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Abstract. A centrally symmetric plane curve has a point called it’s centre of symmetry. We
define (following Janeczko) a set which measures the central symmetry of an arbitrary strictly
convex plane curve, or surface in R3. We investigate some of it’s properties, and begin the study
of non-convex cases.

1. Introduction. The concept of Central Symmetry and the notion of a centre of

symmetry for a closed plane curve is very familiar: a plane curve Γ is said to have a

centre c if, for all points x on Γ, the point 2c − x is also on Γ, and we say that Γ is

centrally symmetric about c. This concept is extremely restrictive in that most closed

curves in the plane do not have a centre of symmetry, and this leads us to attempt to

generalize this concept.

The idea of generalizing classical concepts of plane symmetry began with the study

of the Symmetry Set (SS), a generalization of an axis of reflexional symmetry. The dif-

ferential structure of the SS has been studied extensively in [4], [2], [5]: the structures of

the SS of a generic plane curve have been classified, as have the possible transitions on

the SS of a plane curve as it is deformed through a 1-parameter family. Higher dimen-

sional analogues of the SS have also been studied. Current research focuses on attempts

to introduce affine invariant analogues of the SS for plane curves (see [6]).

Now central symmetry is a global property of a curve; however, we may consider a

closed curve to have some degree of local central symmetry between segments of itself,

and hence we must attempt to broaden our idea of central symmetry in order to study

the large class of curves which do not conform to the strict limitations of the classical

definition of central symmetry.

One attempt at a generalization begins with the observation that, for a centrally

symmetric curve Γ with centre c, the tangents at each pair of points x and 2c − x are
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parallel (see the figure below, where Γ is an ellipse). Now if we were to construct the chord

joining each of these pairs, then we notice that the envelope of these chords is the centre c

(since the lines are concurrent). For a general strictly convex closed curve, consider the

.

x

2c-xΓ

.
.c

following construction: we first of all find the parallel tangent pairs (the pairs of points on

the curve at which the tangents are parallel), join them with a line, and find the envelope

of these lines. In general we should expect, instead of a single point as a centre, a set

of points which we can think of as capturing some aspect of the local symmetry of the

curve. This leads us to the definition of the simplest version of the Centre Symmetry Set:

Definition 1. The Centre Symmetry Set (CSS) of a strictly convex plane curve is

the envelope of lines joining points of contact of parallel tangent pairs.

In fact, we shall be at pains to remove the condition of convexity in this definition

by studying the effects of non-convex situations. Note that this definition depends only

upon concepts which are affine invariant, and hence the construction of the CSS is itself

affine invariant. Below is an example of the CSS of a strictly convex plane curve (which

we will often refer to as an oval). Note that the CSS is a closed curve containing 3 cusps:

in Section 4 we study this example in greater detail, and find that we are able to derive

conditions on the number of cusps that the CSS of an oval may exhibit. Another inter-

CSS

esting example is that of a closed curve with constant width (‘constant width’ means that

the chord between parallel tangent pairs is of some constant length; as such, the term

‘constant width’ can only be applied to ovals). It is not hard to show that, for a curve of

constant width, the line joining a pair of points of contact of parallel tangents is along

the common normals to the curve at these points. Hence the CSS is set-wise equivalent
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to the envelope of normals to the curve, commonly known as the evolute (more precisely,

the evolute is the double cover of the CSS).

The first attempt to create a generalization of central symmetry is made by

S. Janeczko in [9]: here, the centre symmetry set of an oval is defined to be the bifurcation

set of a family of ‘ratio-of-distances’ functions on the curve parametrized by points in the

plane, and it is shown that the centre symmetry set of a generic oval has only fold and

cusp singularities. In Sections 2 and 3 of this paper we show that the ‘envelope’ definition

of the CSS above is entirely consistent with Janeczko’s ‘ratio-of-distances’ definition of

the CSS, when we restrict our study to that of strictly convex plane curves.

Sections 2–5 are concerned with discovering the local structure of the CSS using the

envelope definition. Now since we are thinking of the CSS as an envelope, we expect it

to be smooth in general, and exhibit cusps at isolated points, the points of regression

of the envelope. For a generic plane curve, we expect to find double tangents — lines

which are tangent at two distinct points — and inflexions: in Section 4 we consider in

detail the effect that these cases have on the local structure of the CSS. In Section 5,

we begin to study 1-parameter transitions on the CSS as the curve is deformed through

a 1-parameter family: we expect to find some higher singularities of the CSS at isolated

points. In Section 6, we begin to set out some ideas concerning the formulation of an

analogous concept of a centre symmetry set in 3 dimensions. Finally, in Section 7, we

consider some non-convex situations.
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2. The Centre Symmetry Set as an envelope of lines. Our first task is to find

the envelope point of this family of lines joining points of contact of parallel tangent

pairs, which we will refer to as the CSS point. We will set out in detail the method

of coordinatewise calculation. First of all we set up our local coordinate system in the

following way, as illustrated in Figure 1: consider two segments of a smooth plane curve γ

— the first through (0, 0) and given by γ1(t) = (t, f(t)), where f(0) = f ′(0) = 0 (so this

segment is tangent to the x-axis at t = 0), and the second through the point (c, d), given

by γ2(u) = (c− u, d + g(u)), with g(0) = g′(0) = 0 (so the tangent at u = 0 is parallel to

the x-axis). The condition on t and u for the tangents at γ1(t) and γ2(u) to be parallel is

f ′(t) = −g′(u),(1)

where ′ signifies the derivative with respect to the corresponding parameter t or u. Assum-

ing that we have no inflexion on the upper curve segment, we solve this parallel tangents

condition for u = U(t). This gives us a family of lines parametrized by t:

F (t, x, y) ≡ (x − t)
(

d + g(U(t)) − f(t)
)

−
(

y − f(t)
)

(c − U(t) − t).(2)
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Figure 1

The envelope of this family of lines is given by solving F = ∂F/∂t = 0 for x and y. At

t = U(t) = 0 we find that the CSS point along the line joining (0, 0) to (c, d) is given by

the simultaneous equations

xd − yc = 0

−d + y(U ′(0) + 1) = 0.

Note that if d = 0 then these conditions are satisfied for arbitrary x, and hence the entire

x-axis (x, 0) is a solution to this system. This tells us that, in the case of a double tangent,

the tangent itself is part of the CSS. For d 6= 0, if we denote the curvature of the lower

and upper segments by κ1 and κ2 respectively, then we have solution

(x, y) =

(

cκ2

κ1 + κ2

,
dκ2

κ1 + κ2

)

,

with the assumption that κ1 + κ2 6= 0 (here κ1, κ2 are evaluated at t = U = 0). We note

that if κ1 + κ2 = 0, then the CSS point is at infinity. Thus we have:

Theorem 1. The CSS point (x, y) is the point on the chord joining pairs of points

of contact of parallel oriented tangents (with opposite orientation) for which the ratio of

distances from the two points is the same as the reciprocal ratio of the two curvatures ,

i.e. the CSS point divides the segment joining points with parallel tangents in the ratio

v1 : v2 = κ2 : κ1,

where vi is the oriented distance from the envelope point to the curve segment γi.

This result is expressed implicitly in [9], and it follows that we have done enough

to show that the envelope definition and the ratio-of-distances definition of the CSS are

identical in the case of strictly convex plane curves.

In general, taking (x1, y1) and (x2, y2) to be the points on the respective curve seg-

ments for which the oriented tangents are parallel but with opposite direction, we find

that the CSS point is given by

(x, y) =

(

x1κ1 + x2κ2

κ1 + κ2

,
y1κ1 + y2κ2

κ1 + κ2

)

.(3)

If the orientations of the curve segments are the same, then the sign of one of the cur-

vatures κi is reversed. There is an interesting corollary to Theorem 1: consider Figure 2,
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where e1, e2 denote the centres of curvature of curve segments γ1 and γ2 evaluated at

t = u = 0. Line l1 joins the points of contact of parallel tangent pairs at parameter

values t = u = 0, and line l2 joins the centres of curvature e1, e2. By considering similar

triangles, it is not hard to see that the intersection of l1 and l2 is the corresponding CSS

point p.

γ (t)1

.
y

x

. . .

l

l

1

2

e2e1

(u)2
γ

(c,d)

p

Figure 2

3. The local structure of the CSS. We now begin to study the local structure of

the CSS of a generic plane curve γ. Note we are concerned with the local properties of

the CSS, and will not assume that γ is convex. Now we are thinking of F (see (2)) as

a function of t with parameters x and y, and in this setting the CSS is the bifurcation

diagram of zeroes of F , i.e. points (x, y) for which F = ∂F/∂t = 0 for some t. We may

deduce the local structure of the CSS by examining the multiplicity of these zeroes: this

is equivalent to finding conditions under which F has an A≥k singularity on its zero level

for k ≥ 2. We begin by deriving conditions on the curvature of γ for F to have an A≥2

point on its zero level, i.e. for the CSS to have a cusp, a situation which we expect to

observe on a generic envelope. A short calculation gives us:

Theorem 2. The CSS is singular if and only if the same line is tangent at both points

(d = 0), or

κ′
1
κ2

2
− κ2

1
κ′

2
= 0.(4)

The double tangent situation (d = 0) is considered in detail in Section 4. For now we

will concentrate on the second condition above, which we will refer to as the ‘cusp condi-

tion’. Now we can write this cusp condition in a more succinct form: writing ρi = 1/κi as

the radius of curvature of curve segment γi, we see that the condition for a non-smooth

CSS (away from d = 0) becomes

ρ′1 = ρ′2.

Remember that ′ is used to denote the derivative with respect to the parameter along

the corresponding segment. To get a better geometric sense of this cusp condition,

we parametrize both curve segments by the same parameter t, and use the fact that

dU/dt = κ1/κ2 (recall that u = U(t) comes from 1, the parallel tangents condition).
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A brief calculation shows that

κ′
1κ

2

2 − κ2

1κ
′
2 = 0 ⇔

d

dt

(

κ2

κ1

)

= 0.(5)

Now we recall that the envelope point (x, y) divides the chord joining points of contact

of parallel tangents pairs in the ratio v1/v2 = κ2/κ1. Thus a cusp appears on the CSS if

the ratio-of-distances function v1/v2 has a critical point. This leads us back once again to

the original definition of the CSS as the bifurcation set of the family of ratio-of-distances

function (see [9]), and verifies that these two definitions are identical for strictly convex

curves.

R e ma r k 1. We can write this cusp condition in an affine invariant way. A short

calculation shows that the affine normal (see Buchin Su [11], p. 9, for a definition of an

affine normal, and a general introduction to affine differential geometry) to curve segment

γ1 at t = 0 has direction (−f ′′′, 3(f ′′)2), and the affine normal to the curve segment γ2

at u = 0 has direction (g′′′, 3(g′′)2), where γ1, γ2 are as given in Section 2 (see Figure 1).

Now (4) holds if and only if

f ′′′

(f ′′)2
=

−g′′′

(g′′)2

which in turn implies that the affine normals at (0, 0) and (c, d) are parallel. In fact, we

have more information than this: by comparing the ratio of these two affine normals, we

see that the necessary and sufficient affine condition for the CSS to exhibit a cusp is that

γ̈1(0) +

(

κ1

κ2

)1/3

γ̈2(0) = 0,

where ˙ denotes the derivative with respect to the affine arclength parameter.

4. Inflexions and double tangents

4.1. Inflexion on one curve segment. Suppose that there is an inflexion on the lower

curve segment of Figure 1, i.e. that κ1(0) = 0, and suppose also that d 6= 0 (so we don’t

have a double tangent). Theorem 1 tells us that the CSS passes through the upper curve

segment at the point where we have a parallel tangent to the inflexional tangent to the

lower curve segment, namely the point (c, d). Furthermore, Theorem 2 tells us that the

CSS is smooth at this point if and only if κ′
1
(0)κ2(0)2 6= 0, i.e. if and only if the lower

curve segment has an ordinary inflexion and the upper curve segment has no inflexion.

This gives us:

Theorem 3. Suppose (i) there is an ordinary inflexion at one point γ1(t), (ii) there

is no inflexion at the corresponding point γ2(U(t)) for which there is a parallel tangent ,

and (iii) γ2(U(t)) does not lie on the inflexional tangent at γ1(t) (i.e. d 6= 0). Then the

CSS is smooth and passes through γ2(U(t)).

Now it is trivial to see that, near to γ2(U(t)), the CSS lies entirely to one side of the

line joining γ1(t) to γ2(U(t)). Setting up our coordinate system as in Figure 1, with the

lower curve segment γ1(t) = (t, f(t)) having an inflexion at t = 0, and the upper curve
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segment γ2(u) = (c − u, d + g(u)) having no inflexion at u = 0, we use the following

expansions of f(t) and g(u):

f(t) = a3t
3 + a4t

4 + . . .

g(u) = b2u
2 + b3u

3 + . . .

with a3b2 6= 0. A short calculation shows that the CSS is quadratic near γ2(0) = (c, d),

and by examining the ratio a3/b2 we can determine which side of the envelope line the

CSS lies, local to (c, d). Figure 3 gives a schematic illustration of the results (the CSS is

y

x

x

y

x

2a  /b  <0

y

y

a  /b  >02

x

3

3

Figure 3

shown dashed). We now move on to consider how the existence of a double tangent to our

plane curve effects the structure of the CSS. Consider the following set-up, as illustrated

y

x

γγ1 2

(-c,0) (c,0)

Figure 4

in Figure 4, where we have a double tangent to the curve segments γ1 and γ2 given by

γ1(t) = (−c + t, a2t
2 + a3t

3 + . . .),

γ2(u) = (c + u, b2u
2 + b3u

3 + . . .).

We assume that at least one of a2, b2 6= 0, and that c 6= 0. In Theorem 2, we saw that

the CSS is locally non-smooth at a double tangent, and in fact it can be shown using

this set-up that the CSS always inflects the double tangent. The position of the inflexion

along a double tangent can be easily determined using the corollary to Theorem 1 (see

the end of Section 2), which tells us that the CSS point lies at the intersection of the

line joining parallel tangent pairs (which in this case is the double tangent) with the line

joining the corresponding centres of curvature: Figure 5 illustrates the result, where κi
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denotes the curvature of the corresponding curve segment γi evaluated at t = u = 0 (the

two points of contact of the curve segments and the double tangent). When κ1 = κ2,

κ κ κ κ κ κ κ κ
-c c

>0

κ1 κ =
κ =1

2

121 21 21 2 <0 >0<0
κ >κ1 2 |κ1|>|κ2| |κ1|<|κ2| κ1<κ2

0
κ2= 0 0

y-axis

x-axis
(double
tangent)

0= κ1= κ2−

Figure 5. Position of inflexion along double tangent

the CSS point is at infinity along the double tangent: it can be shown that the CSS still

inflects the double tangent at infinity. Our next theorem states a global result concerning

the structure of the CSS for a plane curve. It states that the number of inflexions on the

CSS of a curve γ is equal to the number of double tangents to γ.

Theorem 4. The CSS has an inflexion only at a double tangent of the curve.

P r o o f. Consider the dual of the CSS, which is defined to be the set of tangents to the

CSS, that is the set of original chords joining points of contact of parallel tangents. We

regard these chords as points in the dual plane, and the locus of these points is then the

dual-CSS. Now we know that inflexions on the CSS correspond to cusps on the dual-CSS,

and hence we may use the dual to find inflexions on the CSS by finding conditions under

which the dual has a cusp. A few short calculations show that the dual-CSS is non-smooth

if and only if d = 0, which corresponds to the case of a bitangent line. Thus inflexions

occur on the CSS only at a double tangent, in which case we know that there is always

one and only one inflexion.

x

y
y=f(x)

Figure 6

We now consider the local structure of the CSS at the other generic situation we

expect to find on a plane curve, namely an inflexion. Consider Figure 6 above, where we

have an ordinary inflexion at the origin. Now there will be pairs of points on opposite sides

of the inflexion where the tangents are parallel, and therefore the inflexion contributes to

the CSS. We would like to find the limiting point of the CSS as the pairs of points with

parallel tangents approach the inflexion. We find:
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Theorem 5. The limiting point of the CSS for a curve segment having an ordinary

inflexion is at the inflexion, and the CSS is tangent to the curve there.

If we consider the expansion f(x) = a3x
3+a4x

4+. . ., with a3 6= 0, then it can be shown

that the direction in which the CSS approaches the inflexion depends upon the signs of

a3 and a4. Figure 7 summarizes these results (the CSS is shown dashed). We briefly note

a3>0 a4>0 a >03

a3 >0<0 <0 a4<0

a4<0

a4 3a
Figure 7

that there is a bifurcation of the CSS when a4 = 0 (even when we have a3 6= 0): in this

case, the CSS is still a semi-cubical parabola, with endpoint at the inflexion and tangent

to the curve there. However, the direction of the CSS as it approaches the inflexion now

depends upon the signs of a3 and a6 — the local diagrams are the same as those in

Figure 7, with a6 replacing a4.

The next result is another example of using the envelope definition to deduce a global

result concerning the structure of the CSS of an oval:

Theorem 6. The number of cusps on the CSS of an oval is odd and ≥ 3.

P r o o f. It can easily be shown that the CSS of an oval Γ is a continuous closed curve,

and since an oval has no double tangents, Theorem 4 tells us that the CSS of Γ has no

inflexions. By considering the chords joining pairs of points of Γ having parallel tangents

(by definition, these chords are the tangents to the CSS), we can show that the CSS of

an oval always has rotation number 1/2: thus there is an odd number of cusps on the

CSS of an oval. Furthermore, it is not hard to see that there exists no continuous closed

curve of rotation number 1/2 containing just a single cusp and no inflexions. Hence the

odd number of cusps on the CSS of an oval must be at least 3.

We end this section with the interesting example illustrated in Figure 8 below, where

the CSS is shown as a solid line and the original curve is shown dashed: we start with

a circle, centre c; we then deform this circle into a non-centrally symmetric curve with

no zeroes of curvature, an oval; we further deform this curve until it exhibits a zero

of curvature, at which stage the CSS touches the curve at the corresponding parallel
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tangent point; further deformation results in the final curve, having 2 inflexions and a

double tangent: note that the CSS inflects the double tangent, has end-points at the

inflexions of the curve, and tends to infinity along the asymptotic line (shown dotted).

This example sums up all the phenomena that we know about the CSS so far. The next

section continues this experimental approach concerning transitions on the CSS.

.c

Figure 8

5. 1-parameter families of plane curves. We would like to further our investi-

gation of the CSS by analysing the possible transitions that may occur on the CSS of a

plane curve as it is deformed through a 1-parameter family. Using the same coordinate

system as illustrated in Figure 1, and with reference to Section 3, we are now looking

for conditions for F (see (2)) to have an A≥3 singularity on its zero-level. Some simple

analysis leads us to:

Theorem 7. F has an A≥3 point on its zero-level in the following situations:

• (c, d) = (0, 0): both curve segments pass through the origin and are tangent there.

• κ′
1κ

2

2 − κ2

1κ
′
2 = d = 0: the cusp condition is satisfied along a double tangent.

• κ1 = d = 0: we have a double tangent where there is an inflexion on one of the

curve segments.

• d 6= 0 and both

(i) κ′
1
κ2

2
= κ2

1
κ′

2

(ii) κ′′
1
κ3

2
= κ3

1
κ′′

2

occur simultaneously.
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The first three cases are simply situations in which we find some higher degree of

degeneracy of F . The last situation is the one which interests us most: this is the condition

for a ‘swallowtail point’ to appear on the CSS (generically ∂4F/∂t4 6= 0). As noted before,

we expect to observe swallowtail transitions on 1-parameter families of the CSS. We can

rewrite this swallowtail condition in terms of radii of curvature of the curve segments:

the condition for a swallowtail point becomes

(i) ρ′
1

= ρ′
2
,

and (ii) ρ1ρ
′′
1

= ρ2ρ
′′
2
.

where ρi = 1/κi is the radius of curvature of curve segment γi. As in the case of the

cusp condition, we can parametrize both curves by the same parameter t, and a simple

calculation then shows that

κ′
1
κ2

2
− κ2

1
κ′

2
= κ′′

1
κ3

2
− κ3

1
κ′′

2
= 0 ⇔

d

dt

(

κ2

κ1

)

=
d2

dt2

(

κ2

κ1

)

= 0.

Hence we expect a swallowtail point on the CSS when we have a degenerate critical point

of the ratio of curvatures function κ2/κ1.

The experimental theme of the previous section is continued with the help of

LSMP [10], a software package implemented on an SGI machine, which allows us to

plot the CSS for specific plane curve segments. In the schematic example below, an in-

flexion on our curve segment is deformed through a family, and we can clearly see a

(semi-)swallowtail transition occuring. Experiments such as this one make it clear that

we are in fact dealing with boundary singularities (see [1], [3], p. 409, [7]).

Figure 9. A schematic representation of a semi-swallowtail transition



102 P. J. GIBLIN AND P. A. HOLTOM

6. The 3-dimensional surface case. In this section we shall show briefly how to

apply the idea of ‘ratio-of-distances’ to the case of a surface. Specifically, we consider a

smooth closed surface M and pairs of points of M at which the tangent planes are parallel.

For now, let us assume that M is strictly convex, so that all points are elliptic. We shall

indicate below some of the interesting complications that arise when this assumption

is dropped, but will leave a detailed exposition of the general structure of the CSS for

surfaces to another article. In fact, it may be better to use a different definition of the

CSS to overcome these complications — see Section 7 for details.

We can set up local coordinates so that we are examining two local pieces of surface,

one of which, M say, is given by a parametrization (x, y, g(x, y)) where g = gx = gy = 0

at x = y = 0 (see Figure 10). The base point (0, 0, 0) will be referred to as P . The

other surface piece, N say, will have a horizontal tangent plane at some point Q. All our

constructions are affinely invariant, so for purposes of calculation we can first perform an

affine transformation which moves Q on to the z-axis. Better still, we can always do this

by means of a transformation of the form

x = x′ + αz′, y = y′ + βz′, z = z′,

and a short calculation shows that such a transformation leaves the second degree terms

of the surfaces M and N unchanged. We suppose this is done; N is then given by a

parametrization of the form (u, v, k + h(u, v)), where Q = (0, 0, k) and h = hu = hv = 0

at u = v = 0. The parallel tangent plane condition is now gx = hu, gy = hv. Using the

z=k+h(x,y)

z=g(x,y)

Q=(0,0,k)

z

x

y

M

N

P=(0,0,0)

Figure 10

implicit function theorem, we can express u, v locally as functions of x, y provided Q is

not parabolic, which we are assuming here. We can now write down the function R(x, y)

which represents the ratio of the distances of a fixed point (p, q, r) from the parallel

tangent planes at two points near P and Q. Thus

R =
(x − p)gx + (y − q)gy + r − g

√

g2
x + g2

y + 1
×

√

h2
u + h2

v + 1

(p − u)hu + (q − v)hv + h + k − r
,
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where u, v are functions of x, y as above. We seek the conditions on (p, q, r) for R to be

(i) singular, (ii) degenerate, at x = y = 0. Naturally this is just a matter of calculation!

The results are:

(i) R is singular at x = y = 0 (i.e., Rx = Ry = 0) if and only if
(

gxx gxy

gxy gyy

) (

p

q

)

= 0,(6)

the derivatives being evaluated at x = y = 0. We shall use G to denote this matrix of the

second derivatives of G. Note that G was not affected by the initial affine transformation

which placed Q on the z-axis. The letter H will denote the corresponding matrix from h.

Granted that P is not parabolic, this shows that points (p, q, r) for which R is

singular at x = y = 0 are precisely those with p = q = 0, i.e., points on the line joining

P and Q.

(ii) R is degenerate at x = y = 0 (i.e., also RxxRyy = R2

xy) if and only if r = λk

where λ satisfies

det(λG + (1 − λ)H) = 0.

When, as here, G is nonsingular, this amounts to saying that (1 − λ)/λ is an eigenvalue

of G−1H .

Note that by our assumption that G is a definite matrix (since M has only elliptic

points), the eigenvalues will always be real. It is, however, possible for them to coincide.

In fact, rotating axes so that G has the form 1

2
(κ1x

2 + κ2y
2)+ h.o.t., and writing

H =

(

a b

b c

)

,

the condition for equal eigenvalues comes to

(κ2a − κ1c)
2 + 4κ1κ2b

2 = 0, i.e. κ2a = κ1c, b = 0,

since κ1κ2 6= 0. Since b = 0, the principal directions at P and Q are parallel. In addition,

the ratios of principal curvatures are equal: κ1/κ2 = a/c. We can expect this to occur at

isolated points (if at all), so the two real sheets of the CSS will come together at isolated

points, in rather the same way that the two sheets of the focal surface of a given smooth

surface come together over the umbilic points.

Proposition 8. For a smooth strictly convex surface the CSS is a real 2-sheeted

surface with the two sheets coming together at isolated points. Furthermore, it can be

shown that the chords joining pairs of points of contact of parallel tangent planes are all

tangent to the CSS.

As a simple example, consider a surface M of ‘constant width’: the chords joining

pairs of points with parallel tangent planes are the (common) normals to the surface,

and these chords are of some constant length. It follows that the distances d, e from

a fixed point (p, q, r) to two parallel tangent planes have constant sum, and hence the

ratio-of-distances function R has the same singularities as d. However, it is easy to see

that d has the same singularities as the standard distance-squared function from (p, q, r)
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to M , and hence the bifurcation set of the ratio R coincides with the bifurcation set of

standard distance-squared function on the surface, namely the focal set. Thus it follows

that the CSS of a surface of constant width is the focal set of the surface. (Compare this

with the analogous example for a curve of constant width, outlined in Section 1.) It is

interesting to note that, in this example, the set of chords joining parallel tangent planes

are normals to a surface (which is in fact the original surface itself): this is not true in

general.

When we move on to consider non-convex objects, the situation becomes rather more

complicated. For example, equation (6) holds when P is parabolic but Q is not, and then

we can take g of the form 1

2
κ1x

2+ h.o.t. The condition is then just p = 0, which means

that there is a whole plane of points (p, q, r) which make R singular at x = y = 0, rather

than just a line of such points, as we should expect. Thus for a surface with parabolic

points, the ratio-of-distances definition turns out to be unsatisfactory.

7. Conclusions & further investigations. So far, we have proposed two defini-

tions of the CSS — one via a ratio-of-distances function, and the other, in the plane curve

case, in terms of an envelope. We found that both definitions are entirely successful when

applied to strictly convex curves — we are able to analyse the structure of the CSS in a

variety of convex situations, and the two definitions lead to identical sets.

Now it is quite natural to ask whether we can extend these ideas to non-convex

situations, both for plane curves and surfaces: however, as we have seen in Section 6,

this may lead to some unsatisfactory results. One of our objectives is that each pair of

parallel tangents (or parallel tangent planes) to our curve (or surface) should contribute

a single point to the CSS. In the last section, we saw that the ratio-of-distances approach

was unsatisfactory when we considered certain non-convex surface situations, namely the

case where one of the surface segments is parabolic. In fact, analogous problems occur

when we consider both the ratio-of-distances definition and the envelope definition for

the CSS of a plane curve. We will illustrate how these definitions may ‘fail’ in two specific

non-convex plane curve situations:

(i) We have an inflexion on one curve segment, and another non-inflecting curve

segment (see Figure 3);

(ii) We have a single inflecting curve segment — here, pairs of parallel tangents strad-

dle the inflexion (see Figure 6).

For each definition, we will calculate the CSS ‘point’ corresponding to the inflexion

(the ‘point’ may in fact turn out to be some larger set, as we shall see). First of all we

consider the ratio-of-distances definition. A short calculation shows that this definition

is unsuitable in both situations: in case (i), the ratio-of-distances function is singular for

an arbitrary base-point in the plane, and degenerate for all points on the line joining the

inflexion and its corresponding parallel tangent point — thus the whole line is part of

the CSS in this definition, when we should expect a single point on the line only; in case

(ii), the ratio-of-distances function is in fact degenerate for any base-point — thus the

whole plane is part of the CSS using the ratio-of-distances definition, a result which we

consider to be unacceptable since we should expect the inflexion to contribute a single
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point to the CSS, namely the inflexion itself.

Consider now the envelope definition in the same two situations: in case (i), we find

that the envelope definition gives a single point, namely the point of contact of the

corresponding parallel tangent on the upper curve segment — thus the envelope definition

in this situation gives an entirely acceptable result. However, in case (ii), we find that the

envelope definition gives the inflexional tangent as part of the CSS, which is a situation

we would rather avoid. Thus the envelope definition, although superior to the ratio-of-

distances definition in some non-convex situations, fails in case (ii).

It is clear that further work is needed to cover the non-convex situation. In discussions

with Volody Zakalyukin and Victor Goryunov, a new approach has been developed, and

this will be the subject of a future article.

References

[1] V. I. Arnol′ d, Critical points of functions on a manifold with boundary, the simple Lie
groups Bk, Ck, and F4 and singularities of evolutes (in Russian), Uspekhi Mat. Nauk 33
no. 5 (1978), 91–105, 237; English transl.: Russian Math. Surveys 33 no. 5 (1978), 99–116.

[2] J. W. Bruce and P. J. Gibl in, Growth, motion and 1-parameter families of symmetry sets,
Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 179–204.

[3] J. W. Bruce and P. J. Gibl in, Projections of surfaces with boundary , Proc. London Math.
Soc. (3) 60 (1990), 392–416.

[4] J. W. Bruce, P. J. Gibl in and C. G. Gibson, Symmetry sets, Proc. Roy. Soc. Edinburgh
Sect. A 101 (1985), 163–186.

[5] P. J. Gibl in and S. A. Brassett, Local symmetry of plane curves, Amer. Math. Monthly
92 (1985), 689–707.

[6] P. J. Gibl in and G. Sapiro, Affine-invariant distances, envelopes and symmetry sets,
Geom. Dedicata 71 (1998), 237–261.

[7] V. V. Goryunov, Projections of generic surfaces with boundary , in: Theory of Singular-
ities and its Applications, V. I. Arnol′d (ed.), Adv. Soviet Math. 1, Amer. Math. Soc.,
Providence, 1990, 157–200.

[8] P. Holtom, Local Central Symmetry for Euclidean Plane Curves, M.Sc. Dissertation, Uni-
versity of Liverpool, Sept. 1997.

[9] S. Janeczko, Bifurcations of the center of symmetry , Geom. Dedicata 60 (1996), 9–16.

[10] Liverpool Surface Modelling Package, written by Richard Morris for Silicon Graphics and
X Windows. See R. J. Morris, The use of computer graphics for solving problems in singu-
larity theory , in: Visualization in Mathematics, H.-C. Hege and K. Polthier (eds.), Springer,
Heidelberg, 1997, 53–66.

[11] Buchin Su, Affine Differential Geometry , Science Press, Beijing; Gordon and Breach, New
York, 1983.

[12] V. M. Zakalyukin, Envelopes of families of wave fronts and control theory , Proc. Steklov
Inst. Math. 209 (1995), 114–123.


