).

Theorem 5.1. The bracket (2) is a Poisson bracket, the action of G on X by conju-
gations is Poisson, and the orbits of this action are Poisson homogeneous G-spaces such
that the Lagrangian subalgebra lg corresponds to a point g ∈ X.

Remark 4. The bracket (2) is a special case of the bracket from [10, Theorem 3.1],
when J1 = −J2 (using the notation from [10]). See also [7].

Theorem 5.1 can be proved by using the following general result (see Theorem 5.2).
Suppose G is an arbitrary Poisson-Lie group. A double of G is a Lie group D such that
the following conditions hold: (1) LieD = D(g); (2) The natural scalar product in D(g)
is invariant with respect to the adjoint action of D (then D becomes a Poisson-Lie group
by means of the canonical element r ∈ g ⊗ g∗ ⊂ D(g) ⊗ D(g), see [4, §13]); (3) G is a
closed Poisson-Lie subgroup in D.

Theorem 5.2 ([6]). Let G be a Poisson-Lie group, g = LieG. Let D be a double of
G. Consider the action of G on the Poisson manifold D/G by left translations. Suppose
w ∈ D and denote by x the image of w in D/G; then X = G ·x is a Poisson homogeneous
G-space, and the Lagrangian subalgebra lx := w · g · w−1 ⊂ D(g) corresponds to the pair
(X,x).

In our case take D = Ḡ× Ḡ; then Theorem 5.1 follows from Theorem 5.2.
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