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Abstract. We present a general theorem describing the isomorphisms of the local Lie algebra
structures on the spaces of smooth (real-analytic or holomorphic) functions on smooth (resp.
real-analytic, Stein) manifolds, as, for example, those given by Poisson or contact structures. We
admit degenerate structures as well, which seems to be new in the literature.

1. Introduction. We shall admit different classes of smoothness, so by a manifold of
class C, where C = C∞, C = Cω, or C = H, and by the algebra C(M) of class C functions
on M we shall mean

a) a real paracompact finite-dimensional smooth manifold and the algebra C∞(M) of
all real smooth functions on M , if C = C∞;

b) a real-analytic paracompact finite-dimensional manifold and the algebra Cω(M) of
all real-analytic functions on M , if C = Cω;

c) a complex finite-dimensional manifold for which each connected component is Stein
and the (complex) algebra of all holomorphic functions on M , if C = H.

A Jacobi structure [8] on M is a pair (Λ, D) consisting of a vector field D ∈ Γ(TM)
and an antisymmetric bi-vector field Λ ∈ Γ(Λ2TM) of class C satisfying:
i) [D,Λ] = 0, and

ii) [Λ,Λ] = 2D ∧ Λ,

where [·, ·] stands for the Schouten bracket. If D = 0, then [Λ,Λ] = 0 and we call Λ the
Poisson structure.

Note that in the case of C = H, vector fields are holomorphic and of type (1, 0), since
we shall understand vector fields as derivations of the algebra C(M).
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Every Jacobi (in particular, Poisson) structure induces a Lie bracket {·, ·} on the
algebra C(M), called the Jacobi (resp. Poisson) bracket, by

(∗) {f, g} = Λ(f, g) + fD(g)− gD(f).

This is exactly the local Lie algebra structure investigated by Kirillov [6], Lichnerowicz
[7, 8], and Guedira and Lichnerowicz [5] in the special case of a trivial one-dimensional
vector bundle over M .

Conversely, every Lie bracket on C(M) given by a bilinear differential operator is of
the form (∗). The vector D and the bi-vector field Λ are uniquely determined by the
bracket if we consider C(M) as an algebra. For example, D = ad1 = {1, ·}. There is,
however, an ambiguity when we consider C(M) as a vector space only (sections of a
trivial vector bundle) and we do not know which one is the unit (canonical generator).
Consider for instance a linear automorphism A : C(M) → C(M) given by A(f) = uf

with u being a nowhere vanishing function from C(M). We get a new local bracket
{f, g}A = A−1{A(f), A(g)} corresponding to the Jacobi structure (uΛ, uD + Λ(u, ·)).

Classical examples of the Jacobi brackets in our sense are: the standard Poisson brac-
ket on a symplectic manifold M of dimension 2n and the Lagrange bracket on a contact
manifold of dimension 2n + 1. For symplectic Poisson bracket we have the well-known
form in canonical coordinates (qi, pi):

Λ =
n∑
i=1

∂

∂qi
∧ ∂

∂pi

and

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

The Lagrange (contact) bracket is given in canonical coordinates (x1, . . . , x2k+1) by

{f, g} =
k∑
i=1

(
∂f

∂xi

∂g

∂xi+k
− ∂g

∂xi

∂f

∂xi+k

)

+
∂f

∂x2k+1

( 2k∑
i=1

xi
∂g

∂xi
− 2g

)
− ∂g

∂x2k+1

( 2k∑
i=1

xi
∂f

∂xi
− 2f

)
.

These brackets are nowhere vanishing, but also Jacobi structures with some degene-
racy are of some interest, as for example the Poisson structures on Poisson-Lie groups
which always have a singularity at the neutral element (cf. [7] and [11]).

Given a Jacobi manifold, every function f ∈ C(M) defines the corresponding (Jacobi-)
hamiltonian vector field

f̂ = Λ(f, ·) + fD.

The mapping
ˆ: C(M)→ Γ(TM)

is a homomorphism of the Lie algebras with the usual Lie bracket for vector fields. The
kernel of this homomorphism is exactly Z(M), the center of the Lie algebra C(M). Set
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X (Λ, D) for the Lie algebra of hamiltonian vector fields associated with (Λ, D). Since

(uf )̂ = uΛ(f, ·) + f(uD + Λ(u, ·)),

we have X (Λ, D) = X (uΛ, uD + Λ(u, ·)) for any nowhere vanishing u ∈ C(M), which
shows that Λ and D are not uniquely defined by its Lie algebra of hamiltonian vector
fields. We shall see later on that the freedom of choice is exactly the one described above.

Define the support S of a Jacobi bracket {·, ·} to be the set of those points p ∈M for
which {f, g}(p) 6= 0 for some f, g ∈ C(M). It is easy to see that S = supp(Λ) ∪ supp(D)
and that it is the support of the Lie algebra of hamiltonian vector fields. It is also clear
that the Jacobi bracket {f, g} does not recognize the behaviour of f and g outside its
support. It makes the description of isomorphisms between general Jacobi brackets a
little more complicated than those for nondegenerate brackets.

2. Statement of the results

Theorem 1. Let (Mi, (Λi, Di)) be a Jacobi manifold of class C, let {·, ·} be the
corresponding Jacobi bracket with support Si, and let Xi be the corresponding Lie algebra
of hamiltonian vector fields, i = 1, 2. If

φ : (C(M1), {·, ·}1)→ (C(M2), {·, ·}2)

is a Lie algebra isomorphism, then there is a diffeomorphism ψ : S2 → S1 of class C, a
nowhere vanishing function u ∈ C(S1), and a linear map F : C(M1)→ C(S2) with image
in the center of the bracket {·, ·}2|S2 and vanishing on the derived ideal {C(M1), C(M1)}
such that

(a) the induced isomorphism Φ : X1 ' C(M1)/Z(M1) → X2 ' C(M2)/Z(M2) is of the
form ψ−1

∗ (outside supports we have simply zero);
(b) φ(f)|S2 = (u−1f) ◦ ψ + F (f) for any f ∈ C(M1);
(c) ψ∗(Λ2|S2) = uΛ1|S1 and ψ∗(D2|S2) = Λ1|S1(u, ·) + uD1|S1 .

If the Jacobi brackets are nondegenerate then ψ and u are defined everywhere and
describe the isomorphism φ completely up to F . We get in particular:

Corollary 1. Every automorphism φ of the Poisson bracket on a connected Poisson
manifold (M,Λ) of class C with non-singular (i.e. nowhere-vanishing) Poisson bracket is
of the form

(2) φ(f) = (u−1 · f) ◦ ψ + F (f),

where
(a) u is a non-vanishing Casimir function;
(b) ψ is a diffeomorphism of M of class C such that ψ∗(Λ) = uΛ;
(c) F is a linear map F : C(M)→ Z(M) vanishing on {C(M), C(M)}.

In particular, for a symplectic Poisson bracket, F = 0 if M is non-compact and
F (f) = a ·

∫
M
fη for a constant a and η being the Liouville volume form, if M is compact.

Each of ψ, u, and F are uniquely determined by φ. Conversely, any u, ψ, F as in
(a),(b),(d) define φ by (2) which is an automorphism of Poisson brackets if only it is
bijective.
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Note that the above result for symplectic manifolds was obtained earlier by Atkin and
Grabowski [1].

Corollary 2. Every automorphism φ of the Lagrange (contact) bracket on a contact
manifold (M,β) of class C is of the form φ(f) = v · (f ◦ ψ) for a nowhere vanishing
v ∈ C(M) and a diffeomorphism ψ of M of class C such that v · ψ∗(β) = β.

The C∞ case of the above result is due to Omori [9].

To get the flavour of how the presented general theorem works in degenerate cases,
consider the following examples.

Example 1. Let {·, ·} be the Jacobi bracket on C∞(R) defined by

{f, g}(x) = x(f(x)g′(x)− f ′(x)g(x))

(where prime stands for the derivative), i.e. Λ = 0 and D = x ∂
∂x . The support S of the

bracket is clearly R∗ = R \ {0} and the center is trivial. If φ is an automorphism of
the defined bracket, then by our theorem φ(f) = v−1 · (f ◦ ψ) with v being a nowhere
vanishing function of C∞(R∗) and ψ being a diffeomorphism of R∗ such that

ψ∗

(
x
∂

∂x

)
= v(ψ−1(x)) · x ∂

∂x
.

Since φ(1)|R∗ = v−1, we can consider v as a smooth non-vanishing function on R. It is
not hard to verify now that ψ extends to a diffeomorphism of R with 0 ∈ R as a fixed
point. One can easily compute that v(x) = xψ′(x)

ψ(x) . Observe that the quotient makes sense
at 0 if we pass to the limit. This proves the following.

Corollary 3. The mapping φ : C∞(R) → C∞(R) is an automorphism of the
bracket {f, g}(x) = x(f(x)g′(x)− f ′(x)g(x) if and only if

φ(f)(x) =
ψ(x)
xψ′(x)

f(ψ(x))

for a diffeomorphism ψ : R→ R, ψ(0) = 0.

Example 2. The Kirillov-Kostant-Souriau bracket on su(2)∗, the dual space of the
Lie algebra su(2), is the linear Poisson bracket defined in linear coordinates (x1, x2, x3)
by

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2.

The corresponding Poisson tensor Λ is singular at 0 and the symplectic leaves consist of
spheres

Sr = {(x1, x2, x3) ∈ su(2)∗ : x2
1 + x2

2 + x2
3 = r2, r ≥ 0}.

Let us take a diffeomorphism ψ of su(2)∗ given by ψ(x) = etx, where t ∈ R. This
diffeomorphism preserves the support su(2)∗ \{0} of Λ and ψ∗(Λ) = etΛ.

Take now F : C∞(su(2)∗)→ C∞(su(2)∗) given by

F (f)(x) =
∫
S‖etx‖

f dµ‖etx‖,

where µr is the canonical SU(2)-invariant measure on the sphere Sr, µr(Sr) = 4πr2. It
is easy to see that the values of F consist of functions constant on spheres (i.e. Casimir
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elements of the Poisson bracket) and that F vanishes on the derived algebra, since on
the symplectic leaves the elements of the derived algebra have mean value zero (since the
leaves are compact symplectic manifolds, see [7]). According to Theorem 1, we look for
automorphisms ψ of the Poisson bracket in the form

φ(f)(x) = e−tf(etx) + a

∫
S‖etx‖

f dµ‖etx‖,

for some a ∈ R. Integrating the function φ(f) on the sphere Sr, we get, after changing
coordinates,∫

Sr

φ(f)(x)dµr = e−t
∫
Sr

f(etx)dµr + 4aπe2tr2
∫
S(etr)

f(x)dµetr

= (e−3t + 4aπe2tr2)
∫
S(etr)

f(x)dµetr.

Hence, if a < 0, then for the value

r =

√
−e−5t

4πa
we have ∫

Sr

φ(f)(x)dµr = 0

for any function f , so that φ cannot be a bijection. If a ≥ 0, then φ is invertible, since
one calculates explicitly

f(x) = etφ(f)(e−tx)− ae3t

e−t + 4aπ‖x‖2

∫
S‖e−tx‖

φ(f)dµ‖e−tx‖.

Thus, our φ is an automorphism of the linear Poisson bracket. This automorphism is
identical on linear functions: φ(xi) = xi, but not identical in the whole, since φ(1) =
e−t + 4aπe2t‖x‖2 and φ(‖x‖2) = et‖x‖2 + 4aπe4t‖x‖4.

3. The idea of the proof. We start with a purely algebraic setting for the Jacobi
structures as presented in [4]: a Jacobi structure on an associative commutative algebra A
is a pair (Λ, D) consisting of a derivation D and an antisymmetric bilinear derivation Λ of
A satsfying [D,Λ] = 0 and [Λ,Λ] = 2D∧Λ, where [·, ·] stands for the Richardson-Nijenhuis
bracket.

We obtain the corresponding Jacobi bracket {·, ·} on A by the formula (∗) which gives
for A = C(M) the model considered previously. We define the associative spectrumM(A)
to be the family of all maximal finite-codimensional associative ideals of A and the Lie
spectrum Σ(A) of A to be the family of all maximal finite-codimensional Lie subalgebras
of A containing no finite-codimensional Lie ideals of A.

Note that for the asssociative algebra C(M) the ideals of the spectrum M(C(M))
consist of functions vanishing at a given point of M and for the Lie algebra of all class
C vector fields on M the Lie subalgebras from its Lie spectrum consist of vector fields
vanishing at a given point (cf. [3]).
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For an ideal I ∈M(A) put N(I) := {f ∈ A : {f, I} ⊂ I} and set

M∗(A) = {I ∈M(A) : 0 < codimAN(I) <∞}.

We have:

Proposition 1. If A2 = A (e.g. A is unital) then the mapping

M∗(A) 3 I 7→ N(I)

establishes a one-one correspondence between M∗(A) and Σ(A).

One can easily prove that in the case of A = C(M) the elements ofM∗(A) correspond
to the points of the support S of the Jacobi bracket and, hence, that

S 3 p 7→ {f ∈ C(M) : f̂(p) = 0}

is a one-one correspondence between the support and the Lie spectrum Σ(C(M)). It
implies the following.

Proposition 2. The mapping

S 3 p 7→ L(p) := {X ∈ X (Λ, D) : X(p) = 0}

is a one-one correspondence between S and the Lie spectrum Σ(X (Λ, D)) of the Lie algebra
of hamiltonian vector fields.

Having now a Lie algebra isomorphism φ : C(M1) → C(M2) and the induced iso-
morphism Φ : X (M1)→ X (M2) of the corresponding Lie algebras of hamiltonian vector
fields and putting ψ(p) = L−1(Φ−1(L(p))), we get a bijection ψ : S2 → S1 on the level
of supports such that Φ(X)(p) = 0 if and only if X(ψ(p)) = 0 for all X ∈ X (M1) and all
p ∈ S2.

One can prove, with some effort, that ψ is in fact a diffeomorphism of class C and
that Φ(X) = ψ−1

∗ (X). The last (and non-trivial) part of the proof is to show that this
form of Φ implies the form of φ described in the theorem. This can be done with the help
of certain ideas due to Skriabin [10].
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