RECOGNIZING RIGHT-LEFT EQUIVALENCE LOCALLY

TAKASHI NISHIMURA

Department of Mathematics, Faculty of Education and Human Sciences
Yokohama National University
Yokohama 240-8501, Japan
E-mail: takashi@edhs.ynu.ac.jp

The present paper is a survey of the author’s recent results on recognizing C^r right-left equivalence of C^∞ map-germs $(0 \leq r \leq \infty)$.

We say two C^∞ map-germs are C^r right-left equivalent if they coincide under germs of appropriate C^r co-ordinate systems of the source space and the target space, where a C^0 co-ordinate system means a co-ordinate system given by a homeomorphism. We often encounter the situations where we would like to decide whether or not given two map-germs are C^r right-left equivalent. In the case that one of them is of full rank (resp. linear), the implicit function theorem (resp. the rank theorem) answers our purpose (possibly except for $r = 0$). However, how can we decide in general case? By using a simple systematic method explained in Section 4, we can obtain many results to the problem. In Section 1, we give a series of criteria for C^r right-left equivalence of C^∞ map-germs $(1 \leq r \leq \infty)$. In Section 2, infinitesimal refinements of criteria for C^∞ right-left equivalence of C^∞ map-germs are given. Next, we consider C^0 right-left equivalence. In Section 3, we give a series of criteria for C^0 right-left equivalence of K-equivalent map-germs. All of the results are derived from one simple idea, which is the key of our systematic method and explained exhaustively in Section 4. In Section 5 we give several applications of our results, which show how useful our method is.

The results for $r = \infty$ are all valid both in the real analytic category and in the complex analytic category as well.

1. Criteria for C^r right-left equivalence $(1 \leq r \leq \infty)$. For a given C^∞ map-germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, any C^r map-germ $\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^p, 0)$ such that $\Phi(x, 0) = f(x)$ is called a C^r deformation-germ of f. A C^r deformation-germ $\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^p, 0)$ of $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ is said to be C^r-trivial if

1991 Mathematics Subject Classification: Primary 58C27; Secondary 14B05, 32S30.

The paper is in final form and no version of it will be published elsewhere.
there exist germs of \(C^r \) diffeomorphisms \(h : (\mathbb{R}^n \times \mathbb{R}^k, (0,0)) \rightarrow (\mathbb{R}^n \times \mathbb{R}^k, (0,0)) \) and \(H : (\mathbb{R}^p \times \mathbb{R}^k, (0,0)) \rightarrow (\mathbb{R}^p \times \mathbb{R}^k, (0,0)) \) such that the following diagram \((*)\) commutes, where \(\pi : (\mathbb{R}^n \times \mathbb{R}^k, (0,0)) \rightarrow (\mathbb{R}^k, 0), \) \(\pi' : (\mathbb{R}^p \times \mathbb{R}^k, (0,0)) \rightarrow (\mathbb{R}^k, 0), \) are canonical projections:

\[
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^n \times \mathbb{R}^k, (0,0)) \\
\downarrow h
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^p \times \mathbb{R}^k, (0,0)) \\
\downarrow \pi
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^k, 0)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^k, 0)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^p, 0)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^k, 0)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
(\mathbb{R}^p, 0)
\end{array}
\end{array}
\end{array}

\]

For given two \(C^\infty \) map-germs \(f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0), \) we consider the following conditions \((i), (ii), (iii), \) and \((iv).\)

\((i)\) The map-germ \(f \) is \(C^r \) right-left equivalent to \(g. \)

\((ii)\) There exist a germ of \(C^r \) diffeomorphism \(s : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0) \) and a \(C^r \) map-germ \(M : (\mathbb{R}^n, 0) \rightarrow (GL(p, \mathbb{R}), M(0)) \) such that the following (a) and (b) are satisfied:

(a) \(f(x) = M(x)g(s(x)), \)
(b) the \(C^r \) map-germ \(F : (\mathbb{R}^n \times \mathbb{R}^p, (0,0)) \rightarrow (\mathbb{R}^p, 0) \) given by

\[
F(x, \lambda) = f(x) - M(x)\lambda
\]

is a \(C^r \)-trivial deformation-germ of \(f. \)

\((iii)\) There exist a germ of \(C^r \) diffeomorphism \(s : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0) \) and a \(C^r \) map-germ \(M : (\mathbb{R}^n, 0) \rightarrow (GL(p, \mathbb{R}), M(0)) \) such that (a), (b) of condition \((ii)\) and the following (c) are satisfied:

(c) The \(C^r \) map-germ \(G : (\mathbb{R}^n \times \mathbb{R}^p, (0,0)) \rightarrow (\mathbb{R}^p, 0) \) given by

\[
G(x, \lambda) = g(x) - M(s^{-1}(x))^{-1}\lambda
\]

is a \(C^r \)-trivial deformation-germ of \(g. \)

\((iv)\) There exist a germ of \(C^r \) diffeomorphism \(s : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0) \) and a \(C^r \) map-germ \(M : (\mathbb{R}^n, 0) \rightarrow (GL(p, \mathbb{R}), M(0)) \) such that (a), (b) of condition \((ii)\) and the following (d) are satisfied:

(d) The germ \(H([0] \times \mathbb{R}^p), 0) \) is transverse to the germ \(([0] \times \mathbb{R}^p), 0, \) where \(H \) is the germ of \(C^r \) diffeomorphism of \((\mathbb{R}^p \times \mathbb{R}^p, 0) \) given in the above commutative diagram \((*)\) with \(k, \Phi \) replaced by \(p, F. \)

First, we consider rank zero cases.

Theorem 1.1 ([15]). Let \(f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0) \) be \(C^\infty \) map-germs with rank zero. Then condition \((ii)\) implies condition \((i)\) for \(1 \leq r \leq \infty. \)

Next, we consider positive rank cases.

Example 1.1. Let \(f, g : (\mathbb{R}^2, 0) \rightarrow (\mathbb{R}^2, 0) \) be given by

\[
f(x, y) = (x, y^3 + xy),
g(x, y) = (x, y^3)
\]
and $M : (\mathbb{R}^2, 0) \to (GL(2, \mathbb{R}), E_2)$ be given by

$$M(x, y) = \begin{bmatrix} 1 & 0 \\ y & 1 \end{bmatrix},$$

where E_2 is the unit 2 by 2 matrix. Then $f(x, y) = M(x, y)g(x, y)$.

It is well known that any C^∞ deformation-germ of the map-germ f is C^∞-trivial. Thus, (ii) is satisfied. However, for any $1 \leq r \leq \infty$ condition (i) does not hold (in fact, f and g are even not topologically right-left equivalent).

This example shows that condition (ii) does not necessarily imply condition (i) in positive rank cases. Nevertheless, the following holds under no assumptions.

Theorem 1.2 ([15]). Condition (iii) implies condition (i) for $1 \leq r \leq \infty$.

Although Theorem 1.2 is interesting in itself, we prefer the C^r triviality of the linearly parametrized deformation-germ of only one of f or g to those of both of f and g. Thus, we are led to condition (iv).

Theorem 1.3 ([15]). Condition (iv) implies condition (i) for $1 \leq r \leq \infty$.

In the case $r = \infty$, we have

Theorem 1.4 ([15]). For any C^∞ map germs $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, the following hold:

1. $(i_\infty) \iff (iii_\infty) \iff (iv_\infty)$.
2. $(i_\infty) \iff (ii_\infty) \iff (iii_\infty) \iff (iv_\infty)$ if the rank of f is zero.

Therefore, we may answer the C^∞ recognition problem completely by using our conditions in principle.

2. Infinitesimal refinements of criteria for C^∞ right-left equivalence.

First, we review infinitesimal notations briefly. For details on them, see [9], [14], [15], [21].

Let \mathcal{E}_n (resp. m_n) denote the set of C^∞ function-germs $(\mathbb{R}^n, 0) \to \mathbb{R}$ (resp. $(\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$). The set \mathcal{E}_n has a natural \mathbb{R}-algebra structure and the set m_n is the unique maximal ideal in \mathcal{E}_n. For any positive integer ℓ, m_n^ℓ means the ℓ-times product of m_n. For $\ell = 0$, m_n^0 is \mathcal{E}_n.

For a C^∞ map-germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, let $\theta(f)$ denote the \mathcal{E}_n-module consisting of germs of C^∞ vector fields $\zeta : (\mathbb{R}^n, 0) \to T(\mathbb{R}^p)$ such that $\pi_p \circ \zeta = f$, where $\pi_p : T(\mathbb{R}^p) \to \mathbb{R}^p$ denotes the canonical projection. By using the standard identification of $T(\mathbb{R}^p)$ with $\mathbb{R}^p \times \mathbb{R}^p$, $\theta(f)$ may be identified with the free \mathcal{E}_n-module with p-generators. When the given f is the identity map-germ $(\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$, $\theta(f)$ may be denoted by $\theta(n)$.

For a C^∞ map-germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, let $Tf : (T\mathbb{R}^n, \pi_n^{-1}(0)) \to (T\mathbb{R}^p, \pi_p^{-1}(0))$ denote the tangent map-germ of f, where $\pi_n : T\mathbb{R}^n \to \mathbb{R}^n$, $\pi_p : T\mathbb{R}^p \to \mathbb{R}^p$ are canonical projections. We define

$$tf : \theta(n) \to \theta(f), \quad wf : \theta(p) \to \theta(f)$$
by \(tf(ξ) = Tf ∘ ξ, wf(η) = η ∘ f \). By using \(tf \) and \(wf \), we define
\[
T_A(f) = tf(m_nθ(n)) + wf(m_pθ(p)) \quad \text{and} \quad T_εA(f) = tf(θ(n)) + wf(θ(p)).
\]

Theorem 2.1. Let \(f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be \(C^∞ \) map-germs with rank zero. Suppose that there exist a germ of \(C^∞ \) diffeomorphism \(s : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \) and a \(C^∞ \) map-germ \(M : (\mathbb{R}^n, 0) \to (GL(p, \mathbb{R}), M(0)) \) such that \(f(x) = M(x)g(s(x)) \). Suppose furthermore that there exists an integer \(k \) \((k ≥ 0)\) such that
(a) each entry of \(M - M(0) \) belongs to \(m_n^{k+1} \) and
(b) \(m_n^kθ(f) \subset T_eA(f) \).

Then \(f \) and \(g \) are \(C^∞ \) right-left equivalent.

Although there are no proofs of Theorem 2.1 in a series of author’s papers [13]–[18], by the proof of Theorem 2.2 below it is clear that conditions (a) and (b) of Theorem 2.1 imply the \(C^∞ \)-triviality of \(f(x) - M(x)λ \). Thus, Theorem 2.1 follows from Theorem 1.1.

Theorem 2.2 ([14]). Let \(f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be \(C^∞ \) map-germs. Suppose that there exist a germ of \(C^∞ \) diffeomorphism \(s : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \) and a \(C^∞ \) map-germ \(M : (\mathbb{R}^n, 0) \to (GL(p, \mathbb{R}), M(0)) \) such that \(f(x) = M(x)g(s(x)) \). Suppose furthermore that there exists an integer \(k \) \((k ≥ 0)\) such that
(a) each entry of \(M - M(0) \) belongs to \(m_n^{k+1} \),
(b) \(m_n^kθ(f) \subset T_eA(f) \) and
(c) \(m_n^kθ(g) \subset T_eA(g) \).

Then \(f \) and \(g \) are \(C^∞ \) right-left equivalent.

Theorem 2.2 was stated (but not proved) first by A. A. du Plessis ([19], page 128). Conditions (a) and (b) (resp. (a) and (c)) of Theorem 2.2 imply the \(C^∞ \)-triviality of \(f(x) - M(x)λ \) (resp. \(g(x) - M(s^{-1}(x))^{-1}λ \)). Thus, Theorem 2.2 follows from Theorem 1.2 (for details, see [14]).

Theorem 2.3 ([14]). Let \(f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be \(C^∞ \) map-germs. Suppose that there exist a germ of \(C^∞ \) diffeomorphism \(s : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \) and a \(C^∞ \) map-germ \(M : (\mathbb{R}^n, 0) \to (GL(p, \mathbb{R}), M(0)) \) such that \(f(x) = M(x)g(s(x)) \). Suppose furthermore that there exists a positive integer \(k \) such that
(a) each entry of \(M - M(0) \) belongs to \(m_n^k \) and
(b) \(m_n^kθ(f) \subset T_A(f) \).

Then \(f \) and \(g \) are \(C^∞ \) right-left equivalent.

Conditions (a) and (b) imply condition (iv). Thus Theorem 2.3 follows from Theorem 1.3 (for details, see [14]). Although we can deduce infinitesimal results from Theorem 1.3 in a different way, Theorem 2.3 is the most standard infinitesimal refinement of Theorem 1.3 and quite useful as shown in the following examples and §5.3.
Example 2.1 (taken from [12]). This example is almost the same as Example 1.1 in [14]. Let \(f : (\mathbb{R}^2, 0) \to (\mathbb{R}^3, 0) \) be given by
\[
f(x, y) = (x, xy + y^3, xy^2 + y^4).
\]
Thanks to D. Mond, the following have been known as information on \(f \) ([14], Theorem 4.2.2.7).

(2.1.1) The map-germ \(f \) is 10-determined with respect to \(C^\infty \) right-left equivalence.

(2.1.2) The map-germ \(f \) is not 9-determined with respect to \(C^\infty \) right-left equivalence.

(2.1.3) \(m_2^3 \theta(f) \) is contained in \(T \mathcal{A}(f) \).

Let \(N(x, y) \) be a 3 by 3 matrix with entries belonging to \(m_3^2 \). Then, by Theorem 2.3, \(g = f + Nf \) is \(C^\infty \) right-left equivalent to \(f \). In fact, \(f = (E_3 + N)^{-1} g \) and \(M = (E_3 + N)^{-1} \) satisfies \(M(0) = E_3 \) and each entry of \(M - M(0) \) belongs to \(m_2^3 \).

Example 2.2 (taken from [6]). Let \(f : (\mathbb{R}^2, 0) \to (\mathbb{R}^3, 0) \) be given by
\[
f(x, y) = (x, y^3 + x^2 y, y^4 + xy^2).
\]
Thanks to T. Gaffney and A. A. du Plessis, the following has been known as one of information on \(f \) ([6], Example (3.6)):

(2.2.1) \(m_2^3 \theta(f) \subset T \mathcal{A}(f) \).

Let \(N(x, y) \) be a 3 by 3 matrix with entries belonging to \(m_2^3 \). Then, by Theorem 2.3, \(g = f + Nf \) is \(C^\infty \) right-left equivalent to \(f \). In fact, \(f = (E_3 + N)^{-1} g \) and \(M = (E_3 + N)^{-1} \) satisfies \(M(0) = E_3 \) and each entry of \(M - M(0) \) belongs to \(m_2^3 \). Combining this result with direct co-ordinate manipulations yields the same \(M \)-determinacy result as in Example (3.6) of [6]. Note that the only information which we require is (2.2.1).

3. Criteria for \(C^0 \) right-left equivalence. A \(C^\infty \) deformation-germ \(\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^p, 0) \) of \(f \) is said to be Thom trivial (resp. transversely Thom trivial) if there exist C-regular stratifications in the sense of Bekka ([2]), \(S \) of \(\mathbb{R}^n \times \mathbb{R}^k \), \(T \) of \(\mathbb{R}^p \times \mathbb{R}^k \) and \(\{ \mathbb{R}^k \} \) of \(\mathbb{R}^k \) such that the following (T1) and (T2) (resp. (T1), (T2) and (T3)) hold:

(T1) The map-germ
\[
(\Phi, \pi) : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^p \times \mathbb{R}^k, (0, 0))
\]
is a Thom map-germ with respect to \(S \) and \(T \).

(T2) The map-germ
\[
\pi' : (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^k, 0)
\]
is a stratified map-germ (or equivalently in this case, a Thom map-germ) with respect to \(T \) and \(\{ \mathbb{R}^k \} \).

(T3) The stratum \(T_0 \) of \(T \), which contains the origin \((0, 0) \) of \(\mathbb{R}^p \times \mathbb{R}^k \), is transverse to \(\{ 0 \} \times \mathbb{R}^k (\subset \mathbb{R}^p \times \mathbb{R}^k) \).

Here \(\pi : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^k, 0) \), \(\pi' : (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^k, 0) \) are canonical projections. For the definition of a C-regular stratification, see [2]. We remark that the notion of a C-regular stratification is an extended one of a Whitney stratification and it
is known that every C-regular stratification admits a controlled tube system ([2]). For the definitions of a stratified map-germ and a Thom map-germ, see [2], [7], [11].

By Thom’s second isotopy lemma ([2], [7], [11]), we see that for any Thom trivial deformation-germ \(\Phi : (R^n \times R^k, (0, 0)) \to (R^p, 0) \) of \(f \), there exist germs of homeomorphisms \(h : (R^n \times R^k, (0, 0)) \to (R^n \times R^k, (0, 0)) \) and \(H : (R^p \times R^k, (0, 0)) \to (R^p \times R^k, (0, 0)) \) such that the diagram (\(* \)) in Section 1 commutes, where \(\pi : (R^n \times R^k, (0, 0)) \to (R^k, 0) \), \(\pi' : (R^p \times R^k, (0, 0)) \to (R^k, 0) \) are canonical projections.

For given two \(C^\infty \) map-germs \(f, g : (R^n, 0) \to (R^p, 0) \), we consider the following four conditions.

(i) The map-germ \(f \) is topologically equivalent to \(g \).

(ii) There exist a germ of \(C^\infty \) diffeomorphism \(s : (R^n, 0) \to (R^n, 0) \) and a \(C^\infty \) map-germ \(M : (R^n, 0) \to (GL(p, R), M(0)) \) such that the following (a) and (b) are satisfied:

(a) \(f(x) = M(x)g(s(x)) \),

(b) The \(C^\infty \) map-germ \(F : (R^n \times R^p, (0, 0)) \to (R^p, 0) \) given by

\[
F(x, \lambda) = f(x) - M(x)\lambda
\]

is a Thom trivial deformation-germ of \(f \).

(iii) There exist a germ of \(C^\infty \) diffeomorphism \(s : (R^n, 0) \to (R^n, 0) \) and a \(C^\infty \) map-germ \(M : (R^n, 0) \to (GL(p, R), M(0)) \) such that (a), (b) of condition (ii) and the following (c) are satisfied:

(c) The \(C^\infty \) map-germ \(G : (R^n \times R^p, (0, 0)) \to (R^p, 0) \) given by

\[
G(x, \lambda) = g(x) - M(x^{-1}(x))^{-1}\lambda
\]

is a Thom trivial deformation-germ of \(g \).

(iv) There exist a germ of \(C^\infty \) diffeomorphism \(s : (R^n, 0) \to (R^n, 0) \) and a \(C^\infty \) map-germ \(M : (R^n, 0) \to (GL(p, R), M(0)) \) such that (a) of condition (ii) and the following (d) are satisfied:

(d) The \(C^\infty \) map-germ \(F : (R^n \times R^p, (0, 0)) \to (R^p, 0) \) given by

\[
F(x, \lambda) = f(x) - M(x)\lambda
\]

is a transversely Thom trivial deformation-germ of \(f \).

Theorem 3.1 ([16]). Let \(f, g : (R^n, 0) \to (R^p, 0) \) be \(C^\infty \) map-germs with rank zero. Then condition (ii) implies condition (i).

Theorem 3.2 ([16]). Condition (iii) implies condition (i).

Theorem 3.3 ([18]). Condition (iv) implies condition (i).

Note that Example 1.1

\[
f(x, y) = (x, y^3 + xy)
g(x, y) = (x, y^3)
\]

again shows that condition (ii) does not necessarily imply condition (i) in positive rank case.
4. The simple systematic method. Let \(f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be a \(C^\infty \) map-germ and \(\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^p, 0) \) be a \(C^r \) deformation-germ of \(f \), where \(0 \leq r \leq \infty \.

Suppose that there exists a \(C^r \) \(\mathcal{A} \)-morphism from \(\Phi \) to \(f \). By the definition of a \(C^r \) \(\mathcal{A} \)-morphism, there exist \(C^r \) map-germs \(h : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)), H : (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \) and \(\varphi : (\mathbb{R}^k, 0) \to (\mathbb{R}^k, 0) \) such that the following (4.1) and (4.2) hold (for the definition of (4.1) and (4.2) hold (for the definition of

\[\begin{align*}
\Phi &= (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \\
\varphi &= (\mathbb{R}^k, 0) \\
\end{align*} \]

By the definition of a \(C^r \) \(\mathcal{A} \)-morphism, see [17]).

(4.1) For any representatives \(\tilde{h} \) of \(h \) and \(\tilde{H} \) of \(H \), there exist neighborhoods \(U \) of the origin in \(\mathbb{R}^n \), \(V \) of the origin in \(\mathbb{R}^k \) and \(W \) of the origin in \(\mathbb{R}^p \) such that the restrictions \(\tilde{h}|_{U \times \{0\}} \) and \(\tilde{H}|_{W \times \{0\}} \) are \(C^r \) diffeomorphisms for any \(\lambda \in \mathbb{V} \).

(4.2) The following diagram commutes, where \(\pi : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^k, 0), \pi' : (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^k, 0), \) are canonical projections:

\[
\begin{array}{ccc}
(\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) & \xrightarrow{(\Phi, \pi)} & (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \\
\downarrow h & & \downarrow H \\
(\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) & \xrightarrow{(f, \pi')} & (\mathbb{R}^p \times \mathbb{R}^k, (0, 0)) \\
\end{array}
\]

By (4.2), we may write

\[
h(x, \lambda) = (h_1(x, \lambda), \varphi(\lambda)) \quad \text{and} \quad H(y, \lambda) = (H_1(y, \lambda), \varphi(\lambda)).
\]

Let \(\varphi'_H : (\mathbb{R}^k, 0) \to (\mathbb{R}^p, 0) \) be the \(C^r \) map-germ given by

\[\varphi'_H(\lambda) = H_1(0, \lambda).\]

The map-germ (4.3) is the key idea in our study.

We put also \(h' : (\mathbb{R}^n \times \mathbb{R}^k, (0, 0)) \to (\mathbb{R}^n \times \mathbb{R}^p, (0, 0)) \) as

\[h'(x, \lambda) = (h_1(x, \lambda), \varphi'_H(\lambda))\]

and \(H' : (\mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^p, (0, 0, 0)) \to (\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^p, (0, 0, 0)) \) as

\[H'(x, \lambda, y) = (h'(x, \lambda), H_1(y, \lambda) - \varphi'_H(\lambda)).\]

Then we can show that \(\{h', H', \varphi'_H\} \) is a \(C^r \) \(\mathcal{K} \)-morphism from \(\Phi \) to \(F \), where \(F \) is the graph deformation-germ of \(f \) given by \(F(x, y) = f(x) - y \). (For details, see [17]. In [17] the argument is pursued only for \(C^\infty \) deformation-germs. However, \(C^r \) deformation-germs can be treated by the exactly parallel argument.)

Next, returning to the situations in Sections 1–3, we let \(f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0) \) be \(C^\infty \) map-germs. We suppose that there exist a \(C^r \) map-germ \(M : (\mathbb{R}^n, 0) \to (\text{GL}(p, \mathbb{R}), M(0)) \) and a germ of \(C^r \) diffeomorphism \(s : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \) such that \(f(x) = M(x)g(s(x)) \).

We concentrate on considering the following \(C^r \) deformation-germ of \(f \):

\[f(x) - M(x)\lambda.\]

This deformation-germ is linear with respect to parameter variables. Remark that the parameter space of (4.4) is \(p \)-dimensional. Thus, if there exists a \(C^r \) \(\mathcal{A} \)-morphism \(\{h, H, \varphi\} \) from \(\Phi \) to \(f \), then the map-germ (4.3) is a map-germ between the same dimensional spaces.

We suppose furthermore that the deformation-germ (4.4) is \(C^r \)-trivial. Then, there exists
a C^r A-morphism $\{h, H, \varphi\}$ from Φ to f. Thus, from the above argument we see that there exists a C^r K-morphism $\{h', H', \varphi_H\}$ from (4.4) to the graph deformation-germ F of f. In particular, we have the following equality (for details, see [15], [16]):

$$f(h_1(x, g(s(x)))) = H_1(0, g(s(x))).$$

Finally, we can show the following.

Lemma 4.1 ([15], [16]). If the map-germ (4.3) is a germ of C^r diffeomorphism, then the endomorphism-germ of $(R^n, 0)$ given by

$$x \mapsto h_1(x, g(s(x)))$$

is also a germ of C^r diffeomorphism.

Thus, we see that for $0 \leq r \leq \infty$ in order to obtain C^r right-left equivalence of f and g, it suffices to find that the map-germ (4.3) is a germ of C^r diffeomorphism.

5. Several applications

5.1. C^r right-left equivalence of C^r-stable map-germs ($1 \leq r \leq \infty$)

Definition 5.1. A C^∞ map-germ $f : (R^n, 0) \to (R^p, 0)$ is said to be C^r-stable if every C^∞ deformation-germ of f is C^r-trivial ($0 \leq r \leq \infty$).

There are several apparently different definitions of C^r-stability. For the relation between them, see [20]. Our definition of C^r-stability is called P-C^r-stability in [20].

From the argument in Section 4, we have the following (for the definition of C^r K-versality, see [17]).

Theorem 5.1 ([17]). For any C^r-stable germ f, its graph deformation-germ is C^r K-versal for $0 \leq r \leq \infty$.

For $1 \leq r < \infty$, the uniqueness of C^r K-versal deformation-germ of a given map-germ may be proved easily by a slight modification of Martinet’s proof of the uniqueness of C^∞ K-versality (pp. 155–156 of [1], pp. 21–22 of [8]), because in order to prove the uniqueness we need only one implication, the C^r K-versality implies the infinitesimal C^{r-1} K-versality, which is clear. Thus, by using Martinet’s argument (p. 158 of [1], p. 28 of [8]), we see that Theorem 5.1 yields a C^r generalization of Mather’s classification theorem ($1 \leq r \leq \infty$) without any difficulty. Note that Theorem 1.2 also yields the same generalization of Mather’s classification theorem as a trivial corollary.

Theorem 5.2 ([15], [17]). Let $f, g : (R^n, 0) \to (R^p, 0)$ be C^r-stable map-germs ($1 \leq r \leq \infty$). Suppose that there exist a germ of C^∞ diffeomorphism $s : (R^n, 0) \to (R^n, 0)$ and a C^∞ map-germ $M : (R^n, 0) \to (GL(p, R), M(0))$ such that $f(x) = M(x)g(s(x))$. Then f and g are C^r right-left equivalent.
5.2. C^0 right-left equivalence of C^0-stable map-germs

Definition 5.2. A C^∞ map germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ is said to be MT-stable if the jet extension of it is multi-transverse to the Thom-Mather canonical stratification of the jet space.

Concerning C^0 right-left equivalence of MT-stable map-germs, there is a well-known theorem due to M. Fukuda and T. Fukuda.

Theorem 5.3 ([3]). Let $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be MT-stable map-germs. Suppose that there exist a germ of C^∞ diffeomorphism $s : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and a C^∞ map-germ $M : (\mathbb{R}^n, 0) \to (GL(p, \mathbb{R}), M(0))$ such that $f(x) = M(x)g(s(x))$. Then, they are C^0 right-left equivalent.

Definition 5.3. A C^∞ map germ $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ is said to be Thom stable if every C^∞ deformation-germ of f is Thom trivial.

As a consequence of the definition of MT-stability, every C^∞ deformation-germ of an MT-stable map-germ is Thom trivial (see [7], [11]). Thus, every MT-stable map-germ is Thom stable. By Thom’s second isotopy lemma ([2], [7], [11]), every Thom stable map-germ is C^0-stable in the sense of Definition 5.1. As a trivial corollary of Theorem 3.2, we obtain a generalization of Theorem 5.3.

Theorem 5.4 ([16]). Let $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be Thom stable map-germs. Suppose that there exist a germ of C^∞ diffeomorphism $s : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and a C^∞ map-germ $M : (\mathbb{R}^n, 0) \to (GL(p, \mathbb{R}), M(0))$ such that $f(x) = M(x)g(s(x))$. Then, they are C^0 right-left equivalent.

5.3. An estimate of the order of C^∞ determinacy.

As an application of Theorem 2.3, we show the following.

Theorem 5.5. Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be a C^∞ map-germ. Suppose that there exist positive integers k, ℓ such that

(a) $m^k_\ell \theta(f) \subset TA(f)$ and
(b) $m^k_\ell \theta(f) \subset TK(f)$.

Then, f is $(k + \ell - 1)$-determined with respect to C^∞ right-left equivalence.

The set $TK(f)$ is defined by

$TK(f) = tf(m_\ell \theta(n)) + f^* m_\ell \theta(f),$

where $f^*(u) = u \circ f$. This set is the tangent space of the orbit through f by the action of the group K which was introduced by Mather in [9]. For details on the group K, $TK(f)$ and the definition of determinacy, see [9], [21]. Theorem 5.5 is a similar estimate to the well-known estimate due to Gaffney ([4]). Theorem 5.5 has been stated already in [13] without the proof. Several applications of Theorem 5.5 to divergent diagrams have been obtained in [13].
Proof. Let \(k_{-1}K \) be the set of all pairs of \((s,M)\), where \(s \) is a germ of \(C^\infty \) diffeomorphism \((\mathbb{R}^n,0) \to (\mathbb{R}^n,0)\) and \(M : (\mathbb{R}^n,0) \to (GL(p,\mathbb{R}),E_p) \) is a \(C^\infty \) map-germ with each entry of \(M - M(0) \) belonging to \(m_k^k \). Here, \(E_p \) is the \(p \) by \(p \) unit matrix. The set \(k_{-1}K \) is a group by the operation \((s_1,M_1) \ast (s_2,M_2) = (s_1 \circ s_2,M_1M_2)\), where \(s_1 \circ s_2 \) is the composition of \(s_1 \) and \(s_2 \) and \(M_1M_2 \) is the product of matrices of \(M_1 \) and \(M_2 \). The group \(k_{-1}K \) is a subgroup of the group \(K \) and the tangent space of the orbit through \(f \) by the action of the group \(k_{-1}K \) is

\[
(5.3.1) \quad T_{k_{-1}K}(f) = tf(m_n \theta(n)) + f^* m_p m_k^k \theta(f).
\]

Condition (b) of Theorem 5.5 implies

\[
(5.3.2) \quad m_n^{k+1} \theta(f) \subset tf(m_n^{k+1} \theta(n)) + f^* m_p m_k^k \theta(f) \subset T_{k_{-1}K}(f).
\]

By (5.3.2), we see that \(f \) is \((k+\ell)\)-determined with respect to the group \(k_{-1}K \).

Let \(g : (\mathbb{R}^n,0) \to (\mathbb{R}^n,0) \) be a \(C^\infty \) map-germ with \(j^{k+\ell-1}f(0) = j^{k+\ell-1}g(0) \). Then, since \(k > 0 \), (5.3.2) implies

\[
(5.3.3) \quad m_n^{k+\ell} \theta(g) \subset tg(m_n^{k+1} \theta(n)) + g^* m_p m_k^k \theta(g) + m_n^{k+\ell+1} \theta(g).
\]

By Mather’s lemma (Lemma 3.1 of [10]), (5.3.3) implies that there exist a germ of \(C^\infty \) diffeomorphism \(s : (\mathbb{R}^n,0) \to (\mathbb{R}^n,0) \) and a \(C^\infty \) map-germ \(M : (\mathbb{R}^n,0) \to (GL(p,\mathbb{R}),E_p) \) such that

\[
(5.3.4) \quad f(x) = M(x)g(s(x)) \quad \text{and} \quad (5.3.5) \quad \text{each entry of } M - M(0) \text{ belongs to } m_k^k.
\]

By Theorem 2.3, (5.3.4), (5.3.5) and condition (a) of Theorem 5.5 imply that \(f \) and \(g \) are \(C^\infty \) right-left equivalent.

Remark 5.1. Note that in the proof of Theorem 5.5 we use Mather’s lemma only for orbits by \(k_{-1}K \) group action, whose tangent spaces are much simpler than \(T_kA(g) \).

Since \(T_kA(f) \subset TK(f) \), Theorem 5.5 yields the following well-known estimate due to du Plessis and Wall as a trivial corollary.

Theorem 5.6 ([19], [21]). Let \(f : (\mathbb{R}^n,0) \to (\mathbb{R}^p,0) \) be a \(C^\infty \) map-germ. Suppose that there exists a positive integer \(k \) such that

\[
m_k^k \theta(f) \subset T_kA(f).
\]

Then, \(f \) is \((2k-1)\)-determined with respect to \(C^\infty \) right-left equivalence.

References

