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Abstract. In this paper we review some of the concepts and results of V. I. Arnol′d [1] for
curves in S2 and extend them to curves and surfaces in S3.

1. Introduction. In [1] Arnol′d introduces the concepts of the dual curve and the
derivative curve of a smooth (= C∞) embedded curve in S2. In particular he shows that
the evolute or caustic of such a curve is the dual of the derivative. The dual curve is
just the unit normal curve, while the derivative is the unit tangent curve. The definitions
extend in an obvious way to curves on S2 with ordinary cusps. Then one proves easily
that where a curve has an ordinary geodesic inflection the dual has an ordinary cusp and
vice versa. Since the derivative of a curve without cusps clearly has no cusps it follows
that the caustic of such a curve has no geodesic inflections. This prompts investigating
what kind of singularity a curve must have for its caustic to have a geodesic inflection,
by analogy with the classical construction of de l’Hôpital, see [2], pages 24–26.

In the second and third parts of the paper the definitions of Arnol′d are extended to
surfaces in S3 and to curves in S3.

The notations are those of Porteous [2], differentiation being indicated by subscripts.

2. Curves in S2. Let r be a parametrised smooth curve on S2. Then

r · r = 1, r · r1 = 0,

r · r2 + r1 · r1 = 0, r · r3 + 3r1 · r2 = 0,

r · r4 + 4r1 · r3 + 3r2 · r2 = 0,

and r · r5 + 5r1 · r4 + 10r2 · r3 = 0.
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Then either r is regular at a point, that is r1 6= 0, in which case r · r2 6= 0, implying
that r2 6= 0, or r1 = 0. In the latter case

r · r2 = 0, r · r3 = 0,

r · r4 + 3 r2 · r2 = 0 and r · r5 + 10 r2 · r3 = 0.

Suppose that in this case also r2 6= 0. There are then two cases. Either r3 is linearly
independent of r2, and the curve has an ordinary cusp, or r3 is a multiple of r2, say
r3 = 3λr2, with r4 not a multiple of r2, since r · r4 = −3r2 · r2 6= 0. What about r5?
Suppose that r5 = βr2 + γr4. Then

−30λr2 · r2 = −3γr2 · r2,

implying that 3(γ − 10λ)r2 · r2, 6= 0 unless γ = 10λ.
So either r5 = βr2 +10λr4, for some β ∈ R, or r5 is linearly independent of r2 and r4.

In the latter case we say that r has an ordinary rhamphoid cusp, while in the former case
we say that it has a special rhamphoid cusp.

Now let the curve r be oriented and co-oriented. The orientation determines the unique
unit tangent curve or derivative curve t while the co-orientation determines the unique
unit normal curve or dual curve n, with n · r = 0 and n · r1 = 0. The dual of the dual
is the curve −r antipodal to r on the sphere. For, since n · r = 0 it follows at once that
n · r1 = 0 if and only if r · n1 = 0.

Geodesics on S2 are great circles, and a regular curve r on S3 is said to have an
ordinary geodesic inflection at a point if at that point the vectors r, r1 and r2 are coplanar,
but r3 does not lie in that plane.

Proposition 1. Where a curve r on S2 has an ordinary geodesic inflection the dual
curve n has an ordinary cusp, and vice versa.

P r o o f. Since n · r = 0 and n · r1 = 0 we have n1 · r = 0,

n · r2 + n1 · r1 = 0 and n1 · r1 + n2 · r = 0,

n · r3 + 2n1 · r2 + n2 · r1 = 0 and n1 · r2 + 2n2 · r1 + n3 · r = 0.

Moreover at a point of regularity of the curve n, r and r1 form a basis for R3. Where r
has an ordinary geodesic inflection then also n · r2 = 0. Then not only n1 · n = 0 and
n1 · r = 0 but also n1 · r1 = 0, implying that n1 = 0. However n · r3 6= 0, implying that
n2 · r1 6= 0 and n3 · r 6= 0, and therefore that n2 6= 0 and n3 6= 0, while, since n2 · r = 0
but n3 · r 6= 0, n3 is not a multiple of n2. That is the dual curve n has an ordinary cusp.

The reverse implication is proved in similar fashion.

It may happen that at some point of a curve r not only r1 = 0, with r2 6= 0, but also
n1 = 0, with n2 6= 0. Then at such a point

n · r2 = 0 and n2 · r = 0,

n · r3 = 0 and n3 · r = 0,

n · r4 + 3n2 · r2 = 0 and 3n2 · r2 + n4 · r = 0.

Now r, n and r2 form a basis for R3, while n2 · r = 0 and n2 ·n = 0, so, since n2 6= 0,
n2 · r2 6= 0, implying that also n · r4 6= 0 and n4 · r 6= 0.



SOME REMARKS ON DUALITY 219

Proposition 2. At a point of a curve r on S2, with dual n, where r1 = 0, with
r2 6= 0, and also n1 = 0, with n2 6= 0, then r has a rhamphoid cusp. Let r3 = 3λr2 and
n3 = 3µn2. Then the cusp is ordinary if λ 6= µ, special if λ = µ. Moreover the dual n
has a rhamphoid cusp of the same type as r.

P r o o f. From r · r2 = 0 and r · r3 = 0 it follows that r3 is a multiple of r2, say
r3 = 3λr2. Likewise from n · r2 = 0 and n · r3 = 0 it follows that n3 is a multiple of n2,
say n3 = 3µn2. From n · r4 6= 0 it follows that r4 is not a multiple of r2. So r has a
rhamphoid cusp. Likewise n has a rhamphoid cusp.

As to their type, a further differentiation yields the equation

n · r5 + 4n1 · r4 + 6n2 · r3 + 4n3 · r2 + n4 · r1 = 0.

With n1 = 0 and r1 = 0, and with r3 = 3λr2 and n · r4 + 3n2 · r2 = 0,

n · r5 − 10λn · r4 = −6n2 · r3 − 4n3 · r2 + 3n2 · r2 = (−18λ− 12µ+ 30λ)n2 · r2

= 12(λ− µ)n2 · r2 = 0 if and only if µ = λ.

But then r5 − 10λr4 = αr + βr2, for some α and β, with

α = r · r5 − 10λr · r4 = −10r2 · r3 + 30λr2 · r2 = 0.

That is the rhamphoid cusp on r is special if and only if n3 = 3λn2. An analogous
discussion then proves that the latter equation holds if and only if n5 = α′n2 + 10λn4,
for some α′. That is the rhamphoid cusp on the dual curve n is ordinary or special
according as the rhamphoid cusp on r is ordinary or special.

Note that by this proof we have an alternative characterisation of ordinary or special
rhamphoid cusps, namely that if r has a rhamphoid cusp with r3 = 3λr2, then the cusp
is ordinary or special according as n3 6= 3λn2 or n3 = 3λn2.

All this is for a curve r on S2. We leave it to the reader to re-examine rhamphoid
cusps of plane curves to see whether this fresh characterisation of rhamphoid cusps is
valid there, or not. (It is!)

As outlined in Porteous [2], Chapter 5, the theory of parallels and evolutes or caustics
of plane curves extends in obvious ways to curves on S2. It is immediate that all the
parallels to r, including the dual n, have the same derivative curve t. The equations for
the evolute e of a regular curve r on S2 are simpler than those for a plane curve, since
circles on S2 are cut out by planes in R3. The equations defining e are in fact e · e = 1,
e · r1 = 0 and e · r2 = 0, these defining e uniquely, if the co-orientation of r is taken into
account. It is then obvious that the evolute or caustic e is dual to the derivative curve t.

As we have already remarked, the evolute e of a regular curve r has no geodesic
inflections. The analogue of the de l’Hôpital theorem is the following:

Proposition 3. Where a curve r on S2 has an ordinary rhamphoid cusp the evolute
e has an ordinary geodesic inflection, and conversely.

P r o o f. Since e · r1 = 0 and e · r2 = 0 one also has e1 · r1 = 0 and therefore

e · r3 + e1 · r2 = 0 and e1 · r2 + e2 · r1 = 0,

e · r4 + 2e1 · r3 + e2 · r2 = 0 and e1 · r3 + 2e2 · r2 + e3 · r1 = 0,

e · r5 + 3e1 · r4 + 3e2 · r3 + e3 · r2 = 0 and e1 · r4 + 3r2 · r3 + 3e3 · r2 + e2 · r1 = 0.
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All the terms in the first three of these equations are zero, as is 3e2 · r3, and if any of the
others is non-zero so are the others. With e, r2 and r4 a basis of R3 at a rhamphoid cusp
then e · r4 6= 0 if and only if e1 6= 0. This is indeed the case if and only if the rhamphoid
cusp on r is ordinary, and then e · r2 = 0, e1 · r2 = 0 and e2 · r2 = 0, but e3 · r2 6= 0; that
is e then has an ordinary geodesic inflection.

For a regular curve r on S2 the appropriate notion of curvature is the geodesic cur-
vature κ = cot θ, where θ is the angle between the vectors r and e, this measuring the
extent to which the curve departs from being a great circle. Then κr1 + n1 = 0, from
which it follows that κ1r1 + κr2 + n2 = 0 and κ2r1 + 2κ1r2 + κr3 + n3 = 0.

Proposition 4. A rhamphoid cusp on a curve r on S2 is ordinary if and only if the
geodesic curvature is not critical there.

P r o o f. At a rhamphoid cusp r1 = 0, with r2 6= 0, r3 = 3λr2 and n3 = µn3, the cusp
being ordinary if and only if µ 6= λ. However, with r1 = 0 we have κr2 + n2 = 0 and
2κ1r2 + κr3 + n3 = 0, from which it follows at once that κ1 6= 0 if and only if µ 6= λ.

3. Surfaces in S3. Let s be an oriented and co-oriented regular parametric surface
in S3, the unit sphere in R4, with parameter space an open subset of R4. The word
‘co-oriented’ implies that a choice of unit normal n is made smoothly at each point. We
define the surface n to be the dual surface to s. It is parallel to r at angular distance π

2 .
One has not only s · s = 1 and n · n = 1 but also n · s = 0 and n · s1 = 0, from which it
follows at once that also n1 · s = 0. The dual of the dual is then the surface −s antipodal
to the surface s.

The dual n of a co-oriented singular surface s in S3 is likewise defined. Not all singular
surfaces are co-orientable. The standard example of a surface which is not is the Whitney
umbrella.

For any vector u ∈ R2 the vector s1u is tangent to s and the vector n1u is tangent
to n. Suppose first that s is regular, that is s1u 6= 0 whenever u 6= 0. Then, although
each is orthogonal to n, n1u in general is not a multiple of s1u.

Proposition 5. With s and n as above, one has n1u = κs1u, for some κ, and some
non-zero vector u, if and only if n · s2u = κs1 · s1u, there being , in general , distinct real
κ, λ and distinct real non-zero u,v such that

n · s2u = κs1 · s1u and n · s2v = λs1 · s1v,

with n · s2uv = 0 and s1u · s1v = 0.

P r o o f. Standard eigenvalue problem.

The eigenvalues κ and λ are then defined to be the principal (geodesic) curvatures of s
and the vectors s1u and s1v the principal tangent vectors of s, the latter being mutually
orthogonal provided that κ and λ are not equal. We normalise these to be of unit length,
setting u = a1 and v = b1, these vectors being unique up to sign. By analogy with the
theory of surfaces in R3 the symmetric twice-linear forms s1 · s1 and n · s2 are called the
first and second fundamental forms of the surface s. Note that since n · s1 = 0 we have
n1 · s1 = −n · s2 a symmetric twice-linear form.
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The principal tangent vectors are tangent to two mutually orthogonal foliations of the
surface by lines of curvature, just as for surfaces in R3.

The parabolic line on a regular surface s on S3 consists of those points where the
twice-linear form n · s2 is parabolic, that is where there is a non-zero vector u in R2 such
that n · s2u = 0, an equivalent condition being that n1u = 0; for s, n and the image of s1

span R4 and s · n1 = 0, n · n1 = 0, while s1 · n1 = −n · s2. For a co-oriented singular
surface these conditions are no longer equivalent. It seems that the appropriate definition
in that case is to say that the parabolic line consists of those points where there is a
non-zero vector u in R2 such that n1u = 0.

A co-oriented surface s is said to have a cuspidal edge where there is a non-zero
vector u such that s1u = 0. With this definition it is immediate that where a co-oriented
surface has a parabolic line the dual surface has a cuspidal edge.

Anyone familiar with the classical result of Whitney will expect it to be the case that
a map s : R2>→S3 (1) in general only fails to be regular at isolated points, these being
Whitney umbrellas. That this is not the case here is due to the fact that we are restricting
to co-orientable parametrised surfaces, the image of the first differential of s at any point
lying in the orthogonal complement of the unit normal vector n.

With s and n as above we say that s has an ordinary parabolic line and n an ordinary
cuspidal edge where not only the dimension of the kernel of n1 is one, with n1u = 0, for
some non-zero vector u, but also n2u2 + n1v 6= 0 for all v ∈ R2.

Proposition 6. With s and n as above, the points of the ordinary parabolic line
form a one-dimensional submanifold of S3 lying in the image of s, while the points of the
dual cuspidal edge form a one-dimensional submanifold of S3 lying in the image of n,
provided that the intersection of the kernels of s1 and n1 is everywhere zero.

P r o o f. At each point of the parabolic line of s : c 7→ s(c) or cuspidal edge of
n : c 7→ n(c) there is a non-zero vector u such that n1u = 0. By the rank theorem it is
enough to prove that the rank of the map

R2 ×R2>→R4

(c,u) 7→ n1u

is everywhere equal to 2, where the argument c is omitted on the right-hand side.
Let (c1,u1) be a kernel vector. Then

n2c1u + n1u1 = 0,

implying that s1u · n2uc1 = 0.
Now it follows from the fact that s1u · n2u2 6= 0 that s1u · n2u 6= 0, with a non-zero

kernel vector c1 not a multiple of u. For it is not hard to verify that if s1u · n2u2 = 0
then there exists a non-zero vector v such that n2u2 + n1v = 0, contrary to hypothesis.

With the dimension of the kernel of n1 equal to 1 the vector u1 is then determined
modulo u.

One then proceeds to analyse what happens when the condition of ordinariness fails.
In the case of a surface in R3 this leads to the study of ‘cusps of Gauss’. See Porteous [2],

(1) The tail on the arrow indicates that the domain is an open subset of the source indicated.
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pages 217–221. In the present situation it turns out that at the analogue of a cusp of
Gauss on the parabolic line of s the parabolic line is simply tangential to the associated
line of curvature, while the dual has a swallow-tail.

Proposition 7. With the notations of the previous proposition, suppose still that , at
some point p, s1u ·n2u 6= 0, but that s1u ·n2u2 = 0, or equivalently n2u2 + n1v = 0, for
some vector v, while there is no vector w such that n3u3 + 3n2uv +n1w = 0. Then at p
the parabolic line on s remains a one-dimensional submanifold of the image of s, but with
tangent line coinciding with the tangent line to the associated line of curvature there, the
contact with that line being simple, while the cuspidal edge on n has an ordinary cusp,
this point being a swallow-tail point on n.

P r o o f. That c1 is a multiple of u at p follows at once from the proof of the previous
proposition. That such points are isolated follows from verifying that the only kernel
vectors of the map

R2 ×R2 ×R2>→R4 ×R4

(c,u,v) 7→ (n1u,n2u2 + n1v)

are of the form (0,u1,v1) where u1 and v1 are uniquely determined mod u. In fact one
must have

n2c1u + n1u1 = 0,
implying as before that

s1u · n2uc1 = 0,
and therefore that c1 = λu and u1 = λv mod u, and

n3c1u2 + 2n2uu1 + n2c1v + n1v1 = 0,

that is
λ(n3u3 + 3n2uv + n1v) = 0,

implying that s1u ·λ(n3u3 +3n2uv) = 0, and therefore that λ(n3u3 +3n2uv)+n1w = 0,
for some vector w. But this can only be the case if λ = 0.

Now let c denote the representative curve in the parameter space of the parabolic
line and the cuspidal edge, with c1 = u 6= 0 at p. Then the successive derivatives of the
parabolic line sc are (sc)1 = s1c1 6= 0, equal to s1u at p, and (sc)2 = s2c2

1 + s1c2, while
those of the cuspidal edge nc are (nc)1 = n1c1 6= 0 except at a point such as p, where it
is 0, (nc)2 = n2c2

1 + n1c2 and (nc)3. Now differentiating the equation n1u = 0 along c
we have

n2uc1 + n1u1 = 0
reducing at p to

n2u2 + n1v = 0
with u1 = v mod u and

n2uc2 + n3uc2
1 + 2n2c1u1 + n1u2 = 0,

reducing at p to
n2uc2 + n3u3 + 2n2uv + n1u2 = 0.
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Now were we to have c2 = v mod u we would immediately have a contradiction, on
forming the dot product with s1u and recalling that there is no vector w such that
n3u3 + 3n2uv + n1w = 0.

It follows that at p the vector (sc)2 is not the second derivative of the line of curvature
to which the parabolic line is tangent, that is the contact between the two lines is simple,
while (nc)1 = 0, though (nc)2 6= 0.

It remains to prove that (nc)3 is not a multiple of (nc)2. We remark first of all that
at p the vectors s. n, s1u and (s1u)1u, form a basis for R4. For differentiate the equation

n1 · s1u = 0

along c. Then we get
n1 · (s1u)1 + n2c1 · s1u = 0,

with c1 a multiple of u. But s1u · n2u 6= 0, from which it follows that n1 · (s1u)1 6= 0.
The assertion follows at once. (Remark: this means that the associated line of curvature
through p, with u as tangent vector, does not have a geodesic inflection at p.)

Now differentiate the equation

s1u · (nc)1 = s1c1 · n1u = 0

twice along c to get
s1u · (nc)2 + (s1u)1 · (nc)1,

reducing at p to
s1u · (nc)2 = 0,

and
s1u · (nc)3 + 2(s1u)1 · (nc)2 + (s1u)2 · (nc)1 = 0,

reducing at p to
s1u · (nc)3 + 2(s1u)1 · (nc)2 = 0.

From the fact that (nc)2 6= 0 it follows that, at p, (s1u)1 · (nc)2 6= 0 and hence that
s1u · (nc)3 6= 0. That is (nc)3 is not a multiple of (nc)2 at p, which is what had to be
proved.

One may go on to show that to a birth-point or normal crossing of the parabolic line
there corresponds a lips birth-point of the cuspidal edge or a beak-to-beak singularity of
the cuspidal edge. We leave this to the reader to verify.

It should be clear from our definitions of parabolic line and cuspidal edge that such
lines on a surface may cross each other transversally, it being in general the case that
either locally separates parts of the surface of positive Gaussian curvature from parts of
negative Gaussian curvature, the Gaussian curvature being defined to be the product of
the principal curvatures, just as for surfaces in R3. What is more remarkable is that there
is nothing in the definition to prevent a line being at the same time an ordinary parabolic
line and an ordinary cuspidal edge. This will not be a rhamphoid cuspidal edge, as one
might at first conjecture by analogy with the situation noted earlier for curves in S2,
provided that the kernels of the differentials of s and n have zero intersection. Such lines
arise naturally when reflectional symmetry is present, as we shall shortly find. On either
side of such a line the Gaussian curvature will have the same sign!
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Since 2-spheres on S3 are cut out by hyperplanes in R4 the theory of the evolute is
simpler than for a surface in R3. With s, a basis for the image of s1 and n forming a
basis for R4 at each point of the regular surface s it follows that where e · e = 1 and
e · s1 = 0 then e = s cos θ + n sin θ. Then

e · s2 = s · s2 cos θ + n · s2 sin θ = (n · s2 − s1 · s1 cot θ) sin θ.

We have already solved the resulting eigenvalue problem, yielding at each point real
eigenvalues κ = cot θ and λ = cotφ and non-zero real eigenvectors u and v such that

n · s2u = κs1 · s1u and n · s2v = λs1 · s1v.

The eigenvalues κ and λ are just the principal (geodesic) curvatures of s and the vectors
s1u and s1v the principal tangent vectors of s, the latter being mutually orthogonal
provided that κ and λ are not equal. We normalise these to be of unit length, setting
u = a1 and v = b1, these vectors being unique up to sign. Then there are two sheets e
and f of the evolute or caustic of s defined by e · e = 1, with e · s1 = 0 and e · s2a1 = 0,
and f · f = 1, with f · s1 = 0 and f · s2b1 = 0.

A co-oriented regular surface on S3 is said to have an umbilic where the principal
curvatures κ and λ are equal. Ignoring such points for the time being we have:

Proposition 8. Let s be a co-oriented surface in S3. Then, with the above notations,
s1a1 is the unit normal to e, and therefore is dual to e, while f1b1 is the unit normal
to f , and therefore is dual to f .

P r o o f. Since e · s1 = 0 it follows that e · s2 + e1 · s1 = 0 and since e · s2 is symmetric
in its two slots, so also is e1 ·s1. From e ·s2a1 = 0 it then follows that e1 ·s1a1 = 0, which
is what had to be proved. The other sheet is dealt with analogously.

The surfaces s1a1 and s1b1 form the two sheets of the derivative of the surface s.
Ridges on a surface are those curves where one or other of the principal curvatures

is critical in the associated principal direction, the associated sheet of the evolute having
a cuspidal edge. On the other hand, a flexcord , consisting of points where the other
principal curvature is critical in a principal direction, and which also consists of points
where the other line of curvature has a geodesic inflection, lies under a parabolic line on
the evolute, the corresponding curve on the derivative accordingly being a cuspidal edge.

In the special case of a line of reflectional symmetry on the surface this is at the
same time both a ridge and a flexcord, of the same ‘colour’. On the relevant sheet of
the evolute we have a curve that is at the same time an ordinary parabolic line and an
ordinary cuspidal edge. For definiteness suppose that the sheet involved is e. Then if e1

has a kernel vector it must be a multiple of a1, while if (s1a1)1 has a kernel vector it must
be a multiple of b1, so that the kernels of the differentials in this case do not coincide.

What happens at umbilics is another story, which we do not embark upon here!

4. Curves in S3. Let r be a regular curve in S3. It is then clear that the unit tangent
t is the derivative of r, but it may not be so clear what one should take as the dual ,
there being a whole circle of unit vectors normal to the curve at any point. Should one
take the tube centred on the curve, with angular radius π

2 , or is some particular normal
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vector to be preferred? A hint to the correct answer is provided by consideration of the
evolute or caustic of r. By analogy with what one does for curves in R3 the space evolute
e is defined by the equations e · e = 1, e · r1 = 0, e · r2 = 0 and e · r3 = 0, at least where
the vectors r1, r2 and r3 are linearly independent, from which it follows that for tangent
vectors to e of unit length, e1 ·e1 = 1, e1 ·r1 = 0 and e1 ·r2 = 0. For a unit-speed curve r,
with t = r1 and e1 = r2, this is seen to be the tube of radius π

2 with core the derivative
curve t.

The following proposition clarifies everything. First we define a curve r in S3 to be
co-orientable if there exists a curve b in S3 such that b · r = 0, b · r1 = 0 and b · r2 = 0.
Such a curve b, the binormal curve, having been taken as the co-orientation of r, is then
defined to be the dual of the curve r.

Proposition 9. With r and b as above, when b · r3 6= 0 then r1 6= 0 and b1 = 0,
and the tangent great circle bundle of b coincides with the tube of angular radius π

2 with
core the curve r.

P r o o f. From b · r = 0, b · r1 = 0 and b · r2 = 0 it follows that b1 · r = 0, b1 · r1 = 0
and b2 · r = 0. Also from b · r2 = 0 it follows that b · r3 + b1 · r2 = 0, while from
b1 · r1 = 0 it follows that b1 · r2 + b2 · r1 = 0, So b · r3 6= 0 implies that b1 · r2 6= 0
and b2 · r1 6= 0, and hence that b1 6= 0 and r1 6= 0. Moreover r, b, r1 and b1 form an
orthogonal basis for R4 at such a point. Choose a parametrisation for the curve such that
b is unit-speed. (Here and elsewhere throughout this paper the various definitions given
are all independent of the explicit parametrisation used to define the curve or surface.)
Then the points b cos θ+ b1 sin θ form not only the tangent great circle bundle for b but
also the tube of angular radius π

2 with core the curve r.

Of course this is also the tangent great circle bundle of −b, antipodal to b.
Clearly the derivative t of r is the dual of the space evolute e, or of −e, depending

on choices of sign that have been made.
Remark: The tangent great circle bundle of a regular curve r on S3 is parabolic

everywhere. Its dual surface collapses to the dual curve b of r.
At a generic point of a curve r on S3 the four vectors r, r1, r2 and r3 will be linearly

independent, as will be the four vectors r1, r2, r3 and r4. Either may fail at particular
points in several different ways. At a regular point of r, where r1 6= 0, though r · r1 = 0,
one has r ·r2 = r1 ·r1 6= 0. So r1 and r2 are linearly independent. However it may be that
r, r1 and r2 are coplanar. At such a point we say that r has a geodesic inflection, ordinary
if the vectors r, r1, r3 and r4 are linearly independent. By analogy with the case of curves
in R3 we say that a curve r on S3 has a vertex at a point where the vectors r1, r2 and r3

are linearly independent, but the four vectors r1, r2, r3 and r4 are linearly dependent,
this being an ordinary vertex if the vectors r1, r2, r3 and r5 are linearly independent.
Also, again by analogy with the case of curves in R3, at a point where the vectors r1, r2

and r3 are linearly dependent we say that r has a point of torsion zero, ordinary if the
vectors r1, r2, r4 and r5 are linearly independent.

Proposition 10. Suppose that at a point of a co-oriented curve r on S3 the vectors
r, r1 and r2 are linearly independent , but r3 depends on these, while r4 does not. Then
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the dual curve b has a cusp, where b1 = 0, and b2, b3 and b4 are linearly independent ,
and vice versa.

P r o o f. Similar to the proof of Proposition 1, but carried one stage further.

Proposition 11. Let r be a co-oriented curve on S3 with an ordinary vertex. Then
at that point the space evolute e has a cusp where e1 = 0, and e2, e3 and e4 are linearly
independent.

P r o o f. This follows immediately from the previous proposition.

Proposition 12. Suppose that a co-oriented regular curve r in S3 has a geodesic
inflection, Then not only b ·r = 0, b ·r1 = 0 and b ·r2 = 0 but also b1 ·r = 0, b1 ·r1 = 0,
b1 · r2 = 0 and b · r3 = 0. Moreover b · r4 + 2b1 · r3 = 0, implying that at an ordinary
geodesic inflection b1 6= 0.

P r o o f. From b · r = 0, b · r1 = 0 and b · r2 = 0 it follows that b1 · r = 0, b1 · r1 = 0
and b2 · r = 0. Also from b · r2 = 0 it follows that b · r4 + b1 · r3 = 0. Since r, r1 and r2

are coplanar and since b1 · r = 0 and b1 · r1 = 0 it follows that b1 · r2 = 0 and therefore
that b · r3 = 0. From b1 · r1 = 0 it follows that b1 · r2 + b2 · r1 = 0, and therefore that
b2 · r1 = 0, so that b2 · r2 = 0. But b · r4 + 2b1 · r3 + b2 · r2 = 0, so b · r4 + 2b1 · r3 = 0.
At an ordinary geodesic inflection b · r4 6= 0. So b1 · r3 6= 0 and therefore b1 6= 0 at such
a point.

Proposition 13. Suppose that at some point a co-oriented regular curve r in S3 has
an ordinary geodesic inflection, Then at the corresponding point of the dual curve b there
is also an ordinary geodesic inflection.

P r o o f. This follows at once from the detail of the proof of the previous proposition,
for, since b2 · r2 6= 0, the fact that b1 · r1 6= 0 implies that b3 · r1 6= 0 and b4 · r 6= 0.

Remark: The tangent great circle bundle of a regular curve r on S3 has an ordinary
cuspidal edge not only along r but also along the tangent great circle at any ordinary
geodesic inflection. At such an inflection the two cuspidal edges are tangent to each other.
We omit the details.

We conclude with a brief discussion of the case that r has torsion zero.

Proposition 14. Let r be a curve on S3 with an ordinary point of torsion zero.
Then at that point the derivative t and the space evolute e each has an ordinary geodesic
inflection.

P r o o f. This follows directly from the definition of ‘ordinary’ and the previous propo-
sition.
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