RECOGNIZING RIGHT-LEFT EQUIVALENCE LOCALLY

TAKASHI NISHIMURA

Department of Mathematics, Faculty of Education and Human Sciences Yokohama National University Yokohama 240-8501, Japan E-mail: takashi@edhs.ynu.ac.jp

The present paper is a survey of the author's recent results on recognizing C^r right-left equivalence of C^{∞} map-germs $(0 \le r \le \infty)$.

We say two C^{∞} map-germs are C^r right-left equivalent if they coincide under germs of appropriate C^r co-ordinate systems of the source space and the target space, where a C^0 co-ordinate system means a co-ordinate system given by a homeomorphism. We often encounter the situations where we would like to decide whether or not given two map-germs are C^r right-left equivalent. In the case that one of them is of full rank (resp. linear), the implicit function theorem (resp. the rank theorem) answers our purpose (possibly except for r = 0). However, how can we decide in general case? By using a simple systematic method explained in Section 4, we can obtain many results to the problem. In Section 1, we give a series of criteria for C^r right-left equivalence of C^{∞} map-germs $(1 \le r \le \infty)$. In Section 2, infinitesimal refinements of criteria for C^{∞} rightleft equivalence of C^{∞} map-germs are given. Next, we consider C^0 right-left equivalence. In Section 3, we give a series of criteria for C^0 right-left equivalence map-germs. All of the results are derived from one simple idea, which is the key of our systematic method and explained exhaustively in Section 4. In Section 5 we give several applications of our results, which show how useful our method is.

The results for $r = \infty$ are all valid both in the real analytic category and in the complex analytic category as well.

1. Criteria for C^r right-left equivalence $(1 \le r \le \infty)$. For a given C^{∞} mapgerm $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, any C^r map-germ $\Phi : (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^p, 0)$ such that $\Phi(x, 0) = f(x)$ is called a C^r deformation-germ of f. A C^r deformation-germ $\Phi : (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^p, 0)$ of $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ is said to be C^r -trivial if

[205]

¹⁹⁹¹ Mathematics Subject Classification: Primary 58C27; Secondary 14B05, 32S30.

The paper is in final form and no version of it will be published elsewhere.

T. NISHIMURA

there exist germs of C^r diffeomorphisms $h : (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^n \times \mathbf{R}^k, (0, 0))$ and $H : (\mathbf{R}^p \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^p \times \mathbf{R}^k, (0, 0))$ such that the following diagram (*) commutes, where $\pi : (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^k, 0), \ \pi' : (\mathbf{R}^p \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^k, 0),$ are canonical projections:

$$(*) \qquad \begin{pmatrix} \mathbf{R}^{n} \times \mathbf{R}^{k}, (0,0) \end{pmatrix} \xrightarrow{(\Phi,\pi)} \begin{pmatrix} \mathbf{R}^{p} \times \mathbf{R}^{k}, (0,0) \end{pmatrix} \xrightarrow{\pi'} \langle \mathbf{R}^{k}, 0 \rangle \\ \downarrow & \downarrow & \downarrow \\ \begin{pmatrix} h \\ \downarrow & \mu \\ \langle \mathbf{R}^{n} \times \mathbf{R}^{k}, (0,0) \end{pmatrix} \xrightarrow{(f,\pi)} \begin{pmatrix} \mathbf{R}^{p} \times \mathbf{R}^{k}, (0,0) \end{pmatrix} \xrightarrow{\pi'} \langle \mathbf{R}^{k}, 0 \rangle$$

For given two C^{∞} map-germs $f, g : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, we consider the following conditions $(\mathbf{i}_r), (\mathbf{i}\mathbf{i}_r), (\mathbf{i}\mathbf{i}_r)$ and $(\mathbf{i}\mathbf{v}_r)$.

(i_r) The map-germ f is C^r right-left equivalent to g.

(ii_r) There exist a germ of C^r diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^r map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that the following (a) and (b) are satisfied:

(a)
$$f(x) = M(x)g(s(x)),$$

(b) the C^r map-germ $F: (\mathbf{R}^n \times \mathbf{R}^p, (0, 0)) \to (\mathbf{R}^p, 0)$ given by
 $F(x, \lambda) = f(x) - M(x)\lambda$

is a C^r -trivial deformation-germ of f.

(iii_r) There exist a germ of C^r diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^r map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that (a), (b) of condition (ii_r) and the following (c) are satisfied:

(c) The C^r map-germ $G: (\mathbf{R}^n \times \mathbf{R}^p, (0, 0)) \to (\mathbf{R}^p, 0)$ given by

$$G(x,\lambda) = g(x) - M(s^{-1}(x))^{-1}\lambda$$

is a C^r -trivial deformation-germ of g.

(iv_r) There exist a germ of C^r diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^r map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that (a), (b) of condition (ii_r) and the following (d) are satisfied:

(d) The germ $(H(\{0\} \times \mathbf{R}^p), 0)$ is transverse to the germ $(\{0\} \times \mathbf{R}^p, 0)$, where H is the germ of C^r diffeomorphism of $(\mathbf{R}^p \times \mathbf{R}^p, 0)$ given in the above commutative diagram (*) with k, Φ replaced by p, F.

First, we consider rank zero cases.

THEOREM 1.1 ([15]). Let $f, g : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^{∞} map-germs with rank zero. Then condition (ii_r) implies condition (i_r) for $1 \le r \le \infty$.

Next, we consider positive rank cases.

EXAMPLE 1.1. Let $f, g: (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0)$ be given by

$$f(x,y) = (x,y^3 + xy),$$

$$g(x,y) = (x,y^3)$$

and $M: (\mathbf{R}^2, 0) \to (GL(2, \mathbf{R}), E_2)$ be given by

$$M(x,y) = \left[\begin{array}{cc} 1 & 0 \\ y & 1 \end{array} \right],$$

where E_2 is the unit 2 by 2 matrix. Then f(x, y) = M(x, y)g(x, y).

It is well known that any C^{∞} deformation-germ of the map-germ f is C^{∞} -trivial. Thus, (ii_{∞}) is satisfied. However, for any $1 \leq r \leq \infty$ condition (i_r) does not hold (in fact, f and g are even not topologically right-left equivalent).

This example shows that condition (ii_r) does not necessarily imply condition (i_r) in positive rank cases. Nevertheless, the following holds under no assumptions.

THEOREM 1.2 ([15]). Condition (iii_r) implies condition (i_r) for $1 \le r \le \infty$.

Although Theorem 1.2 is interesting in itself, we *prefer* the C^r triviality of the linearly parametrized deformation-germ of only one of f or g to those of both of f and g. Thus, we are led to condition (iv_r).

THEOREM 1.3 ([15]). Condition (iv_r) implies condition (i_r) for $1 \le r \le \infty$.

In the case $r = \infty$, we have

THEOREM 1.4 ([15]). For any C^{∞} map germs $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, the following hold:

- $(1) \quad \ (i_{\infty}) \Leftrightarrow (iii_{\infty}) \Leftrightarrow (iv_{\infty}).$
- (2) $(i_{\infty}) \Leftrightarrow (ii_{\infty}) \Leftrightarrow (iii_{\infty}) \Leftrightarrow (iv_{\infty})$ if the rank of f is zero.

Therefore, we may answer the C^{∞} recognition problem completely by using our conditions in principle.

2. Infinitesimal refinements of criteria for C^{∞} right-left equivalence. First, we review infinitesimal notations briefly. For details on them, see [9], [14], [15], [21].

Let \mathcal{E}_n (resp. m_n) denote the set of C^{∞} function-germs $(\mathbf{R}^n, 0) \to \mathbf{R}$ (resp. $(\mathbf{R}^n, 0) \to (\mathbf{R}, 0)$). The set \mathcal{E}_n has a natural **R**-algebra structure and the set m_n is the unique maximal ideal in \mathcal{E}_n . For any positive integer ℓ , m_n^{ℓ} means the ℓ -times product of m_n . For $\ell = 0$, m_n^0 is \mathcal{E}_n .

For a C^{∞} map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, let $\theta(f)$ denote the \mathcal{E}_n -module consisting of germs of C^{∞} vector fields $\zeta : (\mathbf{R}^n, 0) \to T(\mathbf{R}^p)$ such that $\pi_p \circ \zeta = f$, where $\pi_p : T(\mathbf{R}^p) \to \mathbf{R}^p$ denotes the canonical projection. By using the standard identification of $T(\mathbf{R}^p)$ with $\mathbf{R}^p \times \mathbf{R}^p$, $\theta(f)$ may be identified with the free \mathcal{E}_n -module with *p*-generators. When the given *f* is the identity map-germ $(\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0), \theta(f)$ may be denoted by $\theta(n)$.

For a C^{∞} map-germ $f: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, let $Tf: (T\mathbf{R}^n, \pi_n^{-1}(0)) \to (T\mathbf{R}^p, \pi_p^{-1}(0))$ denote the tangent map-germ of f, where $\pi_n: T\mathbf{R}^n \to \mathbf{R}^n, \pi_p: T\mathbf{R}^p \to \mathbf{R}^p$ are canonical projections. We define

$$tf: \theta(n) \to \theta(f), \qquad wf: \theta(p) \to \theta(f)$$

by $tf(\xi) = Tf \circ \xi$, $wf(\eta) = \eta \circ f$. By using tf and wf, we define

$$T\mathcal{A}(f) = tf(m_n\theta(n)) + wf(m_p\theta(p)) \text{ and }$$
$$T_e\mathcal{A}(f) = tf(\theta(n)) + wf(\theta(p)).$$

THEOREM 2.1. Let $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^{∞} map-germs with rank zero. Suppose that there exist a germ of C^{∞} diffeomorphism $s: (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M: (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that f(x) = M(x)g(s(x)). Suppose furthermore that there exists an integer k $(k \geq 0)$ such that

- (a) each entry of M M(0) belongs to m_n^{k+1} and
- (b) $m_n^k \theta(f) \subset T_e \mathcal{A}(f).$

Then f and g are C^{∞} right-left equivalent.

Although there are no proofs of Theorem 2.1 in a series of author's papers [13]–[18], by the proof of Theorem 2.2 below it is clear that conditions (a) and (b) of Theorem 2.1 imply the C^{∞} -triviality of $f(x) - M(x)\lambda$. Thus, Theorem 2.1 follows from Theorem 1.1.

THEOREM 2.2 ([14]). Let $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^{∞} map-germs. Suppose that there exist a germ of C^{∞} diffeomorphism $s: (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M: (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that f(x) = M(x)g(s(x)). Suppose furthermore that there exists an integer k $(k \geq 0)$ such that

- (a) each entry of M M(0) belongs to m_n^{k+1} ,
- (b) $m_n^k \theta(f) \subset T_e \mathcal{A}(f)$ and
- (c) $m_n^k \theta(g) \subset T_e \mathcal{A}(g).$

Then f and g are C^{∞} right-left equivalent.

Theorem 2.2 was stated (but not proved) first by A. A. du Plessis ([19], page 128). Conditions (a) and (b) (resp. (a) and (c)) of Theorem 2.2 imply the C^{∞} -triviality of $f(x) - M(x)\lambda$ (resp. $g(x) - M(s^{-1}(x))^{-1}\lambda$). Thus, Theorem 2.2 follows from Theorem 1.2 (for details, see [14]).

THEOREM 2.3 ([14]). Let $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^{∞} map-germs. Suppose that there exist a germ of C^{∞} diffeomorphism $s: (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M: (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that f(x) = M(x)g(s(x)). Suppose furthermore that there exists a positive integer k such that

(a) each entry of M - M(0) belongs to m_n^k and

(b) $m_n^k \theta(f) \subset T\mathcal{A}(f).$

Then f and g are C^{∞} right-left equivalent.

Conditions (a) and (b) imply condition (iv_{∞}) . Thus Theorem 2.3 follows from Theorem 1.3 (for details, see [14]). Although we can deduce infinitesimal results from Theorem 1.3 in a different way, Theorem 2.3 is the most standard infinitesimal refinement of Theorem 1.3 and quite useful as shown in the following examples and §5.3. EXAMPLE 2.1 (taken from [12]). This example is almost the same as Example 1.1 in [14]. Let $f : (\mathbf{R}^2, 0) \to (\mathbf{R}^3, 0)$ be given by

$$f(x,y) = (x, xy + y^3, xy^2 + y^{10}).$$

Thanks to D. Mond, the following have been known as information on f ([12], Theorem 4.2.2:7).

(2.1.1) The map-germ f is 10-determined with respect to C^{∞} right-left equivalence.

(2.1.2) The map-germ f is not 9-determined with respect to C^{∞} right-left equivalence. (2.1.3) $m_2^8 \theta(f)$ is contained in $T\mathcal{A}(f)$.

Let N(x, y) be a 3 by 3 matrix with entries belonging to m_2^8 . Then, by Theorem 2.3, g = f + Nf is C^{∞} right-left equivalent to f. In fact, $f = (E_3 + N)^{-1}g$ and $M = (E_3 + N)^{-1}$ satisfies $M(0) = E_3$ and each entry of M - M(0) belongs to m_2^8 .

EXAMPLE 2.2 (taken from [6]). Let $f: (\mathbf{R}^2, 0) \to (\mathbf{R}^3, 0)$ be given by

$$f(x,y) = (x, y^3 + x^2y, y^4 + xy^2).$$

Thanks to T. Gaffney and A. A. du Plessis, the following has been known as one of information on f([6], Example (3.6)):

(2.2.1)
$$m_2^3\theta(f) \subset T\mathcal{A}(f)$$

Let N(x, y) be a 3 by 3 matrix with entries belonging to m_2^3 . Then, by Theorem 2.3, g = f + Nf is C^{∞} right-left equivalent to f. In fact, $f = (E_3 + N)^{-1}g$ and $M = (E_3 + N)^{-1}$ satisfies $M(0) = E_3$ and each entry of M - M(0) belongs to m_2^3 . Combining this result with direct co-ordinate manipulations yields the same M-determinacy result as in Example (3.6) of [6]. Note that the only information which we require is (2.2.1).

3. Criteria for C^0 right-left equivalence. A C^{∞} deformation-germ Φ : ($\mathbf{R}^n \times \mathbf{R}^k, (0,0)$) $\rightarrow (\mathbf{R}^p, 0)$ of f is said to be *Thom trivial* (resp. *transversely Thom trivial*) if there exist C-regular stratifications in the sense of Bekka ([2]), S of $\mathbf{R}^n \times \mathbf{R}^k, \mathcal{T}$ of $\mathbf{R}^p \times \mathbf{R}^k$ and { \mathbf{R}^k } of \mathbf{R}^k such that the following (T1) and (T2) (resp. (T1), (T2) and (T3)) hold:

(T1) The map-germ

$$\Phi,\pi): \left(\mathbf{R}^n \times \mathbf{R}^k, (0,0)\right) \to \left(\mathbf{R}^p \times \mathbf{R}^k, (0,0)\right)$$

is a Thom map-germ with respect to \mathcal{S} and \mathcal{T} .

(T2) The map-germ

$$\pi': (\mathbf{R}^p \times \mathbf{R}^k, (0,0)) \to (\mathbf{R}^k, 0)$$

is a stratified map-germ (or equivalently in this case, a Thom map-germ) with respect to \mathcal{T} and $\{\mathbf{R}^k\}$.

(T3) The stratum T_0 of \mathcal{T} , which contains the origin (0,0) of $\mathbf{R}^p \times \mathbf{R}^k$, is transverse to $\{0\} \times \mathbf{R}^k (\subset \mathbf{R}^p \times \mathbf{R}^k)$.

Here $\pi : (\mathbf{R}^n \times \mathbf{R}^k, (0,0)) \to (\mathbf{R}^k, 0), \pi' : (\mathbf{R}^p \times \mathbf{R}^k, (0,0)) \to (\mathbf{R}^k, 0)$ are canonical projections. For the definition of a C-regular stratification, see [2]. We remark that the notion of a C-regular stratification is an extended one of a Whitney stratification and it

T. NISHIMURA

is known that every C-regular stratification admits a controlled tube system ([2]). For the definitions of a stratified map-germ and a Thom map-germ, see [2], [7], [11].

By Thom's second isotopy lemma ([2], [7], [11]), we see that for any Thom trivial deformation-germ Φ : $(\mathbf{R}^n \times \mathbf{R}^k, (0,0)) \rightarrow (\mathbf{R}^p, 0)$ of f, there exist germs of homeomorphisms h : $(\mathbf{R}^n \times \mathbf{R}^k, (0,0)) \rightarrow (\mathbf{R}^n \times \mathbf{R}^k, (0,0))$ and H : $(\mathbf{R}^p \times \mathbf{R}^k, (0,0)) \rightarrow (\mathbf{R}^p \times \mathbf{R}^k, (0,0))$ such that the diagram (*) in Section 1 commutes, where π : $(\mathbf{R}^n \times \mathbf{R}^k, (0,0)) \rightarrow (\mathbf{R}^k, (0,0)) \rightarrow (\mathbf{R}^k, (0,0)) \rightarrow (\mathbf{R}^k, 0)$ are canonical projections.

For given two C^{∞} map-germs $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, we consider the following four conditions.

(i) The map-germ f is topologically equivalent to g.

(ii) There exist a germ of C^{∞} diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that the following (a) and (b) are satisfied:

- (a) f(x) = M(x)g(s(x)),
- (b) the C^{∞} map-germ $F: (\mathbf{R}^n \times \mathbf{R}^p, (0, 0)) \to (\mathbf{R}^p, 0)$ given by

$$F(x,\lambda) = f(x) - M(x)\lambda$$

is a Thom trivial deformation-germ of f.

(iii) There exist a germ of C^{∞} diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that (a), (b) of condition (ii) and the following (c) are satisfied:

(c) The
$$C^{\infty}$$
 map-germ $G: (\mathbf{R}^n \times \mathbf{R}^p, (0, 0)) \to (\mathbf{R}^p, 0)$ given by

$$G(x,\lambda) = g(x) - M(s^{-1}(x))^{-1}\lambda$$

is a Thom trivial deformation-germ of g.

(iv) There exist a germ of C^{∞} diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} mapgerm $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that (a) of condition (ii) and the following (d) are satisfied:

(d) The C^{∞} map-germ $F: (\mathbf{R}^n \times \mathbf{R}^p, (0, 0)) \to (\mathbf{R}^p, 0)$ given by

$$F(x,\lambda) = f(x) - M(x)\lambda$$

is a transversely Thom trivial deformation-germ of f.

THEOREM 3.1 ([16]). Let $f, g : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^{∞} map-germs with rank zero. Then condition (ii) implies condition (i).

THEOREM 3.2 ([16]). Condition (iii) implies condition (i).

THEOREM 3.3 ([18]). Condition (iv) implies condition (i).

Note that Example 1.1

$$f(x,y) = (x, y^3 + xy)$$
$$g(x, y) = (x, y^3)$$

again shows that condition (ii) does not necessarily imply condition (i) in positive rank case.

4. The simple systematic method. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be a C^{∞} map-germ and $\Phi : (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^p, 0)$ be a C^r deformation-germ of f, where $0 \le r \le \infty$. Suppose that there exists a $C^r \mathcal{A}$ -morphism from Φ to f. By the definition of a C^r \mathcal{A} -morphism, there exist C^r map-germs $h : (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^n \times \mathbf{R}^k, (0, 0)), H :$ $(\mathbf{R}^p \times \mathbf{R}^k, (0, 0)) \to (\mathbf{R}^p \times \mathbf{R}^k, (0, 0))$ and $\varphi : (\mathbf{R}^k, 0) \to (\mathbf{R}^k, 0)$ such that the following (4.1) and (4.2) hold (for the definition of $C^r \mathcal{A}$ -morphism, see [17]).

- (4.1) For any representatives \tilde{h} of h and \tilde{H} of H, there exist neighborhoods U of the origin in \mathbb{R}^n , V of the origin in \mathbb{R}^k and W of the origin in \mathbb{R}^p such that the restrictions $\tilde{h}|_{U \times \{\lambda\}}$ and $\tilde{H}|_{W \times \{\lambda\}}$ are C^r diffeomorphisms for any $\lambda \in V$.
- (4.2) The following diagram commutes, where $\pi : (\mathbf{R}^n \times \mathbf{R}^k, (0,0)) \to (\mathbf{R}^k, 0), \pi' : (\mathbf{R}^p \times \mathbf{R}^k, (0,0)) \to (\mathbf{R}^k, 0)$, are canonical projections:

$$\begin{pmatrix} \mathbf{R}^n \times \mathbf{R}^k, (0,0) \end{pmatrix} \xrightarrow{(\Phi,\pi)} \begin{pmatrix} \mathbf{R}^p \times \mathbf{R}^k, (0,0) \end{pmatrix} \xrightarrow{\pi'} (\mathbf{R}^k, 0) \\ \downarrow & \downarrow & \downarrow \\ \begin{pmatrix} \mathbf{R}^n \times \mathbf{R}^k, (0,0) \end{pmatrix} \xrightarrow{(f,\pi)} \begin{pmatrix} \mathbf{R}^p \times \mathbf{R}^k, (0,0) \end{pmatrix} \xrightarrow{\pi'} (\mathbf{R}^k, 0).$$

By (4.2), we may write

$$h(x,\lambda) = (h_1(x,\lambda),\varphi(\lambda))$$
 and $H(y,\lambda) = (H_1(y,\lambda),\varphi(\lambda)).$

Let $\varphi'_H : (\mathbf{R}^k, 0) \to (\mathbf{R}^p, 0)$ be the C^r map-germ given by

(4.3)
$$\varphi'_H(\lambda) = H_1(0,\lambda).$$

The map-germ (4.3) is the key idea in our study.

We put also $h': (\mathbf{R}^n \times \mathbf{R}^k, (0,0)) \to (\mathbf{R}^n \times \mathbf{R}^p, (0,0))$ as $h'(x, \lambda) = (h_1(x, \lambda), \varphi'_H(\lambda))$

and $H': (\mathbf{R}^n \times \mathbf{R}^k \times \mathbf{R}^p, (0, 0, 0)) \to (\mathbf{R}^n \times \mathbf{R}^p \times \mathbf{R}^p, (0, 0, 0))$ as

$$H'(x,\lambda,y) = (h'(x,\lambda), H_1(y,\lambda) - \varphi'_H(\lambda)).$$

Then we can show that $\{h', H', \varphi'_H\}$ is a $C^r \mathcal{K}$ -morphism from Φ to F, where F is the graph deformation-germ of f given by F(x, y) = f(x) - y. (For details, see [17]. In [17] the argument is pursued only for C^{∞} deformation-germs. However, C^r deformation-germs can be treated by the exactly parallel argument.)

Next, returning to the situations in Sections 1–3, we let $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^{∞} map-germs. We suppose that there exist a C^r map-germ $M: (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ and a germ of C^r diffeomorphism $s: (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ such that f(x) = M(x)g(s(x)). We concentrate on considering the following C^r deformation-germ of f:

$$(4.4) f(x) - M(x)\lambda$$

This deformation-germ is linear with respect to parameter variables. Remark that the parameter space of (4.4) is *p*-dimensional. Thus, if there exists a $C^r \mathcal{A}$ -morphism $\{h, H, \varphi\}$ from Φ to f, then the map-germ (4.3) is a map-germ between the same dimensional spaces. We suppose furthermore that the deformation-germ (4.4) is C^r -trivial. Then, there exists

a C^r \mathcal{A} -morphism $\{h, H, \varphi\}$ from Φ to f. Thus, from the above argument we see that there exists a C^r \mathcal{K} -morphism $\{h', H', \varphi'_H\}$ from (4.4) to the graph deformation-germ Fof f. In particular, we have the following equality (for details, see [15], [16]):

$$f(h_1(x, g(s(x)))) = H_1(0, g(s(x))).$$

Finally, we can show the following.

LEMMA 4.1 ([15], [16]). If the map-germ (4.3) is a germ of C^r diffeomorphism, then the endomorphism-germ of $(\mathbf{R}^n, 0)$ given by

$$x \mapsto h_1(x, g(s(x)))$$

is also a germ of C^r diffeomorphism.

Thus, we see that for $0 \le r \le \infty$ in order to obtain C^r right-left equivalence of f and g, it suffices to find that the map-germ (4.3) is a germ of C^r diffeomorphism.

5. Several applications

5.1. C^r right-left equivalence of C^r -stable map-germs $(1 \le r \le \infty)$

DEFINITION 5.1. A C^{∞} map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ is said to be C^r -stable if every C^{∞} deformation-germ of f is C^r -trivial $(0 \le r \le \infty)$.

There are several apparently different definitions of C^r -stability. For the relation between them, see [20]. Our definition of C^r -stability is called P- C^r -stability in [20].

From the argument in Section 4, we have the following (for the definition of C^r \mathcal{K} -versality, see [17]).

THEOREM 5.1 ([17]). For any C^r -stable map-germ f, its graph deformation-germ is $C^r \mathcal{K}$ -versal for $0 \leq r \leq \infty$.

For $1 \leq r < \infty$, the uniqueness of $C^r \ \mathcal{K}$ -versal deformation-germ of a given map-germ may be proved easily by a slight modification of Martinet's proof of the uniqueness of $C^{\infty} \ \mathcal{K}$ -versality (pp. 155–156 of [1], pp. 21–22 of [8]), because in order to prove the uniqueness we need only one implication, the $C^r \ \mathcal{K}$ -versality implies the infinitesimal $C^{r-1} \ \mathcal{K}$ -versality, which is clear. Thus, by using Martinet's argument (p. 158 of [1], p. 28 of [8]), we see that Theorem 5.1 yields a C^r generalization of Mather's classification theorem $(1 \leq r \leq \infty)$ without any difficulty. Note that Theorem 1.2 also yields the same generalization of Mather's classification theorem as a trivial corollary.

THEOREM 5.2 ([15], [17]). Let $f, g : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be C^r -stable map-germs $(1 \le r \le \infty)$. Suppose that there exist a germ of C^∞ diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^∞ map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that f(x) = M(x)g(s(x)). Then f and g are C^r right-left equivalent.

5.2. C^0 right-left equivalence of C^0 -stable map-germs

DEFINITION 5.2. A C^{∞} map germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ is said to be *MT-stable* if the jet extension of it is multi-transverse to the Thom-Mather canonical stratification of the jet space.

Concerning C^0 right-left equivalence of MT-stable map-germs, there is a well-known theorem due to M. Fukuda and T. Fukuda.

THEOREM 5.3 ([3]). Let $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be MT-stable map-germs. Suppose that there exist a germ of C^{∞} diffeomorphism $s: (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M: (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that f(x) = M(x)g(s(x)). Then, they are C^0 right-left equivalent.

DEFINITION 5.3. A C^{∞} map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ is said to be *Thom stable* if every C^{∞} deformation-germ of f is Thom trivial.

As a consequence of the definition of MT-stability, every C^{∞} deformation-germ of an MT-stable map-germ is Thom trivial (see [7], [11]]). Thus, every MT-stable map-germ is Thom stable. By Thom's second isotopy lemma ([2], [7], [11]), every Thom stable map-germ is C^0 -stable in the sense of Definition 5.1. As a trivial corollary of Theorem 3.2, we obtain a generalization of Theorem 5.3.

THEOREM 5.4 ([16]). Let $f, g : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be Thom stable map-germs. Suppose that there exist a germ of C^{∞} diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), M(0))$ such that

$$f(x) = M(x)g(s(x)).$$

Then, they are C^0 right-left equivalent.

5.3. An estimate of the order of C^{∞} determinacy. As an application of Theorem 2.3, we show the following.

THEOREM 5.5. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be a C^{∞} map-germ. Suppose that there exist positive integers k, ℓ such that

(a) $m_n^k \theta(f) \subset T\mathcal{A}(f)$ and

(b) $m_n^{\ell}\theta(f) \subset T\mathcal{K}(f).$

Then, f is $(k + \ell - 1)$ -determined with respect to C^{∞} right-left equivalence.

The set $T\mathcal{K}(f)$ is defined by

$$T\mathcal{K}(f) = tf(m_n\theta(n)) + f^*m_p\theta(f),$$

where $f^*(u) = u \circ f$. This set is the tangent space of the orbit through f by the action of the group \mathcal{K} which was introduced by Mather in [9]. For details on the group \mathcal{K} , $T\mathcal{K}(f)$ and the definition of determinacy, see [9], [21]. Theorem 5.5 is a similar estimate to the well-known estimate due to Gaffney ([4]). Theorem 5.5 has been stated already in [13] without the proof. Several applications of Theorem 5.5 to divergent diagrams have been obtained in [13]. Proof. Let $_{k-1}\mathcal{K}$ be the set of all pairs of (s, M), where s is a germ of C^{∞} diffeomorphism $(\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), E_p)$ is a C^{∞} map-germ with each entry of M - M(0) belonging to m_n^k . Here, E_p is the p by p unit matrix. The set $_{k-1}\mathcal{K}$ is a group by the operation $(s_1, M_1) * (s_2, M_2) = (s_1 \circ s_2, M_1 M_2)$, where $s_1 \circ s_2$ is the composition of s_1 and s_2 and $M_1 M_2$ is the product of matrices of M_1 and M_2 . The group $_{k-1}\mathcal{K}$ is a subgroup of the group \mathcal{K} and the tangent space of the orbit through f by the action of the group $_{k-1}\mathcal{K}$ is

(5.3.1)
$$T_{k-1}\mathcal{K}(f) = tf(m_n\theta(n)) + f^*m_p m_n^k \theta(f).$$

Condition (b) of Theorem 5.5 implies

(5.3.2)
$$m_n^{k+\ell}\theta(f) \subset tf(m_n^{k+1}\theta(n)) + f^*m_p m_n^k \theta(f) \subset T_{k-1}\mathcal{K}(f).$$

By (5.3.2), we see that f is $(k + \ell)$ -determined with respect to the group $_{k-1}\mathcal{K}$.

Let $g: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be a C^{∞} map-germ with $j^{k+\ell-1}f(0) = j^{k+\ell-1}g(0)$. Then, since k > 0, (5.3.2) implies

(5.3.3)
$$m_n^{k+\ell}\theta(g) \subset tg(m_n^{k+1}\theta(n)) + g^*m_pm_n^k\theta(g) + m_n^{k+\ell+1}\theta(g).$$

By Mather's lemma (Lemma 3.1 of [10]), (5.3.3) implies that there exist a germ of C^{∞} diffeomorphism $s : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a C^{∞} map-germ $M : (\mathbf{R}^n, 0) \to (GL(p, \mathbf{R}), E_p)$ such that

(5.3.4)
$$f(x) = M(x)g(s(x))$$
 and

(5.3.5) each entry of M - M(0) belongs to m_n^k .

By Theorem 2.3, (5.3.4), (5.3.5) and condition (a) of Theorem 5.5 imply that f and g are C^{∞} right-left equivalent.

Remark 5.1. Note that in the proof of Theorem 5.5 we use Mather's lemma only for orbits by $_{k-1}\mathcal{K}$ group action, whose tangent spaces are much simpler than $T\mathcal{A}(g)$.

Since $T\mathcal{A}(f) \subset T\mathcal{K}(f)$, Theorem 5.5 yields the following well-known estimate due to du Plessis and Wall as a trivial corollary.

THEOREM 5.6 ([19], [21]). Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be a C^{∞} map-germ. Suppose that there exists a positive integer k such that

$$m_n^k \theta(f) \subset T\mathcal{A}(f).$$

Then, f is (2k-1)-determined with respect to C^{∞} right-left equivalence.

References

- V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monogr. Math. 82, Birkhäuser, Boston, 1985.
- K. Bekka, C-régularité et trivialité topologique, in: Singularity Theory and its Applications (Warwick, 1989), Part I, D. Mond and J. Montaldi (eds.), Lecture Notes in Math. 1462, Springer, Berlin, 1991, 42–62.

- [3] M. Fukuda and T. Fukuda, Algebras Q(f) determine the topological types of generic map germs, Invent. Math. 51 (1979), 231–237.
- [4] T. Gaffney, A note on the order of determination of a finitely determined germ, Invent. Math. 52 (1979), 127–130.
- [5] T. Gaffney, The structure of $T\mathcal{A}(f)$, classification and an application to differential geometry, Proc. Sympos. Pure Math. 40 (1983), 409–427.
- [6] T. Gaffney and A. A. du Plessis, More on the determinacy of smooth map-germs, Invent. Math. 66 (1982), 137–163.
- [7] C. G. Gibson, K. Wirthmüller, A. A. du Plessis, E. J. N. Looijenga, Topological Stability of Smooth Mappings, Lecture Notes in Math. 552, Springer, Berlin, 1976.
- [8] J. Martinet, Déploiements versals des applications différentiables et classification des applications stables, in: Singularités d'applications différentiables (Plans-sur-Bex, 1975), O. Burlet, F. Ronga (eds.), Lecture Notes in Math. 535, Springer, Berlin, 1976, 1–44.
- [9] J. Mather, Stability of C[∞] mappings, III. Finitely determined map-germs, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 127-156.
- [10] J. Mather, Stability of C^{∞} mappings, IV. Classification of stable map-germs by **R**-algebras, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223-248.
- [11] J. Mather, How to stratify mappings and jet spaces, in: Singularités d'applications différentiables (Plans-sur-Bex, 1975), O. Burlet, F. Ronga (eds.), Lecture Notes in Math. 535, Springer, Berlin, 1976, 128–176.
- [12] D. Mond, On the classification of germs of maps from \mathbf{R}^2 to \mathbf{R}^3 , Proc. London Math. Soc. (3) 50 (1985), 333–369.
- [13] T. Nishimura, A constructive method to get right-left equivalence for smooth map germs and its application to divergent diagrams, in: Workshop on Real and Complex Singularities (São Carlos, 1992), M. A. S. Ruas (ed.), Mat. Contemp. 5, Sociedade Brasileira de Matemática, Rio de Janeiro, 1993, 137–160.
- [14] T. Nishimura, Isomorphism of smooth map germs with isomorphic local algebras, in: Real Analytic and Algebraic Singularities (Nagoya, 1996), T. Fukuda, T. Fukui, S. Izumiya and S. Koike (eds.), Pitman Res. Notes Math. Ser. 381, Longman, Harlow, 1998, 94–106.
- [15] T. Nishimura, Criteria for right-left equivalence of smooth map-germs, preprint, Yokohama National University, 1998.
- [16] T. Nishimura, Topological equivalence of K-equivalent map germs, J. London Math. Soc. (2), to appear.
- [17] T. Nishimura, $C^r \mathcal{K}$ -versality of the graph deformation of a C^r stable map-germ, Math. Proc. Cambridge Philos. Soc., to appear.
- [18] T. Nishimura, Topological equivalence of K-equivalent map germs, II, in preparation.
- [19] A. A. du Plessis, On the determinacy of smooth map-germs, Invent. Math. 58 (1980), 107–160.
- [20] A. A. du Plessis and C. T. C. Wall, *The Geometry of Topological Stability*, London Math. Soc. Monogr. (N.S.) 9, Oxford University Press, New York, 1995.
- [21] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481–539.