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Abstract. In the first section of the paper we study some properties of oriented volumes of
wave fronts propagating in spaces of constant curvature. In the second section, we generalize to
an arbitrary isometric action of a Lie group on a Riemannian manifold the following principle:
an extra pression inside of a ball does not move it.

1. Wave fronts in Sn and Hn. The standard sphere Sn ⊂ Rn+1 is defined by the
equation x2

0+x2
1+. . .+x2

n = 1. The metric on the sphere is induced by the standard metric
in Rn+1. Thus the distance between points X, Y of the sphere is equal to the angle XOY ,
where O stands for the center of the sphere. Let F ⊂ Sn be a cooriented wave front, which
is a projection of an oriented Legendrian manifold. Let F move in Sn with unit velocity in
the direction of the coorientation. Denote by F (t) the position of the front at a moment t
and by c(t) the oriented (n−1)-dimensional volume of F (t). Obviously, F (t+2π) = F (t),
and F (t + π) is nothing but the front centrally symmetric to F (t), whereas F (t + π/2)
is the front dual to F (t) [2]. Thus c(t + 2π) = c(t), c(t + π) = −c(t) for n even, and
c(t + π) = c(t) for n odd. For n even, let s(t) be a primitive function for c(t). Then
s(t+ 2π) = s(t), because c(t) is an odd 2π-periodic function. So s(t) can be regarded as
the volume bounded by F (t); this is motivated by the property s′(t) = c(t). To make the
definition unambiguous, impose the condition s(0) + s(π) = 0, which implies that s is an
odd function: s(t+ π) = −s(t) for any t.

Let us recall some results on wave fronts in S2.
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Theorem 1 [4]. The length (respectively , the area) of a front in S2 is equal up to a
sign to the area (respectively , length) of its dual front. More precisely ,

(1) s
(
t+

π

2

)
= c(t) and c

(
t+

π

2

)
= −s(t).

The paper [1] contains a proof of this theorem based on the following idea. Since s(t)
and c(t) are odd 2π-periodic functions satisfying the differential equations s′(t) = c(t)
and c′(t) = −s(t) (the latter equation can be derived from the Gauss-Bonnet theorem),
it is clear that c(t) = a cos(t+b) and s(t) = a sin(t+b) for some a and b, and the theorem
follows. Below we study the function c(t) constructed from a front in Sn or Hn, where
Hn is the n-dimensional Lobachevskii space. We consider only closed wave fronts, which
are projections of smooth compact Legendrian submanifolds F̃ of the contact manifold
PT ∗Sn, respectively PT ∗Hn.

Theorem 2. The volume c(t) of a front F (t) moving in Sn is a polynomial in sin t
and cos t of degree n− 1.

P r o o f. Let F̃ be a Legendrian submanifold of PT ∗Sn such that p(F̃ ) = F , where
p : PT ∗Sn → Sn stands for the natural projection. For x ∈ F̃ , put x(0) = p(x) ∈ F (0) and
denote by x(t) the point of F (t) obtained from x(0) by a shift by t along the geodesic line
directed by n, where n is the normal vector to F (0) at x0 that defines the coorientation
of the front. Let dσ(x, t) be the volume element on F (t), and let k1(x, t), . . . , kn−1(x, t)
be the principal curvatures of F (t) at x(t). Let us define numbers ri(x, t) by the relations
ki(x, t) = cot ri(x, t), where i = 1, . . . , n − 1; these numbers are equal to the oriented
distances in Sn between x(t) and the curvature center of the section of F (t) by the two-
dimensional geodesic sphere containing n(x(t)) and the ith principal direction; of course,
we deal here with the geodesic curvature center, which belongs to the same sphere. More
precisely, the number ri (mod 2π) is defined as follows: the geodesic lines directed by
the normal vectors n(x) and n(x′) to F at infinitely close points x and x′ (such that the
direction from x to x′ is the ith principal direction) intersect one another at two antipodal
points of the sphere Ni(x, t) and −Ni(x, t). Choose arbitrarily one of them, say, Ni(x, t),
continuously in x and t; there are no obstructions to this choice, because we do this for
a small part of F only. Then ri(x, t) is the length of the arc of the great circle passing
through x(t) and Ni(x, t) that is oriented from Ni(x, t) to x(t) by the coorientating vector.
Denote by dli(x, t) the length element of the ith section. Since the principal directions
are pairwise orthogonal, we have

dσ(x, t) = dl1(x, t)dl2(x, t) · · · dln−1(x, t).

Choose the metric on F̃ so that the distance between contact elements x and y is the
angle between the hyperplanes in Rn+1 that pass through the origin O and the point p(x),
respectively, p(y), at which the element x (respectively, y) is attached; further, these hy-
perplanes contain the (n−1)-dimensional plane defined by the element x, respectively, y.
It is easy to see that this metric is defined by a smooth metric tensor gij and thus de-
termines the volume form µ on F̃ . Let dli(x) be the length element on F̃ corresponding
to the ith principal direction at x(t) ∈ F (t). It can easily be checked that the relations
dli(x, t) = sin ri(x, t)dli(x) hold up to a sign, and that the directions of dli(x) are pairwise
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orthogonal in F̃ . Thus we have

dµ(x) = dl1(x)dl2(x) · · · dln−1(x).

Then the following relation holds up to a sign:

(2) dσ(x, t) = sin r1(x, t) sin r2(x, t) · · · sin rn−1(x, t)dµ(x);

the minus sign can be eliminated by replacing one of the Ni(x, t) by its antipodal point
(then the corresponding distance ri will be replaced by ri + π).

Let us show that

(3) ri(x, t) = t+ ψ(x),

where ψ(x) does not depend on t. Indeed, let us consider the mapping

(4) f : F (t)× S1 → Sn

that takes (x, t, ϕ) to the point obtained by shifting x ∈ F (t) by ϕ along the geodesic
line directed by the coorientation. Then the set Ni(x, t), i = 1, 2, . . . , n, consists of the
images of critical points of mapping (4) belonging to x× S1 (see [6]); they are called the
focal points. Also note that

f(x, t, ϕ) = f(x, 0, ϕ+ t).

So for different t the sets of focal points of F (t) are the same, which implies (3).
It follows from (2) and (3) that

dσ(x, t) =
(n−1∑
k=0

ak(x) cos kt+
n−1∑
k=1

bk(x) sin kt
)
dµ(x).

Integrating this relation over F (t), we obtain

c(t) = volF (t) =
∫
F (t)

1 dσ(x, t)

=
∫
F̃

(n−1∑
k=0

ak(x) cos kt+
n−1∑
k=1

bk(x) sin kt
)
dµ(x)

=
n−1∑
k=0

Ak cos kt+
n−1∑
k=1

Bk sin kt,

where Ak =
∫
F̃

ak(x) dµ(x) and Bk =
∫
F̃

bk(x). The theorem is proved.

Corollary. Let n be an even number. Then the volume s(t) of the domain bounded
by a front F (t) (which moves in Sn with unit velocity) is a trigonometric polynomial of
degree n − 1. The polynomials s(t) and c(t) are odd , that is, they do not contain terms
sin kx and cos kx with k even.

Theorem 3. The oriented (n− 1)-dimensional volume c(t) of a front F (t) moving in
Euclidean space Rn with unit velocity is a polynomial in t of degree n− 1.

P r o o f. The proof of this statement is quite similar to that of Theorem 2.
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R e m a r k. Theorem 3 answers the question that was not considered in [5]; following
Weyl, this book deals with “nonoriented” volumes only.

Since Hn(Rn) = 0, the n-chain G(t) bounded by F (t) in Rn is well defined. This
chain contains only bounded connected components of Rn \ F (t). Note that G(t + r) is
nothing but the Minkowski sum of G(t) and the ball in Rn of radius r with center at the
origin. So the following statement is similar to the fact that the mixed volume P (a, b) of
aM1 + bM2 is a polynomial in a, b, where M1,M2 are convex bodies. Let us denote by
s(t) the volume of G(t).

Corollary. The oriented volume s(t) bounded by a closed front F (t) ⊂ Rn is a
polynomial in t of degree n.

P r o o f. This immediately follows from the relation s′(t) = c(t).

Under certain restrictions, similar theorems hold for the Lobachevskii space Hn as
well.

Definition. A closed wave front in Hn is said to be reversible if all the main curva-
tures radii are finite at any its point.

Examples. If geodesic lines that are normal to a front in neighbor points are hyper-
parallels, then the front is not reversible. A sphere is a reversible front in Hn.

For a reversible wave front F in Hn, the n-chain bounded by F is well defined. By s(t)
denote the volume of this chain. The proof of the following theorem is similar to that of
Theorem 2.

Theorem 4. For a reversible front in Hn, the functions c(t) and s(t) are polynomials
in cosh t and sinh t of degree n− 1.

2. An integral formula generalizing the Pascal law. An extra pressure inside
of a ball does not move it, because the sum of all attached forces is equal to zero, as well
as the sum of their angular momenta. In this section we obtain a formula expressing this
principle for an isometric action of a Lie group on a Riemannian manifold. We also give
some corollaries of this principle for fronts in R2 and S2.

Consider in R3 a surface F that is a boundary of a domain U . Suppose that F is
made from a thin rigid material and that there is an extra pressure of air p inside of F ,
that is, in U . Then any element dσ of the surface undergoes a force f(x), where x ∈ F .
It is clear that these forces produce no translational motion of F , that is, their sum is
equal to zero:

∫
F
f(x) dσ = 0. According to the Pascal law, the vector function f(x) is

equal to pn(x), where n is a unit outer normal vector, because the pressure in a liquid
or a gas depends on neither point nor direction. Thus we have

(5)
∫
F

n dσ = 0.

Of course, relation (5) holds in Euclidean space of arbitrary dimension. Otherwise, a
perpetual motion in Rn for a certain n were possible, which were an extremely surprising
thing for physicists.
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Below we prove a relation similar to (5) in quite a more general case, namely, for an
action of a Lie group on a Riemannian manifold. (In the example above, the group Rn acts
on itself by translations; relation (5) disregards the fact that F is not forced to rotate
and only shows that there is no translational movement. To deal also with a possible
rotational movement, we should consider the action on Rn of the whole group E(n) of
orientation preserving isometries.) Now let us study some consequences of relation (5) in
the case of R2.

In this case, (5) follows directly from the relation

(6)
∫
F

v dl = 0,

because n = −Iv, where I is the counterclockwise rotation by 90◦ and v is a unit tangent
vector that endows F with an orientation compatible with the orientation of U (that is,
F is counterclockwise oriented by v); finally, dl (rather than dσ) stands for the element
of the arc length. Relation (6) holds if and only if the curve F is closed. For a nonclosed
curve F starting at A and ending at B, we have

(7)
∫
F

v dl =
−→
AB and

∫
F

n dl = −I −→AB;

this relation does not depend on the choice of a curve F connecting A and B.
Now suppose that F is a cooriented wave front on a plane, that is, a closed curve with

even number of semicubic singularities (cusps), and n is a unit normal vector defining
a coorientation. In the neighborhood of a cuspidal point, the normal form of a front is
y2 = x3. If in this case n = (0, 1) at the origin (0, 0)∈F , then we say that the cuspidal
point is right ; otherwise, if n = (0,−1), then (0, 0) is a left cuspidal point of F .

It is easy to see that right and left cuspidal points alternate along F ; in particular,
the numbers of right and left cusps are equal. Let A1, . . . , Ak be all left cuspidal points
of F , whereas B1, . . . , Bk be all right cuspidal points.

Theorem 5. The following relation holds:

(8)
∮
F

n dl = −2I
( k∑
i=1

Bi −
k∑
i=1

Ai

)
.

The sum in the right-hand side of (8) is equal to
∑
i

−−→
OBi −

∑
i

−−→
OAi; the result is inde-

pendent of the choice of an auxiliary point O.

P r o o f. Consider the integral along an arc AiBi. Relations (7) directly imply that∫
AiBi

n dl = −I(Bi − Ai). The factor 2 arises in (8) because of the arcs of the form
BiAi+1. The theorem is proved.

Now consider the case of a wave front on the sphere. The same reasons on impossibility
of a perpetual motion in the space R2 suggest that relation (5) should remain true. But
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what is the correct definition of the integral
∮
F

n dl in this situation, where there is no
well defined way to transport all vectors n(x) tangent to S2 to a certain basepoint?

From the classical mechanics point of view, the problem is as follows. The standard
sphere x2+y2+z2 = 1 is fixed at the origin in R3. A field of forces n(x) acts on S2 along F .
Then the motion of the sphere is defined by the integral of the angular momentum of n(x)
with respect to the origin, which is equal to

∮
F

k(x) dl, where k(x) = [r(x),n(x)] is the
angular momentum of the force n(x) attached at a point x with radius vector r(x). Note
that the motion of the sphere is represented by a curve in the (noncommutative) Lie
group SO(3), the velocity of this motion is an element of the tangent algebra g = so(3),
while the angular momentum lies in g∗, i.e., is a linear function on g (see [3]). Let v(x)
be the unit vector tangent to F at x. Then k(x) = [r(x),n(x)] = ±v(x), where the sign
depends on the orientation of v. Thus we have the following statement.

Theorem 6. Let F ⊂ S2 be a cooriented wave front with left cuspidal points A1, . . . , Ak
and right cuspidal points B1, . . . , Bk. Then

K =
∮
F

[r,n] dl = 2
( k∑
i=1

Bi −
k∑
i=1

Ai

)
.

In particular , K = 0 for an immersed curve F .

R e m a r k. Relation (5) (which holds for immersions of F to Rn) implies that for a
wave front F in Rn, the value of the integral

∫
F

n dσ depends on coorientation of F and
on the set F \Freg of singular points of F that has codimension 1 (singular sets of higher
codimension do not affect the integral) but is independent of the regular part Freg of F .

Finally, let us consider the general case. Suppose that a Lie group G with the Lie
algebra g acts isometrically on an oriented Riemannian manifold Mn. Let F ⊂ M be
an immersed connected cooriented hypersurface that bounds a domain U ⊂ M (or, at
least, is homological to zero over Q; so, if Hn−1(Mn,Q) = 0, then we can take any closed
oriented hypersurface). Let n be a unit normal vector field defining a coorientation of F .
Suppose that a field of forces n(x) acts on the rigid body U , where ∂U = cF , c ∈ Q\{0}.

Definition. The angular momentum k(x) is the linear function on g that takes a
vector τ ∈ g to the inner product (n(x),qτ (x)), where qτ is a vector field on M related
to the generator τ . More precisely, if g(t) ⊂ G is a one-parameter subgroup such that
d

dt
g(t)|t=0 = τ , then qτ (x) =

d

dt

(
g(t)

)
(x)|t=0.

Theorem 7. If the assumptions stated above hold , then the integral angular momen-
tum K ∈ g∗ of the forces n(x) is equal to zero:

K =
∫
F

k(x) dσ = 0.

Here the area element dσ is induced by the first fundamental form of F .
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P r o o f. For any τ ∈ g, we have

K(τ) =
∫
F

(k(x))(τ) dσ =
∫
F

(n(x),qτ (x)) dσ

= c−1

∫
cF

(n(x),qτ (x)) dσ = c−1

∫
U

div qτ = 0.

In the last but one equality we use the Stokes formula, and the last equality holds because
the divergence of the field qτ equals zero. In fact, the flow of qτ acts on M by isometries
g(t) ∈ G, and thus preserves the volume form. Therefore, the covector K ∈ g∗ is equal to
zero. The theorem is proved.

R e m a r k (A. O. Viro). The proof of Theorem 7 only uses the fact that the action
of G on M preserves the volume (rather than the metric). However, a metric on M is
involved in definitions of n(x) and k(x).
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