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The present paper is a survey of the author’s recent results on recognizing Cr right-left
equivalence of C∞ map-germs (0 ≤ r ≤ ∞).

We say two C∞ map-germs are Cr right-left equivalent if they coincide under germs
of appropriate Cr co-ordinate systems of the source space and the target space, where
a C0 co-ordinate system means a co-ordinate system given by a homeomorphism. We
often encounter the situations where we would like to decide whether or not given two
map-germs are Cr right-left equivalent. In the case that one of them is of full rank
(resp. linear), the implicit function theorem (resp. the rank theorem) answers our purpose
(possibly except for r = 0). However, how can we decide in general case? By using a
simple systematic method explained in Section 4, we can obtain many results to the
problem. In Section 1, we give a series of criteria for Cr right-left equivalence of C∞

map-germs (1 ≤ r ≤ ∞). In Section 2, infinitesimal refinements of criteria for C∞ right-
left equivalence of C∞ map-germs are given. Next, we consider C0 right-left equivalence.
In Section 3, we give a series of criteria for C0 right-left equivalence of K-equivalent
map-germs. All of the results are derived from one simple idea, which is the key of our
systematic method and explained exhaustively in Section 4. In Section 5 we give several
applications of our results, which show how useful our method is.

The results for r = ∞ are all valid both in the real analytic category and in the
complex analytic category as well.

1. Criteria for Cr right-left equivalence (1 ≤ r ≤ ∞). For a given C∞ map-
germ f : (Rn, 0) → (Rp, 0), any Cr map-germ Φ :

(
Rn × Rk, (0, 0)

)
→ (Rp, 0) such

that Φ(x, 0) = f(x) is called a Cr deformation-germ of f . A Cr deformation-germ
Φ :

(
Rn × Rk, (0, 0)

)
→ (Rp, 0) of f : (Rn, 0) → (Rp, 0) is said to be Cr-trivial if
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there exist germs of Cr diffeomorphisms h :
(
Rn ×Rk, (0, 0)

)
→
(
Rn ×Rk, (0, 0)

)
and

H :
(
Rp×Rk, (0, 0)

)
→
(
Rp×Rk, (0, 0)

)
such that the following diagram (∗) commutes,

where π :
(
Rn ×Rk, (0, 0)

)
→ (Rk, 0), π′ :

(
Rp ×Rk, (0, 0)

)
→ (Rk, 0), are canonical

projections:

(∗)

(
Rn ×Rk, (0, 0)

) (Φ,π) //

h

��

(
Rp ×Rk, (0, 0)

) π′
//

H

��

(Rk, 0)

(
Rn ×Rk, (0, 0)

) (f,π) //
(
Rp ×Rk, (0, 0)

) π′
// (Rk, 0)

.

For given two C∞ map-germs f, g : (Rn, 0) → (Rp, 0), we consider the following
conditions (ir), (iir), (iiir) and (ivr).

(ir) The map-germ f is Cr right-left equivalent to g.
(iir) There exist a germ of Cr diffeomorphism s : (Rn, 0) → (Rn, 0) and a Cr

map-germ M : (Rn, 0) →
(
GL(p,R),M(0)

)
such that the following (a) and (b) are

satisfied:
(a) f(x) = M(x)g(s(x)),
(b) the Cr map-germ F :

(
Rn ×Rp, (0, 0)

)
→ (Rp, 0) given by

F (x, λ) = f(x)−M(x)λ

is a Cr-trivial deformation-germ of f .
(iiir) There exist a germ of Cr diffeomorphism s : (Rn, 0) → (Rn, 0) and a Cr

map-germ M : (Rn, 0) →
(
GL(p,R),M(0)

)
such that (a), (b) of condition (iir) and the

following (c) are satisfied:
(c) The Cr map-germ G :

(
Rn ×Rp, (0, 0)

)
→ (Rp, 0) given by

G(x, λ) = g(x)−M(s−1(x))−1λ

is a Cr-trivial deformation-germ of g.
(ivr) There exist a germ of Cr diffeomorphism s : (Rn, 0) → (Rn, 0) and a Cr

map-germ M : (Rn, 0) →
(
GL(p,R),M(0)

)
such that (a), (b) of condition (iir) and the

following (d) are satisfied:
(d) The germ (H({0} ×Rp), 0) is transverse to the germ ({0} ×Rp, 0), where

H is the germ of Cr diffeomorphism of (Rp × Rp, 0) given in the above commutative
diagram (∗) with k,Φ replaced by p, F .

First, we consider rank zero cases.

Theorem 1.1 ([15]). Let f, g : (Rn, 0) → (Rp, 0) be C∞ map-germs with rank zero.
Then condition (iir) implies condition (ir) for 1 ≤ r ≤ ∞.

Next, we consider positive rank cases.

Example 1.1. Let f, g : (R2, 0)→ (R2, 0) be given by

f(x, y) = (x, y3 + xy),

g(x, y) = (x, y3)
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and M : (R2, 0)→ (GL(2,R), E2) be given by

M(x, y) =
[

1 0
y 1

]
,

where E2 is the unit 2 by 2 matrix. Then f(x, y) = M(x, y)g(x, y).
It is well known that any C∞ deformation-germ of the map-germ f is C∞-trivial.

Thus, (ii∞) is satisfied. However, for any 1 ≤ r ≤ ∞ condition (ir) does not hold (in fact,
f and g are even not topologically right-left equivalent).

This example shows that condition (iir) does not necessarily imply condition (ir) in
positive rank cases. Nevertheless, the following holds under no assumptions.

Theorem 1.2 ([15]). Condition (iiir) implies condition (ir) for 1 ≤ r ≤ ∞.

Although Theorem 1.2 is interesting in itself, we prefer the Cr triviality of the linearly
parametrized deformation-germ of only one of f or g to those of both of f and g. Thus,
we are led to condition (ivr).

Theorem 1.3 ([15]). Condition (ivr) implies condition (ir) for 1 ≤ r ≤ ∞.

In the case r =∞, we have

Theorem 1.4 ([15]). For any C∞ map germs f, g : (Rn, 0)→ (Rp, 0), the following
hold:

(1) (i∞)⇔ (iii∞)⇔ (iv∞).
(2) (i∞)⇔ (ii∞)⇔ (iii∞)⇔ (iv∞) if the rank of f is zero.

Therefore, we may answer the C∞ recognition problem completely by using our con-
ditions in principle.

2. Infinitesimal refinements of criteria for C∞ right-left equivalence. First,
we review infinitesimal notations briefly. For details on them, see [9], [14], [15], [21].

Let En (resp. mn) denote the set of C∞ function-germs (Rn, 0)→ R (resp. (Rn, 0)→
(R, 0)). The set En has a natural R-algebra structure and the set mn is the unique
maximal ideal in En. For any positive integer `, m`

n means the `-times product of mn.
For ` = 0, m0

n is En.
For a C∞ map-germ f : (Rn, 0) → (Rp, 0), let θ(f) denote the En-module consist-

ing of germs of C∞ vector fields ζ : (Rn, 0) → T (Rp) such that πp ◦ ζ = f , where
πp : T (Rp) → Rp denotes the canonical projection. By using the standard identifi-
cation of T (Rp) with Rp × Rp, θ(f) may be identified with the free En-module with
p-generators. When the given f is the identity map-germ (Rn, 0) → (Rn, 0), θ(f) may
be denoted by θ(n).

For a C∞ map-germ f : (Rn, 0)→ (Rp, 0), let Tf : (TRn, π−1
n (0))→ (TRp, π−1

p (0))
denote the tangent map-germ of f , where πn : TRn → Rn, πp : TRp → Rp are canonical
projections. We define

tf : θ(n)→ θ(f), wf : θ(p)→ θ(f)
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by tf(ξ) = Tf ◦ ξ, wf(η) = η ◦ f . By using tf and wf , we define

TA(f) = tf(mnθ(n)) + wf(mpθ(p)) and

TeA(f) = tf(θ(n)) + wf(θ(p)).

Theorem 2.1. Let f, g : (Rn, 0) → (Rp, 0) be C∞ map-germs with rank zero. Sup-
pose that there exist a germ of C∞ diffeomorphism s : (Rn, 0) → (Rn, 0) and a C∞

map-germ M : (Rn, 0) →
(
GL(p,R),M(0)

)
such that f(x) = M(x)g(s(x)). Suppose fur-

thermore that there exists an integer k (k ≥ 0) such that
(a) each entry of M −M(0) belongs to mk+1

n and
(b) mk

nθ(f) ⊂ TeA(f).

Then f and g are C∞ right-left equivalent.

Although there are no proofs of Theorem 2.1 in a series of author’s papers [13]–[18],
by the proof of Theorem 2.2 below it is clear that conditions (a) and (b) of Theorem 2.1
imply the C∞-triviality of f(x)−M(x)λ. Thus, Theorem 2.1 follows from Theorem 1.1.

Theorem 2.2 ([14]). Let f, g : (Rn, 0) → (Rp, 0) be C∞ map-germs. Suppose that
there exist a germ of C∞ diffeomorphism s : (Rn, 0) → (Rn, 0) and a C∞ map-germ
M : (Rn, 0) →

(
GL(p,R),M(0)

)
such that f(x) = M(x)g(s(x)). Suppose furthermore

that there exists an integer k (k ≥ 0) such that

(a) each entry of M −M(0) belongs to mk+1
n ,

(b) mk
nθ(f) ⊂ TeA(f) and

(c) mk
nθ(g) ⊂ TeA(g).

Then f and g are C∞ right-left equivalent.

Theorem 2.2 was stated (but not proved) first by A. A. du Plessis ([19], page 128).
Conditions (a) and (b) (resp. (a) and (c)) of Theorem 2.2 imply the C∞-triviality of
f(x)−M(x)λ (resp. g(x)−M(s−1(x))−1λ). Thus, Theorem 2.2 follows from Theorem 1.2
(for details, see [14]).

Theorem 2.3 ([14]). Let f, g : (Rn, 0) → (Rp, 0) be C∞ map-germs. Suppose that
there exist a germ of C∞ diffeomorphism s : (Rn, 0) → (Rn, 0) and a C∞ map-germ
M : (Rn, 0) →

(
GL(p,R),M(0)

)
such that f(x) = M(x)g(s(x)). Suppose furthermore

that there exists a positive integer k such that

(a) each entry of M −M(0) belongs to mk
n and

(b) mk
nθ(f) ⊂ TA(f).

Then f and g are C∞ right-left equivalent.

Conditions (a) and (b) imply condition (iv∞). Thus Theorem 2.3 follows from Theo-
rem 1.3 (for details, see [14]). Although we can deduce infinitesimal results from Theo-
rem 1.3 in a different way, Theorem 2.3 is the most standard infinitesimal refinement of
Theorem 1.3 and quite useful as shown in the following examples and §5.3.
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Example 2.1 (taken from [12]). This example is almost the same as Example 1.1
in [14]. Let f : (R2, 0)→ (R3, 0) be given by

f(x, y) = (x, xy + y3, xy2 + y10).

Thanks to D. Mond, the following have been known as information on f ([12], Theo-
rem 4.2.2:7).

(2.1.1) The map-germ f is 10-determined with respect to C∞ right-left equivalence.
(2.1.2) The map-germ f is not 9-determined with respect to C∞ right-left equivalence.
(2.1.3) m8

2θ(f) is contained in TA(f).

Let N(x, y) be a 3 by 3 matrix with entries belonging to m8
2. Then, by Theorem 2.3,

g = f+Nf is C∞ right-left equivalent to f . In fact, f = (E3+N)−1g and M = (E3+N)−1

satisfies M(0) = E3 and each entry of M −M(0) belongs to m8
2.

Example 2.2 (taken from [6]). Let f : (R2, 0)→ (R3, 0) be given by

f(x, y) = (x, y3 + x2y, y4 + xy2).

Thanks to T. Gaffney and A. A. du Plessis, the following has been known as one of
information on f ([6], Example (3.6)):

(2.2.1) m3
2θ(f) ⊂ TA(f).

Let N(x, y) be a 3 by 3 matrix with entries belonging to m3
2. Then, by Theorem 2.3,

g = f + Nf is C∞ right-left equivalent to f . In fact, f = (E3 + N)−1g and M =
(E3 +N)−1 satisfies M(0) = E3 and each entry of M −M(0) belongs to m3

2. Combining
this result with direct co-ordinate manipulations yields the same M -determinacy result
as in Example (3.6) of [6]. Note that the only information which we require is (2.2.1).

3. Criteria for C0 right-left equivalence. A C∞ deformation-germ Φ :
(
Rn ×

Rk, (0, 0)
)
→ (Rp, 0) of f is said to be Thom trivial (resp. transversely Thom trivial) if

there exist C-regular stratifications in the sense of Bekka ([2]), S of Rn×Rk, T of Rp×Rk

and {Rk} of Rk such that the following (T1) and (T2) (resp. (T1), (T2) and (T3)) hold:

(T1) The map-germ

(Φ, π) :
(
Rn ×Rk, (0, 0)

)
→
(
Rp ×Rk, (0, 0)

)
is a Thom map-germ with respect to S and T .

(T2) The map-germ

π′ :
(
Rp ×Rk, (0, 0)

)
→ (Rk, 0)

is a stratified map-germ (or equivalently in this case, a Thom map-germ) with respect to
T and {Rk}.

(T3) The stratum T0 of T , which contains the origin (0, 0) of Rp ×Rk, is transverse
to {0} ×Rk(⊂ Rp ×Rk).

Here π :
(
Rn ×Rk, (0, 0)

)
→ (Rk, 0), π′ :

(
Rp ×Rk, (0, 0)

)
→ (Rk, 0) are canonical

projections. For the definition of a C-regular stratification, see [2]. We remark that the
notion of a C-regular stratification is an extended one of a Whitney stratification and it
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is known that every C-regular stratification admits a controlled tube system ([2]). For
the definitions of a stratified map-germ and a Thom map-germ, see [2], [7], [11].

By Thom’s second isotopy lemma ([2], [7], [11]), we see that for any Thom trivial
deformation-germ Φ :

(
Rn × Rk, (0, 0)

)
→ (Rp, 0) of f , there exist germs of homeo-

morphisms h :
(
Rn × Rk, (0, 0)

)
→
(
Rn × Rk, (0, 0)

)
and H :

(
Rp × Rk, (0, 0)

)
→

(Rp × Rk, (0, 0)) such that the diagram (∗) in Section 1 commutes, where π :
(
Rn ×

Rk, (0, 0)
)
→ (Rk, 0), π′ :

(
Rp ×Rk, (0, 0)

)
→ (Rk, 0) are canonical projections.

For given two C∞ map-germs f, g : (Rn, 0)→ (Rp, 0), we consider the following four
conditions.

(i) The map-germ f is topologically equivalent to g.
(ii) There exist a germ of C∞ diffeomorphism s : (Rn, 0) → (Rn, 0) and a C∞

map-germ M : (Rn, 0) → (GL(p,R),M(0)) such that the following (a) and (b) are
satisfied:

(a) f(x) = M(x)g(s(x)),
(b) the C∞ map-germ F :

(
Rn ×Rp, (0, 0)

)
→ (Rp, 0) given by

F (x, λ) = f(x)−M(x)λ

is a Thom trivial deformation-germ of f .
(iii) There exist a germ of C∞ diffeomorphism s : (Rn, 0) → (Rn, 0) and a C∞

map-germ M : (Rn, 0) → (GL(p,R),M(0)) such that (a), (b) of condition (ii) and the
following (c) are satisfied:

(c) The C∞ map-germ G :
(
Rn ×Rp, (0, 0)

)
→ (Rp, 0) given by

G(x, λ) = g(x)−M(s−1(x))−1λ

is a Thom trivial deformation-germ of g.
(iv) There exist a germ of C∞ diffeomorphism s : (Rn, 0)→ (Rn, 0) and a C∞ map-

germ M : (Rn, 0)→ (GL(p,R),M(0)) such that (a) of condition (ii) and the following (d)
are satisfied:

(d) The C∞ map-germ F :
(
Rn ×Rp, (0, 0)

)
→ (Rp, 0) given by

F (x, λ) = f(x)−M(x)λ

is a transversely Thom trivial deformation-germ of f .

Theorem 3.1 ([16]). Let f, g : (Rn, 0) → (Rp, 0) be C∞ map-germs with rank zero.
Then condition (ii) implies condition (i).

Theorem 3.2 ([16]). Condition (iii) implies condition (i).

Theorem 3.3 ([18]). Condition (iv) implies condition (i).

Note that Example 1.1

f(x, y) = (x, y3 + xy)

g(x, y) = (x, y3)

again shows that condition (ii) does not necessarily imply condition (i) in positive rank
case.
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4. The simple systematic method. Let f : (Rn, 0)→ (Rp, 0) be a C∞ map-germ
and Φ :

(
Rn ×Rk, (0, 0)

)
→ (Rp, 0) be a Cr deformation-germ of f , where 0 ≤ r ≤ ∞.

Suppose that there exists a Cr A-morphism from Φ to f . By the definition of a Cr

A-morphism, there exist Cr map-germs h :
(
Rn ×Rk, (0, 0)

)
→
(
Rn ×Rk, (0, 0)

)
, H :(

Rp ×Rk, (0, 0)
)
→
(
Rp ×Rk, (0, 0)

)
and ϕ : (Rk, 0)→ (Rk, 0) such that the following

(4.1) and (4.2) hold (for the definition of Cr A-morphism, see [17]).

(4.1) For any representatives h̃ of h and H̃ of H, there exist neighborhoods U of the
origin in Rn , V of the origin in Rk and W of the origin in Rp such that the
restrictions h̃|U×{λ} and H̃|W×{λ} are Cr diffeomorphisms for any λ ∈ V .

(4.2) The following diagram commutes, where π :
(
Rn × Rk, (0, 0)

)
→ (Rk, 0), π′ :(

Rp ×Rk, (0, 0)
)
→ (Rk, 0), are canonical projections:(

Rn ×Rk, (0, 0)
) (Φ,π) //

h

��

(
Rp ×Rk, (0, 0)

) π′
//

H

��

(Rk, 0)

ϕ

��(
Rn ×Rk, (0, 0)

) (f,π) //
(
Rp ×Rk, (0, 0)

) π′
// (Rk, 0).

By (4.2), we may write

h(x, λ) = (h1(x, λ), ϕ(λ)) and H(y, λ) = (H1(y, λ), ϕ(λ)).

Let ϕ′H : (Rk, 0)→ (Rp, 0) be the Cr map-germ given by

(4.3) ϕ′H(λ) = H1(0, λ).

The map-germ (4.3) is the key idea in our study.

We put also h′ :
(
Rn ×Rk, (0, 0)

)
→
(
Rn ×Rp, (0, 0)

)
as

h′(x, λ) = (h1(x, λ), ϕ′H(λ))

and H ′ :
(
Rn ×Rk ×Rp, (0, 0, 0)

)
→
(
Rn ×Rp ×Rp, (0, 0, 0)

)
as

H ′(x, λ, y) = (h′(x, λ), H1(y, λ)− ϕ′H(λ)).

Then we can show that {h′, H ′, ϕ′H} is a Cr K-morphism from Φ to F , where F is the
graph deformation-germ of f given by F (x, y) = f(x) − y. (For details, see [17]. In [17]
the argument is pursued only for C∞ deformation-germs. However, Cr deformation-germs
can be treated by the exactly parallel argument.)

Next, returning to the situations in Sections 1–3, we let f, g : (Rn, 0)→ (Rp, 0) be C∞

map-germs. We suppose that there exist a Cr map-germ M : (Rn, 0)→ (GL(p,R),M(0))
and a germ of Cr diffeomorphism s : (Rn, 0) → (Rn, 0) such that f(x) = M(x)g(s(x)).
We concentrate on considering the following Cr deformation-germ of f :

(4.4) f(x)−M(x)λ.

This deformation-germ is linear with respect to parameter variables. Remark that the
parameter space of (4.4) is p-dimensional. Thus, if there exists a Cr A-morphism {h,H, ϕ}
from Φ to f , then the map-germ (4.3) is a map-germ between the same dimensional spaces.
We suppose furthermore that the deformation-germ (4.4) is Cr-trivial. Then, there exists
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a Cr A-morphism {h,H, ϕ} from Φ to f . Thus, from the above argument we see that
there exists a Cr K-morphism {h′, H ′, ϕ′H} from (4.4) to the graph deformation-germ F

of f . In particular, we have the following equality (for details, see [15], [16]):

f
(
h1

(
x, g(s(x))

))
= H1

(
0, g(s(x))

)
.

Finally, we can show the following.

Lemma 4.1 ([15], [16]). If the map-germ (4.3) is a germ of Cr diffeomorphism, then
the endomorphism-germ of (Rn, 0) given by

x 7→ h1

(
x, g(s(x))

)
is also a germ of Cr diffeomorphism.

Thus, we see that for 0 ≤ r ≤ ∞ in order to obtain Cr right-left equivalence of f
and g, it suffices to find that the map-germ (4.3) is a germ of Cr diffeomorphism.

5. Several applications

5.1. Cr right-left equivalence of Cr-stable map-germs (1 ≤ r ≤ ∞)

Definition 5.1. A C∞ map-germ f : (Rn, 0) → (Rp, 0) is said to be Cr-stable if
every C∞ deformation-germ of f is Cr-trivial (0 ≤ r ≤ ∞).

There are several apparently different definitions of Cr-stability. For the relation be-
tween them, see [20]. Our definition of Cr-stability is called P -Cr-stability in [20].

From the argument in Section 4, we have the following (for the definition of Cr

K-versality, see [17]).

Theorem 5.1 ([17]). For any Cr-stable map-germ f , its graph deformation-germ is
Cr K-versal for 0 ≤ r ≤ ∞.

For 1 ≤ r <∞, the uniqueness of Cr K-versal deformation-germ of a given map-germ
may be proved easily by a slight modification of Martinet’s proof of the uniqueness of
C∞ K-versality (pp. 155–156 of [1], pp. 21–22 of [8]), because in order to prove the
uniqueness we need only one implication, the Cr K-versality implies the infinitesimal
Cr−1 K-versality , which is clear. Thus, by using Martinet’s argument (p. 158 of [1], p. 28
of [8]), we see that Theorem 5.1 yields a Cr generalization of Mather’s classification
theorem (1 ≤ r ≤ ∞) without any difficulty. Note that Theorem 1.2 also yields the same
generalization of Mather’s classification theorem as a trivial corollary.

Theorem 5.2 ([15], [17]). Let f, g : (Rn, 0) → (Rp, 0) be Cr-stable map-germs
(1 ≤ r ≤ ∞). Suppose that there exist a germ of C∞ diffeomorphism s : (Rn, 0)→ (Rn, 0)
and a C∞ map-germ M : (Rn, 0) → (GL(p,R),M(0)) such that f(x) = M(x)g(s(x)).
Then f and g are Cr right-left equivalent.
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5.2. C0 right-left equivalence of C0-stable map-germs

Definition 5.2. A C∞ map germ f : (Rn, 0) → (Rp, 0) is said to be MT-stable if
the jet extension of it is multi-transverse to the Thom-Mather canonical stratification of
the jet space.

Concerning C0 right-left equivalence of MT-stable map-germs, there is a well-known
theorem due to M. Fukuda and T. Fukuda.

Theorem 5.3 ([3]). Let f, g : (Rn, 0) → (Rp, 0) be MT-stable map-germs. Suppose
that there exist a germ of C∞ diffeomorphism s : (Rn, 0)→ (Rn, 0) and a C∞ map-germ
M : (Rn, 0) → (GL(p,R),M(0)) such that f(x) = M(x)g(s(x)). Then, they are C0

right-left equivalent.

Definition 5.3. A C∞ map-germ f : (Rn, 0)→ (Rp, 0) is said to be Thom stable if
every C∞ deformation-germ of f is Thom trivial.

As a consequence of the definition of MT-stability, every C∞ deformation-germ of an
MT-stable map-germ is Thom trivial (see [7], [11]]). Thus, every MT-stable map-germ is
Thom stable. By Thom’s second isotopy lemma ([2], [7], [11]), every Thom stable map-
germ is C0-stable in the sense of Definition 5.1. As a trivial corollary of Theorem 3.2, we
obtain a generalization of Theorem 5.3.

Theorem 5.4 ([16]). Let f, g : (Rn, 0) → (Rp, 0) be Thom stable map-germs. Sup-
pose that there exist a germ of C∞ diffeomorphism s : (Rn, 0) → (Rn, 0) and a C∞

map-germ M : (Rn, 0)→ (GL(p,R),M(0)) such that

f(x) = M(x)g(s(x)).

Then, they are C0 right-left equivalent.

5.3. An estimate of the order of C∞ determinacy. As an application of Theorem 2.3,
we show the following.

Theorem 5.5. Let f : (Rn, 0) → (Rp, 0) be a C∞ map-germ. Suppose that there
exist positive integers k, ` such that

(a) mk
nθ(f) ⊂ TA(f) and

(b) m`
nθ(f) ⊂ TK(f).

Then, f is (k + `− 1)-determined with respect to C∞ right-left equivalence.

The set TK(f) is defined by

TK(f) = tf(mnθ(n)) + f∗mpθ(f),

where f∗(u) = u ◦ f . This set is the tangent space of the orbit through f by the action of
the group K which was introduced by Mather in [9]. For details on the group K, TK(f)
and the definition of determinacy, see [9], [21]. Theorem 5.5 is a similar estimate to the
well-known estimate due to Gaffney ([4]). Theorem 5.5 has been stated already in [13]
without the proof. Several applications of Theorem 5.5 to divergent diagrams have been
obtained in [13].
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P r o o f. Let k−1K be the set of all pairs of (s,M), where s is a germ of C∞ diffeo-
morphism (Rn, 0)→ (Rn, 0) and M : (Rn, 0)→ (GL(p,R), Ep) is a C∞ map-germ with
each entry of M −M(0) belonging to mk

n. Here, Ep is the p by p unit matrix. The set
k−1K is a group by the operation (s1,M1) ∗ (s2,M2) = (s1 ◦ s2,M1M2), where s1 ◦ s2 is
the composition of s1 and s2 and M1M2 is the product of matrices of M1 and M2. The
group k−1K is a subgroup of the group K and the tangent space of the orbit through f

by the action of the group k−1K is

(5.3.1) Tk−1K(f) = tf(mnθ(n)) + f∗mpm
k
nθ(f).

Condition (b) of Theorem 5.5 implies

(5.3.2) mk+`
n θ(f) ⊂ tf(mk+1

n θ(n)) + f∗mpm
k
nθ(f) ⊂ Tk−1K(f).

By (5.3.2), we see that f is (k + `)-determined with respect to the group k−1K.
Let g : (Rn, 0) → (Rp, 0) be a C∞ map-germ with jk+`−1f(0) = jk+`−1g(0). Then,

since k > 0, (5.3.2) implies

(5.3.3) mk+`
n θ(g) ⊂ tg(mk+1

n θ(n)) + g∗mpm
k
nθ(g) +mk+`+1

n θ(g).

By Mather’s lemma (Lemma 3.1 of [10]), (5.3.3) implies that there exist a germ of C∞

diffeomorphism s : (Rn, 0)→ (Rn, 0) and a C∞ map-germ M : (Rn, 0)→ (GL(p,R), Ep)
such that

(5.3.4) f(x) = M(x)g(s(x)) and

(5.3.5) each entry of M −M(0) belongs to mk
n.

By Theorem 2.3, (5.3.4), (5.3.5) and condition (a) of Theorem 5.5 imply that f and g

are C∞ right-left equivalent.

R e m a r k 5.1. Note that in the proof of Theorem 5.5 we use Mather’s lemma only
for orbits by k−1K group action, whose tangent spaces are much simpler than TA(g).

Since TA(f) ⊂ TK(f), Theorem 5.5 yields the following well-known estimate due to
du Plessis and Wall as a trivial corollary.

Theorem 5.6 ([19], [21]). Let f : (Rn, 0) → (Rp, 0) be a C∞ map-germ. Suppose
that there exists a positive integer k such that

mk
nθ(f) ⊂ TA(f).

Then, f is (2k − 1)-determined with respect to C∞ right-left equivalence.
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applications stables, in: Singularités d’applications différentiables (Plans-sur-Bex, 1975),
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