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Abstract. In this paper we prove trace formulas for the Reidemeister numbers of group
endomorphisms and the rationality of the Reidemeister zeta function in the following cases:
the group is finitely generated and the endomorphism is eventually commutative; the group is
finite; the group is a direct sum of a finite group and a finitely generated free Abelian group;
the group is finitely generated, nilpotent and torsion free. We connect the Reidemeister zeta
function of an endomorphism of a direct sum of a finite group and a finitely generated free
Abelian group with the Lefschetz zeta function of the unitary dual map, and as a consequence
obtain a connection of the Reidemeister zeta function with Reidemeister torsion. We also prove
congruences for Reidemeister numbers which are the same as those found by Dold for Lefschetz
numbers.

1. Introduction. We assume everywhere X to be a connected, compact polyhedron
and f : X → X to be a continuous map. Taking a dynamical point on view, we consider
the iterates of f . In the theory of discrete dynamical systems the following zeta functions
are known: the Artin-Mazur zeta function

ζf (z) := exp
( ∞∑
n=1

F (fn)
n

zn
)
,
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where F (fn) is the number of isolated fixed points of fn; the Ruelle zeta function [44]

ζf
g(z) := exp

( ∞∑
n=1

zn

n

∑
x∈Fix(fn)

n−1∏
k=0

g(fk(x))
)
,

where g : X → C is a weight function (if g = 1 we recover ζf (z)); the Lefschetz zeta
function

Lf (z) := exp
( ∞∑
n=1

L(fn)
n

zn
)
,

where

L(fn) :=
dimX∑
k=0

(−1)k Tr[fn∗k : Hk(X; Q)→ Hk(X; Q)]

are the Lefschetz numbers of the iterates of f ; reduced mod 2 Artin-Mazur and Lefschetz
zeta functions [20]; twisted Artin-Mazur and Lefschetz zeta functions [22], which have
coefficients in the group rings ZH of an Abelian group H.

The above zeta functions are directly analogous to the Hasse-Weil zeta function of an
algebraic manifold over finite fields [49]. The Lefschetz zeta function is always a rational
function of z and is given by the formula:

Lf (z) =
dimX∏
k=0

det(I − f∗k.z)(−1)k+1
.

This immediately follows from the trace formula for the Lefschetz numbers of the iterates
of f . The Artin-Mazur zeta function has a positive radius of convergence for a dense set
in the space of smooth maps of a compact smooth manifold to itself [2]. Manning proved
the rationality of the Artin-Mazur zeta function for diffeomorphisms of a compact smooth
manifold satisfying Smale’s Axiom A [34].

The Artin-Mazur zeta function and its modification count periodic points of a map
geometrically, the Lefschetz type zeta functions do this algebraically (with weight given
by index theory). Another way to count the periodic points is given by Nielsen theory.

Let p : X̃ → X be the universal covering of X and f̃ : X̃ → X̃ a lifting of f , i.e.
p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a γ ∈ Γ ∼= π1(X)
such that f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix(f) is called the fixed point
class of f determined by the lifting class [f̃ ]. A fixed point class is called essential if
its index is nonzero. The number of lifting classes of f (and hence the number of fixed
point classes, empty or not) is called the Reidemeister number of f , denoted R(f). This
is a positive integer or infinity. The number of essential fixed point classes is called the
Nielsen number of f , denoted by N(f). The Nielsen number is always finite. R(f) and
N(f) are homotopy type invariants. In the category of compact, connected polyhedra
the Nielsen number of a map is equal to the least number of fixed points of maps with
the same homotopy type as f . Let G be a group and φ : G → G an endomorphism.
Two elements α, α′ ∈ G are said to be φ-conjugate iff there exists γ ∈ G such that
α′ = γ ·α ·φ(γ)−1. The number of φ-conjugacy classes is called the Reidemeister number
of φ, denoted by R(φ). We shall also write R(φ) for the set of φ-conjugacy classes of
elements of G.
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If we consider the iterates of f and φ, we may define several zeta functions connected
with Nielsen fixed point theory (see [11, 12, 14, 15, 19]). We assume throughout this
article that R(fn) < ∞ and R(φn) < ∞ for all n > 0. The Reidemeister zeta functions
of f and φ and the Nielsen zeta function of f are defined as power series:

Rf (z) := exp
( ∞∑
n=1

R(fn)
n

zn
)
, Rφ(z) := exp

( ∞∑
n=1

R(φn)
n

zn
)
,

Nf (z) := exp
( ∞∑
n=1

N(fn)
n

zn
)
.

Rf (z) and Nf (z) are homotopy invariants. The Nielsen zeta function Nf (z) has a positive
radius of convergence which has a sharp estimate in terms of the topological entropy of
the map f [19]. In section 6 we propose another proof of positivity of the radius and give
an exact algebraic lower estimation for the radius using the Reidemeister trace formula
for the generalized Lefschetz numbers. In section 9 we prove the same result for the radius
of convergence of the minimal dynamical zeta function.

An endomorphism φ : G → G is said to be eventually commutative if there exists a
natural number n such that the subgroup φn(G) is commutative. A map f : X → X

is said to be eventually commutative if the induced endomorphism on the fundamental
group is eventually commutative. We begin the article by proving in section 1 the trace
formula for the Reidemeister numbers in the following cases: G is finitely generated and
φ is eventually commutative; G is finite; G is a direct sum of a finite group and a finitely
generated free Abelian group; G is a finitely generated torsion free nilpotent group.

This result was previously known only for the finitely generated free Abelian group
[15]. As a consequence, we obtain in section 2, under the same conditions on the funda-
mental group of X, the trace formula for the Reidemeister numbers of a continuous map
and in section 3 under suitable conditions the trace formulas for the Nielsen numbers of
a continuous map.

The trace formula for the Reidemeister numbers implies the rationality of the Reide-
meister zeta function. In section 5 we prove the rationality and functional equation for
the Reidemeister zeta function of an endomorphism of a finitely generated torsion free
nilpotent group and of a direct sum of a finite group and a finitely generated free Abelian
group. We give also a new proof of the rationality of Rφ(z) in the case when G is finitely
generated and φ is eventually commutative and in the case when G is finite.

In section 5.5 we describe some conjectures on how the Reidemeister zeta functions
should look in general, largely in terms of the growth of the group. In particular we ex-
pect that for polynomial growth groups some power of the Reidemeister zeta function is
a rational function.

In section 6 we continue to study analytical properties of the Nielsen zeta function.
We would like to mention that in all known cases the Nielsen zeta function is a nice
function. By this we mean that it is a product of an exponential of a polynomial with a
function some power of which is rational. Maybe this is a general pattern.

In his article [7], Dold found a remarkable arithmetical property of the Lefschetz
numbers for the iterations of a map f . He proved the following formula
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d|n

µ(d) · L(fn/d) ≡ 0 mod n

where n is any natural number and µ is the Möbius function. In the case that n is prime,
this result was obtained by Zabrĕıko, Krasnosel’skĭı [50] and Steinlein [46]. In section 7
we prove, under additional conditions, similar formulae:∑

d|n

µ(d) ·R(φn/d) ≡ 0 mod n,
∑
d|n

µ(d) ·R(fn/d) ≡ 0 mod n

for the Reidemeister numbers of the iterations of a group endomorphism φ and a map f .
This result implies, in the special cases, the corresponding congruences for the Nielsen
numbers.

In section 8 we explain how dynamical zeta functions give rise to the Reidemeister
torsion, a very important topological invariant. In 1935 Reidemeister [41] classified up to
PL equivalence the lens spaces S3/Γ where Γ is a finite cyclic group of fixed point free
orthogonal transformations. He used a certain new invariant which was quickly extended
by Franz [21], who used it to classify the generalized lens spaces S2n+1/Γ. This invariant
is a ratio of determinants concocted from a Γ-equivariant chain complex of S2n+1 and
a nontrivial character ρ : Γ → U(1) of Γ. Such a ρ determines a flat bundle E over
S2n+1/Γ such that E has holonomy ρ. The new invariant is now called the Reidemeister
torsion or R-torsion of E. The Reidemeister torsion is closely related to the K1 groups
of algebraic K-theory. The results of Reidemeister and Franz were extended by de Rham
[42] to spaces of constant curvature +1.

Later Milnor [36] identified the Reidemeister torsion with the Alexander polynomial,
which plays a fundamental role in the theory of knots and links. After that Cheeger [6]
and Müller [37] proved that the Reidemeister torsion coincides with the analytical torsion
of Ray and Singer [40].

Recently a connection between the Lefschetz type dynamical zeta functions and the
Reidemeister torsion was established by D. Fried [23, 24]. The work of Milnor [35] was
the first indication that such a connection exists.

In section 8 we establish a connection between the Reidemeister torsion and Rei-
demeister zeta function. We obtain an expression for the Reidemeister torsion of the
mapping torus of the dual map of an endomorphism of a direct sum of a finite group
and a finitely generated free Abelian group, in terms of the Reidemeister zeta function of
the endomorphism. The result is obtained by expressing the Reidemeister zeta function
in terms of the Lefschetz zeta function of the dual map, and then applying the theorem
of D. Fried. This means that the Reidemeister torsion counts the fixed point classes of
all iterates of map f , i.e. periodic point classes of f . This was previously known for the
finitely generated Abelian groups and finite groups [17].

We would like to thank J. Eichhorn, D. Fried, M. L. Gromov and B. B. Venkov
for valuable conversations and comments. Alexander Fel’shtyn would like to thank In-
stitut des Hautes Etudes Scientifiques for their kind hospitality and support. Richard
Hill would like to thank the Max Planck Institut für Mathematik in Bonn for their
hospitality.
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2. Trace formula for the Reidemeister numbers of a group endomorphism

2.1. Pontryagin duality. Let G be a locally compact Abelian topological group. We
write Ĝ for the set of continuous homomorphisms from G to the circle U(1) = {z ∈ C :
|z| = 1}. This is a group with pointwise multiplication. We call Ĝ the Pontryagin dual
of G. When we equip Ĝ with the compact-open topology it becomes a locally compact
Abelian topological group. The dual of the dual of G is canonically isomorphic to G.

A continuous endomorphism f : G → G gives rise to a continuous endomorphism
f̂ : Ĝ→ Ĝ defined by

f̂(χ) := χ ◦ f.
There is a 1-1 correspondence between the closed subgroups H of G and the quotient
groups Ĝ/H∗ of Ĝ for which H∗ is closed in Ĝ. This correspondence is given by the
following:

H ↔ Ĝ/H∗, H∗ := {χ ∈ Ĝ | H ⊂ kerχ}.
Under this correspondence, Ĝ/H∗ is canonically isomorphic to the Pontryagin dual of H.
If we identify G canonically with the dual of Ĝ then we have H∗∗ = H. If G is a finitely
generated Abelian group then a homomorphism χ : G→ U(1) is completely determined
by its values on a basis of G, and these values may be chosen arbitrarily. The dual of G
is thus a torus whose dimension is equal to the rank of G.

If G = Z/nZ then the elements of Ĝ are of the form x → e2πiyx/n with y ∈
{1, 2, . . . , n}. A cyclic group is therefore (non-canonically) isomorphic to itself.

The dual of G1⊕G2 is canonically isomorphic to Ĝ1⊕ Ĝ2. From this we see that any
finite Abelian group is (non-canonically) isomorphic to its own Pontryagin dual group,
and that the dual of any finitely generated discrete Abelian group is the direct sum of a
torus and a finite group.

Proofs of all these statements may be found for example in [43]. We shall need the
following statement:

Proposition 1. Let φ : G → G be an endomorphism of an Abelian group G. Then
the kernel ker[φ̂ : Ĝ→ Ĝ] is canonically isomorphic to the Pontryagin dual of Cokerφ.

Proof. We construct the isomorphism explicitly. Let χ be in the dual of Coker(φ :
G→ G). In that case χ is a homomorphism χ : G/ Im(φ)→ U(1). There is therefore an
induced map χ : G→ U(1) which is trivial on Im(φ). This means that χ ◦ φ is trivial, or
in other words φ̂(χ) is the identity element of Ĝ. We therefore have χ ∈ ker(φ̂).

If on the other hand we begin with χ ∈ ker(φ̂), then it follows that χ is trivial on
Imφ, and so χ induces a homomorphism χ : G/ Im(φ)→ U(1) and χ is then in the dual
of Cokerφ. The correspondence χ↔ χ is clearly a bijection.

2.2. Irreducible representations and the unitary dual of G. Let V be a Hilbert space.
A unitary representation of G on V is a homomorphism ρ : G→ U(V ) where U(V ) is the
group of unitary transformations of V . Two of these ρ1 : G→ U(V1) and ρ2 : G→ U(V2)
are said to be equivalent if there is a Hilbert space isomorphism V1

∼= V2 which commutes
with the G-actions. A representation ρ : G→ U(V ) is said to be irreducible if there is no
decomposition V ∼= V1 ⊕ V2 in which V1 and V2 are non-zero, closed G-submodules of V .
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One defines the unitary dual Ĝ of G to be the set of all equivalence classes of irre-
ducible, unitary representations of G.

If ρ : G → U(V ) is a representation then ρ ◦ φ : G → U(V ) is also a representation,
which we shall denote φ̂(ρ). If ρ1 and ρ2 are equivalent then φ̂(ρ1) and φ̂(ρ2) are equivalent.
Therefore the endomorphism φ induces a map φ̂ : Ĝ→ Ĝ from the unitary dual to itself.

Definition 1. Define the number # Fix(φ̂) to be the number of fixed points of the
induced map φ̂ : Ĝ→ Ĝ. We shall write S(φ) for the set of fixed points of φ̂. Thus S(φ)
is the set of equivalence classes of irreducible representations ρ : G → U(V ) such that
there is a transformation M ∈ U(V ) satisfying

∀x ∈ G, ρ(φ(x)) = M · ρ(x) ·M−1.(1)

Note that if φ is an inner automorphism x 7→ gxg−1 then we have for any represen-
tation ρ,

ρ(φ(x)) = ρ(g) · ρ(x) · ρ(g)−1,

implying that the class of ρ is fixed by the induced map. Thus for an inner automorphism
the induced map is trivial and # Fix(φ̂) is the cardinality of Ĝ. When G is Abelian the
group Ĝ is the Pontryagin dual of G.

2.3. Eventually commutative endomorphisms. An endomorphism φ : G → G is said
to be eventually commutative if there exists a natural number n such that the subgroup
φn(G) is commutative. If φ is an endomorphism of an Abelian group G then x and y are
φ-conjugate iff x− y = φ(g)− g for some g ∈ G. Therefore R(φ) is the number of cosets
of the image of the endomorphism (φ− 1) : G→ G. Then

R(φ) = # Coker(1− φ)

We are now ready to compare the Reidemeister number of an endomorphism φ with the
Reidemeister number of H1(φ) : H1(G) → H1(G), where H1 = HGp

1 is the first integral
homology functor from groups to Abelian groups.

Lemma 1 ([28]). If φ : G→ G is eventually commutative, then

R(φ) = R(H1(φ) = # Coker(1−H1(φ)).

This means that to find out about the Reidemeister numbers of eventually commuta-
tive endomorphisms, it is sufficient to study the Reidemeister numbers of endomorphisms
of Abelian groups. For the rest of this section G will be a finitely generated Abelian group.

Lemma 2 ([15]). Let φ : Zk → Zk be a group endomorphism. Then

R(φ) = (−1)r+p
k∑
i=0

(−1)i Tr(Λiφ)(2)

where p the number of µ ∈ Specφ such that µ < −1, and r the number of real eigenvalues
of φ whose absolute value is > 1. Λi denotes the exterior power.

Now let φ be an endomorphism of a finite Abelian group G. Let V be the complex
vector space of complex valued functions on the group G. The map φ induces a linear
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map A : V → V defined by

A(f) := f ◦ φ.

Lemma 3. Let φ : G→ G be an endomorphism of a finite Abelian group G. Then

R(φ) = TrA.(3)

We give two proofs of this lemma in this article. The first proof is given here and the
second proof is a special case of the proof of theorem 4.

Proof. The characteristic functions of the elements of G form a basis of V , and are
mapped to one another by A (the map need not be a bijection). Therefore the trace of
A is the number of elements of this basis which are fixed by A. On the other hand, since
G is Abelian, we have

R(φ) = # Coker(1− φ) = #G/# Im(1− φ) = #G/#(G/ ker(1− φ))

= #G/(#G/# ker(1− φ)) = # ker(1− φ) = # Fix(φ).

We therefore have R(φ) = # Fix(φ) = TrA.

For a finitely generated Abelian group G we define the finite subgroup Gfinite to be
the subgroup of torsion elements of G. We denote the quotient G∞ := G/Gfinite. The
group G∞ is torsion free. Since the image of any torsion element by a homomorphism
must be a torsion element, the endomorphism φ : G→ G induces endomorphisms

φfinite : Gfinite −→ Gfinite, φ∞ : G∞ −→ G∞.

As above, the map φfinite induces a linear map A : V → V , where V is the complex
vector space of complex valued functions on the group Gfinite.

Theorem 1. If G is a finitely generated Abelian group and φ an endomorphism of
G, then

R(φ) = (−1)r+p
k∑
i=0

(−1)i Tr(Λiφ∞ ⊗A)(4)

where k is rgG∞, p the number of µ ∈ Specφ∞ such that µ < −1, and r the number of
real eigenvalues of φ∞ whose absolute value is > 1.

Proof. By proposition 1, the cokernel of (1− φ) : G → G is the Pontryagin dual of
the kernel of the dual map ̂(1− φ) : Ĝ→ Ĝ. Since Coker(1− φ) is finite, we have

# Coker(1− φ) = # ker ̂(1− φ)

The map ̂1− φ is equal to 1̂ − φ̂. Its kernel is thus the set of fixed points of the map
φ̂ : Ĝ→ Ĝ. We therefore have

R(φ) = # Fix(φ̂ : Ĝ→ Ĝ).(5)

The dual group of G∞ is a torus whose dimension is the rank of G. This is canonically a
closed subgroup of Ĝ. We shall denote it Ĝ0. The quotient Ĝ/Ĝ0 is canonically isomorphic
to the dual of Gfinite. It is therefore finite. From this we know that Ĝ is a union of finitely
many disjoint tori. We shall call these tori Ĝ0, . . . , Ĝt.
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We shall call a torus Ĝi periodic if there is an iteration φ̂s such that φ̂s(Ĝi) ⊂ Ĝi. If
this is the case, then the map φ̂s : Ĝi → Ĝi is a translation of the map φ̂s : Ĝ0 → Ĝ0 and
has the same number of fixed points as this map. If φ̂s(Ĝi) 6⊂ Ĝi then φ̂s has no fixed
points in Ĝi. From this we see

# Fix(φ̂ : Ĝ→ Ĝ) = # Fix(φ̂ : Ĝ0 → Ĝ0)×#{Ĝi | φ̂(Ĝi) ⊂ Ĝi}.

We now rephrase this

# Fix(φ̂ : Ĝ→ Ĝ) = # Fix(φ̂∞ : Ĝ0 → Ĝ0)×# Fix( ̂φfinite : Ĝ/(Ĝ0)→ Ĝ/(Ĝ0)).

From this we have the product formula for Reidemeister numbers

R(φ) = R(φ∞) ·R(φfinite).

The trace formula for R(φ) follows from the previous two lemmas and the formula

Tr(Λiφ∞) · Tr(A) = Tr(Λiφ∞ ⊗A).

In the paper [17] we have connected the Reidemeister number of an endomorphism
φ with the Lefschetz number of the dual map. From this we have the following trace
formula:

Theorem 2 ([17]). Let φ : G→ G be an endomorphism of a finitely generated Abelian
group. Then

R(φ) = |L(φ̂)| = (−1)r+p
dim Ĝ∑
k=0

(−1)k Tr[φ̂∗k : Hk(Ĝ; Q)→ Hk(Ĝ; Q)](6)

where φ̂ is the continuous endomorphism of Ĝ defined in §2.2 and L(φ̂) is the Lefschetz
number of φ̂ thought of as a self-map of the topological space Ĝ and r and p are the
constants described in theorem 1. If G is finite then this reduces to

R(φ) = L(φ̂) = Tr[φ̂∗0 : H0(Ĝ; Q)→ H0(Ĝ; Q)].

2.4. Endomorphisms of finite groups. In this section we consider finite non-Abelian
groups. We shall write the group law multiplicatively. We generalize our results on en-
domorphisms of finite Abelian groups to endomorphisms of finite non-Abelian groups.
We shall write {g} for the φ-conjugacy class of an element g ∈ G. We shall write 〈g〉 for
the ordinary conjugacy class of g in G. We first note that if φ is an endomorphism of a
group G then φ maps conjugate elements to conjugate elements. It therefore induces an
endomorphism of the set of conjugacy classes of elements of G. If G is Abelian then a
conjugacy class of element consists of a single element. The following is thus an extension
of lemma 3:

Theorem 3 ([16]). Let G be a finite group and let φ : G → G be an endomorphism.
Then R(φ) is the number of ordinary conjugacy classes 〈x〉 in G such that

〈φ(x)〉 = 〈x〉.

So, we have proved that the number of congruence classes in G which are mapped to
themselves by φ is precisely the Reidemeister number R(φ).
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Corollary 1. Suppose that φ1 and φ2 are two endomorphisms of a finite group G

with

∀g ∈ G, φ1(g) = hφ2(g)h−1

for some fixed element h ∈ G. Then R(φ1) = R(φ2).

Corollary 2. Let φ be an inner automorphism. Then R(φ) = b where b is the num-
ber of conjugacy classes in the group. In particular, all but finitely many of the symmetric
and alternating groups have the property that any automorphism is an inner automor-
phism, and so this corollary applies.

Remark 1. If we think of the set of conjugacy classes in G as a discrete set then the
Reidemeister number of φ is equal to the Lefschetz number of the induced map on the
conjugacy classes.

Let W be the complex vector space of complex valued class functions on the group
G. A class function is a function which takes the same value on every element of a usual
congruence class. The map φ induces a linear map B : W →W defined by

B(f) := f ◦ φ.

Theorem 4. Let φ : G→ G be an endomorphism of a finite group G. Then

R(φ) = # Fix(φ̂) = TrB.(7)

Proof. We shall calculate the trace of B in two ways. The characteristic functions of
the congruence classes in G form a basis of W , and are mapped to one another by B (the
map need not be a bijection). Therefore the trace of B is the number of elements of this
basis which are fixed by B. By theorem 3, this is equal to the Reidemeister number of φ.
Another basis of W , which is also mapped to itself by B, is the set of traces of irreducible
representations of G (see [31] chapter XVIII). From this it follows that the trace of B is
the number of irreducible representations ρ of G such that ρ has the same trace as φ̂(ρ).
However, representations of finite groups are characterized up to equivalence by their
traces. Therefore the trace of B is equal to the number of fixed points of φ̂.

Remark 2. By specialising to the case when G is finite and φ is the identity map, we
obtain the classical Burnside theorem equating the number of irreducible representations
of a finite group with the number of conjugacy classes of the group.

2.5. Endomorphisms of the direct sum of a free Abelian and a finite group. In this
section let F be a finite group and r a natural number. The group G will be

G = Zr ⊕ F.

We shall describe the Reidemeister numbers of an endomorphism φ : G → G. The
torsion elements of G are exactly the elements of the finite, normal subgroup F . For this
reason we have φ(F ) ⊂ F . Let φfinite : F → F be the restriction of φ to F , and let
φ∞ : G/F → G/F be the induced map on the quotient group.

Let prZr : G → Zr and prF : G → F be the projections onto Zr and F . Then the
composition

prZr ◦φ : Zr → G→ Zr
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is an endomorphism of Zr, which is given by some matrix M ∈ Mr(Z). We denote by
ψ : Zr → F the other component of the restriction of φ to Zr, i.e.

ψ(v) = prF (φ(v)).

We therefore have for any element (v, f) ∈ G

φ(v, f) = (M · v, ψ(v)φ(f)).

Lemma 4. Let g1 = (v1, f1) and g2 = (v2, f2) be two elements of G. Then g1 and g2

are φ-conjugate iff

v1 ≡ v2 mod (1−M)Zr

and there is an h ∈ F with

hf1 = f2φ((1−M)−1(v2 − v1))φ(h).

Proof. Suppose g1 and g2 are φ-conjugate. Then there is a g3 = (w, h) ∈ G with
g3g1 = g2φ(g3). Therefore

(w + v1, hf1) = (v2 +M · w, f2ψ(w)φ(h)).

Comparing the first components we obtain (1 −M) · w = v2 − v1 from which it follows
that v1 is congruent to v2 modulo (1−M)Zr. Substituting (1−M)−1(v2 − v1) for w in
the second component we obtain the second relation in the lemma. The argument can
easily be reversed to give the converse.

Proposition 2. In the notation described above

R(φ) = R(φfinite)×R(φ∞).

Proof. We partition the set R(φ) of φ-conjugacy classes of elements of G into smaller
sets:

R(φ) =
⋃

v∈Zr/(1−M)Zr

R(v)

where R(v) is the set of φ-conjugacy classes {(w, f)}φ for which w is congruent to v

modulo (1 − M)Zr. It follows from the previous lemma that this is a partition. Now
suppose {(w, f)}φ ∈ R(v). We will show that {(w, f)}φ = {(v, f∗)}φ for some f∗ ∈ F .
This follows by setting f∗ = fψ((1 −M)−1(w − v)) and applying the previous lemma
with h = id. Therefore R(v) is the set of φ-conjugacy classes {(v, f)}φ with f ∈ F . From
the previous lemma it follows that (v, f1) and (v, f2) are φ-conjugate iff there is an h ∈ F
with

hf1 = f2ψ(0)φ(h) = f2φ(h).

This just means that f1 and f2 are φfinite-conjugate as elements of F . From this it follows
that R(v) has cardinality R(φfinite). Since this is independent of v, we have

R(φ) =
∑
v

R(φfinite) = |det(1−M)| ×R(φfinite).

Now consider the map φ∞ : G/F → G/F . We have

φ∞((v, F )) = (M · v, ψ(v)F ) = (M · v, F ).
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From this it follows that φ∞ is isomorphic to map M : Zr → Zr. This implies

R(φ∞) = R(M : Zr → Zr)

but it is known [16] that R(M : Zr → Zr) = |det(1−M)|. Therefore R(φ) = R(φfinite)×
R(φ∞), proving proposition 3.

Let W be the complex vector space of complex valued class functions on the group
F . The map φ induces a linear map B : W →W defined as above in theorem 4.

Theorem 5. If G is the direct sum of a free Abelian and a finite group and φ an
endomorphism of G, then

R(φ) = (−1)r+p
k∑
i=0

(−1)i Tr(Λiφ∞ ⊗B).(8)

where k is rg(G/F ), p the number of µ ∈ Specφ∞ such that µ < −1, and r the number
of real eigenvalues of φ∞ whose absolute value is > 1.

Proof. This follows from lemma 2 and theorem 4, proposition 2 and the formula

Tr(Λiφ∞) · Tr(B) = Tr(Λiφ∞ ⊗B).

2.6. Endomorphisms of nilpotent groups. In this section we consider finitely generated
torsion free nilpotent groups Γ. It is well known [33] that such a group Γ is a uniform
discrete subgroup of a simply connected nilpotent Lie group G (uniform means that the
coset space G/Γ is compact). The coset space M = G/Γ is called a nilmanifold . Since
Γ = π1(M) and M is a K(Γ, 1), every endomorphism φ : Γ → Γ can be realized by
a self-map f : M → M such that f∗ = φ and thus R(f) = R(φ). Any endomorphism
φ : Γ→ Γ can be uniquely extended to an endomorphism F : G→ G. Let F̃ : G̃→ G̃ be
the corresponding Lie algebra endomorphism induced from F .

Theorem 6. If Γ is a finitely generated torsion free nilpotent group and φ an endo-
morphism of Γ, then

R(φ) = (−1)r+p
m∑
i=0

(−1)i Tr ΛiF̃ ,(9)

where m is rg Γ = dimM , p the number of µ ∈ Spec F̃ such that µ < −1, and r the
number of real eigenvalues of F̃ whose absolute value is > 1.

Proof. Let f : M → M be a map realizing φ on a compact nilmanifold M of
dimension m. We suppose in this article that the Reidemeister number R(f) = R(φ)
is finite. The finiteness of R(f) implies the nonvanishing of the Lefschetz number L(f)
[18]. A strengthened version of Anosov’s theorem [1] is proven in [38] which states, in
particular, that if L(f) 6= 0 then N(f) = |L(f)| = R(f). It is well known that L(f) =
det(F̃ − 1) [1]. From this we have

R(φ) = R(f) = |L(f)| = |det(1− F̃ )| = (−1)r+p det(1− F̃ ) = (−1)r+p
m∑
i=0

(−1)i Tr ΛiF̃ .
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2.7. The trace formulas and group extensions. Suppose we are given a commutative
diagram

G
φ−→ G

↓ p ↓ p

G
φ−→ G

(10)

of groups and homomorphisms. In addition let the sequence

0→ H → G
p→ G→ 0(11)

be exact. Then φ restricts to an endomorphism φ|H : H → H.

Definition 2. The short exact sequence (11) of groups is said to have a normal
splitting if there is a section σ : G→ G of p such that Imσ = σ(G) is a normal subgroup
of G. An endomorphism φ : G→ G is said to preserve this normal splitting if φ induces
a morphism of (11) with φ(σ(G)) ⊂ σ(G).

In this section we study the relation between the trace formulas of type (8) for Rei-
demeister numbers R(φ), R(φ) and R(φ|H).

Theorem 7. Let the sequence (11) have a normal splitting which is preserved by
φ : G→ G. If we have trace formulas of the type (8) for R(φ) and R(φ|H) then we have
a trace formula of the same type for R(φ).

Proof. From the assumptions of the theorem it follows that R(φ) = R(φ)·R(φ|H) (see
[27]). The trace formula for R(φ) now follows from the linear algebra formula TrA·TrB =
TrA⊗B.

Direct sums. If G = G1 ⊕ G2 is a direct sum and if φ(Gi) ⊂ Gi for i = 1, 2 then it
has been shown (see [27]) that R(φ) = R(φ1) · R(φ2) where φi is the restriction of φ to
Gi. So if we have a trace formula of type (8) for R(φ1) and R(φ2) then we have a trace
formula for R(φ).

3. Trace formulas for Reidemeisters numbers of a continuous map. Let f :
X → X be given, and let a specific lifting f̃ : X̃ → X̃ be chosen as reference. Let Γ be
the group of covering translations of X̃ over X. Then every lifting of f can be written
uniquely as γ◦ f̃ , with γ ∈ Γ. So elements of Γ serve as coordinates of liftings with respect
to the reference f̃ . Now for every γ ∈ Γ the composition f̃ ◦ γ is a lifting of f so there is
a unique γ′ ∈ Γ such that γ′ ◦ f̃ = f̃ ◦ γ. This correspondence γ → γ′ is determined by
the reference f̃ , and is obviously a homomorphism.

Definition 3. The endomorphism f̃∗ : Γ → Γ determined by the lifting f̃ of f is
defined by

f̃∗(γ) ◦ f̃ = f̃ ◦ γ.

It is well known that Γ ∼= π1(X). We shall identify π = π1(X,x0) and Γ in the
following way. Pick base points x0 ∈ X and x̃0 ∈ p−1(x0) ⊂ X̃ once for all. Now points
of X̃ are in 1-1 correspondence with homotopy classes of paths in X which start at x0:
for x̃ ∈ X̃ take any path in X̃ from x̃0 to x̃ and project it onto X; conversely for a path
c starting at x0, lift it to a path in X̃ which starts at x̃0, and then take its endpoint. In
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this way, we identify a point of X̃ with a path class 〈c〉 in X starting from x0. Under
this identification, x̃0 = 〈e〉 is the unit element in π1(X,x0). The action of the loop class
α = 〈a〉 ∈ π1(X,x0) on X̃ is then given by

α = 〈a〉 : 〈c〉 → α.c = 〈a.c〉.

Now we have the following relationship between f̃∗ : π → π and

f∗ : π1(X,x0)→ π1(X, f(x0)).

Lemma 5. Suppose f̃(x̃0) = 〈w〉. Then the following diagram commutes:

π1(X,x0)
f∗−→ π1(X, f(x0))

f̃∗ ↘ ↓ w∗
π1(X,x0)

where w∗ is the isomorphism induced by the path w.

In other words, for every α = 〈a〉 ∈ π1(X,x0), we have f̃∗(〈a〉) = 〈w(f ◦ a)w−1〉.

Remark 3. In particular, if x0 ∈ p(Fix(f̃) and x̃0 ∈ Fix(f̃), then f̃∗ = f∗.

Lemma 6. Lifting classes of f are in 1-1 correspondence with f̃∗-conjugacy classes in
π, the lifting class [γ ◦ f̃ ] corresponding to the f̃∗-conjugacy class of γ. We therefore have
R(f) = R(f̃∗).

We shall say that the fixed point class p(Fix(γ ◦ f̃)), which is labeled with the lifting
class [γ ◦ f̃ ], corresponds to the f̃∗-conjugacy class of γ. Thus f̃∗-conjugacy classes in π

serve as coordinates for fixed point classes of f , once a reference lifting f̃ is chosen.
Let us consider a homomorphism from π sending an f̃∗-conjugacy class to one element:

Lemma 7 ([28]). The composition η ◦ θ,

π = π1(X,x0) θ−→ H1(X)
η−→ Coker[H1(X)

1−f1∗−→ H1(X)],

where θ is abelianization and η is the natural projection, sends every f̃∗-conjugacy class
to a single element. Moreover, any group homomorphism ζ : π → G which sends every
f̃∗-conjugacy class to a single element factors through η ◦ θ.

Definition 4. A map f : X → X is said to be eventually commutative if there exists
a natural number n such that fn∗ (π1(X,x0)) (⊂ π1(X, fn(x0))) is commutative.

By means of lemma 5, it is easily seen that f is eventually commutative iff f̃∗ is
eventually commutative (see [28]).

Now using lemma 6 we may apply all theorems of §1 to the Reidemeister numbers of
continuous maps.

3.1. Trace formulas and Serre bundles. For example, let us consider a topological
counterpart of theorem 7.

Let p : E → B be a Serre bundle in which E, B and every fibre are connected,
compact polyhedra and Fb = p−1(b) is a fibre over b ∈ B. A Serre bundle p : E → B

is said to be (homotopically) orientable if for any two paths w, w′ in B with the same
endpoints w(0) = w′(0) and w(1) = w′(1), the fibre translations τw, τw′ : Fw(0) → Fw(1)

are homotopic. A map f : E → E is called a fibre map if there is an induced map
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f̄ : B → B such that p ◦ f = f̄ ◦ p. Let p : E → B be an orientable Serre bundle and
let f : E → E be a fibre map. Then for any two fixed points b, b′ of f̄ : B → B the
maps fb = f |Fb

and fb′ = f |Fb′ have the same homotopy type; hence they have the same
Reidemeister numbers R(fb) = R(fb′) [28].

Theorem 8. Suppose that f : E → E admits a Fadell splitting in the sense that for
some e in Fix f and b = p(e) the following conditions are satisfied:

1. the sequence

0→ π1(Fb, e)
i∗−→ π1(E, e)

p∗−→ π1(B, e)→ 0

is exact,
2. p∗ admits a right inverse (section) σ such that Imσ is a normal subgroup of π1(E, e)

and f∗(Imσ) ⊂ Imσ.

If we have trace formulas of the type (8) for R(f̄) and R(fb) then we have a trace formula
of the same type for R(f).

4. Trace formulas for the Nielsen numbers

4.1. The Jiang subgroup and trace formula. From the homotopy invariance theorem
(see [28]) it follows that if a homotopy {ht} : f ∼= g : X → X lifts to a homotopy
{h̃t} : f̃ ∼= g̃ : X̃ → X̃, then we have Index(f, p(Fix f̃)) = Index(g, p(Fix g̃)). Suppose
{ht} is a cyclic homotopy {ht} : f ∼= f ; then this lifts to a homotopy from a given lifting
f̃ to another lifting f̃ ′ = α ◦ f̃ , and we have

Index(f, p(Fix f̃)) = Index(f, p(Fixα ◦ f̃)).

In other words, a cyclic homotopy induces a permutation of lifting classes (and hence of
fixed point classes); those in the same orbit of this permutation have the same index.
This idea is applied to the computation of N(f).

Definition 5. The trace subgroup of cyclic homotopies (the Jiang subgroup) I(f̃) ⊂ π
is defined by

I(f̃) =

α ∈ π
∣∣∣∣∣
there exists a cyclic homotopy
{ht} : f ∼= f which lifts to
{h̃t} : f̃ ∼= α ◦ f̃


(see [28]).

Let Z(G) denote the centre of a group G, and let Z(K,G) denote the centralizer of the
subgroup K ⊂ G. The Jiang subgroup has the following properties: 1. I(f̃) ⊂ Z(f̃∗(π), π);
2. I(idX̃) ⊂ Z(π); 3. I(g̃) ⊂ I(g̃ ◦ f̃); 4. g̃∗(I(f̃)) ⊂ I(g̃ ◦ f̃); 5. I(idX̃) ⊂ I(f̃).

The class of path-connected spaces X satisfying the condition I(idX̃) = π = π1(X,x0)
is closed under homotopy equivalence and the topological product operation, and contains
the simply connected spaces, generalized lens spaces, H-spaces and homogeneous spaces
of the form G/G0 where G is a topological group and G0 a subgroup which is a connected,
compact Lie group (for the proofs see [28]).

From theorem 1 and results of Jiang [28] it follows:
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Theorem 9. Suppose that there is an integer m such that f̃m∗ (π) ⊂ I(f̃m) and L(f) 6=
0. Then

N(f) = R(f) = (−1)r+p
k∑
i=0

(−1)i Tr(Λif1∗
∞ ⊗A).(12)

where k is rgH1(X,Z)∞, A is linear map on the complex vector space of complex valued
functions on the group TorsH1(X,Z), p the number of µ ∈ Spec f∞1∗ such that µ < −1,
and r the number of real eigenvalues of f∞1∗ whose absolute value is > 1.

Proof. We have f̃∗(π) ⊂ I(f̃) (see [28]). For any α ∈ π, p(Fixα◦ f̃) = p(Fix f̃∗(α)◦ f̃)
by the fact (see [28]) that α and f̃∗(α) are in the same f̃∗-conjugacy class.

Since f̃∗(π) ⊂ I(f̃), there is a homotopy {ht} : f ∼= f which lifts to {h̃t} : f̃ ∼= f̃∗(α)◦f̃ .
Hence Index(f, p(Fix f̃)) = Index(f, p(Fixα ◦ f̃)). Since α ∈ π is arbitrary, any two fixed
point classes of f have the same index. It immediately follows that L(f) = 0 implies
N(f) = 0 and L(f) 6= 0 implies N(f) = R(f). By property 1, f̃(π) ⊂ I(f̃) ⊂ Z(f̃∗(π), π),
so f̃∗(π) is Abelian. Hence f̃∗ is eventually commutative and N(f) = R(f) = R(f̃∗) =
R(f1∗). The result now follows from theorem 1.

Example 1. Let f : X → X be a hyperbolic endomorphism of the torus T k. Then
H1(X,Z) is torsion free and

N(f) = R(f) = (−1)r+p
k∑
i=0

(−1)i Tr(Λif1∗).(13)

4.2. Polyhedra with finite fundamental group. For a compact polyhedron X with finite
fundamental group, π1(X), the universal cover X̃ is compact, so we may explore the
relation between L(f̃) and Index(p(Fix f̃)).

Definition 6. The number µ([f̃ ]) = # Fix f̃∗, defined to be the order of the finite
group Fix f̃∗, is called the multiplicity of the lifting class [f̃ ], or of the fixed point class
p(Fix f̃).

Lemma 8 ([28]).

L(f̃) = µ([f̃ ]) · Index(f, p(Fix f̃)).

Let W be the complex vector space of complex valued class functions on the funda-
mental group π. The map f̃∗ induces a linear map B : W →W defined by

B(f) := f ◦ f̃∗.

Theorem 10. Let X be a connected, compact polyhedron with finite fundamental
group π. Suppose that the action of π on the rational homology of the universal cover
X̃ is trival, i.e. for every covering translation α ∈ π, α∗ = id : H∗(X̃,Q) → H∗(X̃,Q).
Let L(f) 6= 0. Then

N(f) = R(f) = TrB.(14)

Proof. Under our assumption on X, any two liftings f̃ and α ◦ f̃ induce the same
homology homomorphism H∗(X̃,Q)→ H∗(X̃,Q), and have thus the same value of L(f̃).
From lemma 8 it follows that any two fixed point classes f are either both essential or
both inessential. Since L(f) 6= 0 there is at least one essential fixed point class of f .



92 A. L. FEL’SHTYN AND R. HILL

Therefore all fixed point classes of f are essential and N(f) = R(f). The formula for
N(f) follows now from theorem 4.

Lemma 9. Let X be a polyhedron with finite fundamental group π and let p : X̃ → X

be its universal covering. Then the action of π on the rational homology of X̃ is trivial
iff H∗(X̃; Q) ∼= H∗(X; Q).

Corollary 3. Let X̃ be a compact 1-connected polyhedron which is a rational homol-
ogy n-sphere, where n is odd. Let π be a finite group acting freely on X̃ and let X = X̃/π.
Then theorem 10 applies.

Proof. The projection p : X̃ → X = X̃/π is a universal covering space of X. For
every α ∈ π, the degree of α : X̃ → X̃ must be 1, because L(α) = 0 (α has no fixed
points). Hence α∗ = id : H∗(X̃; Q)→ H∗(X̃; Q).

Corollary 4. If X is a closed 3-manifold with finite π, then theorem 10 applies.

Proof. X̃ is an orientable, simply connected manifold, hence a homology 3-sphere.
We apply corollary 3.

Corollary 5. Let X = L(m, q1, . . . , qr) be a generalized lens space and f : X → X

a continuous map with f1∗(1) = d where d 6= 1. Then theorem 10 applies.

Proof. By corollary 1 we see that theorem 10 applies for lens spaces. Since π1(X) =
Z/mZ, the map f is eventually commutative. A lens space has the structure of a CW
complex with one cell ei in each dimension 0 ≤ i ≤ 2l+ 1. The boundary map is given by
∂e2k = m.e2k−1 for even cells, and ∂e2k+1 = 0 for odd cells. From this we may calculate
the Lefschetz numbers: L(f) = 1− d(l+1) 6= 0.

4.3. Other special cases

4.3.1. Self-map of a nilmanifold. Theorem 6 implies

Theorem 11. Let f be any continuous map of a nilmanifold M to itself. If R(f) is
finite then

N(f) = R(f) = (−1)r+p
m∑
i=0

(−1)i Tr ΛiF̃ ,(15)

where F̃ , m, r, and p are the same as in theorem 6.

4.3.2. Pseudo-Anosov homeomorphisms of a compact surface. Let X be a compact
surface of negative Euler characteristic and f : X → X is a pseudo-Anosov homeomor-
phism, i.e. there is a number λ > 1 and a pair of transverse measured foliations (F s, µs)
and (Fu, µu) such that f(F s, µs) = (F s, 1

λµ
s) and f(Fu, µu) = (Fu, λµu). Fathi and

Shub [10] has proved the existence of Markov partitions for a pseudo-Anosov homeomor-
phism. The existence of Markov partitions implies that there is a symbolic dynamics for
(X, f). This means that there is a finite set N , a matrix A = (aij)(i,j)∈N×N with entries
0 or 1 and a surjective map p : Ω→ X, where

Ω = {(xn)n∈Z : axnxn+1 = 1, n ∈ Z}
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such that p ◦ σ = f ◦ p where σ is the shift (to the left) of the sequence (xn) of symbols.
We have first [5]:

# Fixσn = TrAn.

In general p is not bijective. The non-injectivity of p is due to the fact that the rectangles
of the Markov partition can meet on their boundaries. To cancel the overcounting of
periodic points on these boundaries, we use Manning’s combinatorial arguments [34]
proposed in the case of Axiom A diffeomorphisms (see also [39]). Namely, we construct
finitely many subshifts of finite type σi, i = 0, 1, . . . ,m, such that σ0 = σ, the other shifts
semi-conjugate with restrictions of f [39], and signs εi ∈ {−1, 1} such that for each n

# Fix fn =
m∑
i=0

εi ·# Fixσni =
m∑
i=0

εi · TrAni ,

where Ai is the transition matrix corresponding to the subshift of finite type σi. For a
pseudo-Anosov homeomorphism of a compact surface N(fn) = # Fix(fn) for each n > 0
[47]. So we have following trace formula for Nielsen numbers:

Theorem 12. Let X be a compact surface of negative Euler characteristic and f :
X → X a pseudo-Anosov homeomorphism. Then

N(fn) =
m∑
i=0

εi · TrAni .

4.3.3. Homeomorphisms of hyperbolic 3-manifolds

Theorem 13 ([30]). Suppose M is an orientable compact connected 3-manifold such
that intM admits a complete hyperbolic structure with finite volume and f : M → M is
an orientation preserving homeomorphism. Then

N(f) = L(f) =
dimM∑
k=0

(−1)k Tr[f∗k : Hk(X; Q)→ Hk(X; Q)].

5. The Reidemeister trace formula for generalized Lefschetz numbers. The
results of this section are well known (see [41], [48], [9], [29]). We shall use them later to
estimate the radius of convergence of the Nielsen zeta function. The fundamental group
π = π1(X,x0) splits into f̃∗-conjugacy classes. Let πf denote the set of f̃∗-conjugacy
classes, and Zπf denote the Abelian group freely generated by πf . We will use the bracket
notation a → [a] for both projections π → πf and Zπ → Zπf . Let x be a fixed point
of f . Take a path c from x0 to x. The f̃∗-conjugacy class in π of the loop c · (f ◦ c)−1,
which is evidently independent of the choice of c, is called the coordinate of x. Two
fixed points are in the same fixed point class F iff they have the same coordinates. This
f̃∗-conjugacy class is thus called the coordinate of the fixed point class F and denoted
cdπ(F, f) (compare with description in section 2). The generalized Lefschetz number or
the Reidemeister trace [41] is defined as

Lπ(f) :=
∑
F

ind(F, f) · cdπ(F, f) ∈ Zπf ,(16)
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the summation being over all essential fixed point classes Fof f . The Nielsen number
N(f) is the number of non-zero terms in Lπ(f), and the indices of the essential fixed
point classes appear as the coefficients in Lπ(f). This invariant used to be called the
Reidemeister trace because it can be computed as an alternating sum of traces on the
chain level as follows ([41], [48]). Assume that X is a finite cell complex and f : X → X

is a cellular map. A cellular decomposition edj of X lifts to a π-invariant cellular structure
on the universal covering X̃. Choose an arbitrary lift ẽdj for each edj . They constitute a
free Zπ-basis for the cellular chain complex of X̃. The lift f̃ of f is also a cellular map.
In every dimension d, the cellular chain map f̃ gives rise to a Zπ-matrix F̃d with respect
to the above basis, i.e. F̃d = (aij) if f̃(ẽdi ) =

∑
j aij ẽ

d
j , where aij ∈ Zπ. Then we have the

Reidemeister trace formula

Lπ(f) =
∑
d

(−1)d[Tr F̃d] ∈ Zπf .(17)

5.1. The mapping torus approach to the Reidemeister trace formula. Now we describe
an alternative approach to the Reidemeister trace formula proposed recently by Jiang [29].
This approach is useful when we study the periodic points of f , i.e. the fixed points of
the iterates of f .

The mapping torus Tf of f : X → X is the space obtained from X × [0,∞) by
identifying (x, s+1) with (f(x), s) for all x ∈ X, s ∈ [0,∞). On Tf there is a natural semi-
flow φ : Tf×[0,∞)→ Tf , φt(x, s) = (x, s+t) for all t ≥ 0. Then the map f : X → X is the
return map of the semi-flow φ. A point x ∈ X and a positive number τ > 0 determine the
orbit curve φ(x,τ) := φt(x)0≤t≤τ in Tf . Take the base point x0 of X as the base point of Tf .
It is known that the fundamental group H := π1(Tf , x0) is obtained from π by adding a
new generator z and adding the relations z−1gz = f̃∗(g) for all g ∈ π = π1(X,x0). Let Hc

denote the set of conjugacy classes in H. Let ZH be the integral group ring of H, and let
ZHc be the free Abelian group with basis Hc. We again use the bracket notation a→ [a]
for both projections H → Hc and ZH → ZHc. If Fn is a fixed point class of fn, then
f(Fn) is also fixed point class of fn and ind(f(Fn), fn) = ind(Fn, fn). Thus f acts as an
index-preserving permutation among fixed point classes of fn. By definition, an n-orbit
class On of f is the union of elements of an orbit of this action. In other words, two points
x, x′ ∈ Fix(fn) are said to be in the same n-orbit class of f if and only if some f i(x) and
some f j(x′) are in the same fixed point class of fn. The set Fix(fn) splits into a disjoint
union of n-orbit classes. A point x is a fixed point of fn or a periodic point of period n

if and only if orbit curve φ(x,n) is a closed curve. The free homotopy class of the closed
curve φ(x,n) will be called the H-coordinate of x, written cdH(x, n) = [φ(x,n)] ∈ Hc. It
follows that periodic points x of period n and x′ of period n′ have the same H-coordinate
if and only if n = n′ and x, x′ belong to the same n-orbit class of f . Thus it is possible
equivalently to define x, x′ ∈ Fix fn to be in the same n-orbit class if and only if they
have the same H-coordinate. Recently, Jiang [29] has considered a generalized Lefschetz
number with respect to H,

LH(fn) :=
∑
On

ind(On, fn) · cdH(On) ∈ ZHc,(18)
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and proved the following trace formula:

LH(fn) =
∑
d

(−1)d[Tr(zF̃d)n] ∈ ZHc,(19)

where F̃d are the Zπ-matrices defined in (16) and zF̃d is regarded as a ZH-matrix.

6. The Reidemeister zeta function of a group endomorphism

Problem. For which groups and endomorphisms is the Reidemeister zeta function
a rational function? When does it have a functional equation? Is Rφ(z) an algebraic
function?

6.1. Reidemeister zeta functions of eventually commutative endomorphisms. As we
remarked in section 1 to find out about the Reidemeister zeta functions of eventually
commutative endomorphisms, it is sufficient to study the zeta functions of endomorphisms
of Abelian groups.

Theorem 14. Let G be a finitely generated Abelian group and φ an endomorphism
of G. Then Rφ(z) is a rational function and is equal to

Rφ(z) =
( k∏
i=0

det(1− Λiφ∞ ⊗A · σ · z)(−1)i+1
)(−1)r

(20)

where the matrix A is defined in lemma 3, σ = (−1)p, p, r and k are constants described
in theorem 1.

Proof. If we repeat the proof of theorem 1 for φn instead φ we obtain R(φn) =
R((φ∞)n · R((φfinite)n). From this and lemmas 2 and 3 we have the trace formula
for R(φn):

R(φn) = (−1)r+pn
k∑
i=0

(−1)i Tr Λi(φ∞)n · TrAn

= (−1)r+pn
k∑
i=0

(−1)i Tr(Λi(φ∞)n ⊗An)

= (−1)r+pn
k∑
i=0

(−1)i Tr(Λiφ∞ ⊗A)n.

We now calculate directly

Rφ(z) = exp
( ∞∑
n=1

R(φn)
n

zn
)

= exp
( ∞∑
n=1

(−1)r
∑k
i=0(−1)i Tr(Λiφ∞ ⊗A)n

n
(σ · z)n

)

=
( k∏
i=0

(
exp

( ∞∑
n=1

1
n

Tr(Λiφ∞ ⊗A)n · (σ · z)n
))(−1)i)(−1)r

=
( k∏
i=0

det
(
1− Λiφ∞ ⊗A · σ · z

)(−1)i+1 )(−1)r

.
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6.2. Endomorphisms of finite groups

Theorem 15. Let φ be an endomorphism of a finite group G. Then Rφ(z) is a rational
function and is given by the formula

Rφ(z) =
1

det(1−Bz)
,(21)

where B is defined in theorem 4.

Proof. From theorem 4 it follows that R(φn) = TrBn for every n > 0. We now
calculate directly

Rφ(z) = exp
( ∞∑
n=1

R(φn)
n

zn
)

= exp
( ∞∑
n=1

TrBn

n
zn
)

= exp
(

Tr
∞∑
n=1

Bn

n
zn
)

= exp(Tr(− log(1−Bz))) =
1

det(1−Bz)
.

6.3. Endomorphisms of the direct sum of a free Abelian and a finite group

Theorem 16. Let G be the direct sum of a free Abelian and a finite group and φ an
endomorphism of G. If the numbers R(φn) are all finite then Rφ(z) is a rational function
and is equal to

Rφ(z) =
( k∏
i=0

det(1− Λiφ∞ ⊗B · σ · z)(−1)i+1
)(−1)r

(22)

where the matrix B is defined in theorem 4, σ = (−1)p, p, r and k are constants described
in theorem 5.

Proof. From proposition 2 it follows that R(φn) = R((φ∞)n · R((φfinite)n). From
now on the proof repeats the proof of theorem 14.

6.4. Endomorphisms of nilpotent groups

Theorem 17. If Γ is a finitely generated torsion free nilpotent group and φ an endo-
morphism of Γ then Rφ(z) is a rational function and is equal to

Rφ(z) =
( m∏
i=0

det(1− ΛiF̃ · σ · z)(−1)i+1
)(−1)r

(23)

where σ = (−1)p, p, r, m and F̃ are defined in section 1.5.

Proof. If we repeat the proof of theorem 6 for φn instead φ we obtain R(φn) =
(−1)r+pn det(1− F̃ ) (we suppose that the Reidemeister numbers R(φn) are finite for all
n). The last formula implies the trace formula for R(φn):

R(φn) = (−1)r+pn
m∑
i=0

(−1)i Tr(ΛiF̃ )n.

From this we have formula (23) immediately by direct calculation as in theorem 14.

Corollary 6. Let the assumptions of theorem 17 hold. Then the poles and zeros of
the Reidemeister zeta function are complex numbers which are the reciprocals of eigen-
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values of one of the matrices

Λi(F̃ ) : Λi(G̃) −→ Λi(G̃), 0 ≤ i ≤ rank Γ.

6.4.1. Functional equation

Theorem 18. Let φ : Γ→ Γ be an endomorphism of a finitely generated torsion free
nilpotent group Γ. Then the Reidemeister zeta function Rφ(z) has the following functional
equation:

Rφ

(
1
dz

)
= ε2 ·Rφ(z)(−1)Rank Γ

.(24)

where d = det F̃ and ε1 are constants in C.

Proof. Via the natural nonsingular pairing (ΛiF̃ ) ⊗ (Λm−iF̃ ) → C the operators
Λm−iF̃ and d · (ΛiF̃ )−1 are adjoint to each other.

We consider an eigenvalue λ of ΛiF̃ . By theorem 17, this contributes a term((
1− λσ

dz

)(−1)i+1)(−1)r

to Rφ
(

1
dz

)
. We rewrite this term as((

1− dσz

λ

)(−1)i+1

·
(
−dz
λσ

)(−1)i)(−1)r

and note that d
λ is an eigenvalue of Λm−iF̃ . Multiplying these terms together we obtain

Rφ

(
1
dz

)
=
( m∏
i=1

∏
λ(i)∈Spec ΛiF̃

(
1

λ(i)σ

)(−1)i )(−1)r

×Rφ(z)(−1)m

.

The variable z has disappeared because
m∑
i=0

(−1)i dim ΛiG̃ =
m∑
i=0

(−1)iCki = 0.

6.5. Some conjectures for wider classes of groups. For the case of almost nilpotent
groups (i.e. groups with polynomial growth, in view of Gromov’s theorem [25]) we believe
that some power of the Reidemeister zeta function is a rational function. We intend to
prove this conjecture by identifying the Reidemeister number on the nilpotent part of the
group with the number of fixed points in the direct sum of the duals of the quotients of
successive terms in the central series. We then hope to show that the Reidemeister number
of the whole endomorphism is the sum of the numbers of orbits of such fixed points under
the action of the finite quotient group (i.e. the quotient of the whole group by the nilpotent
part). The situation for groups with exponential growth is very different. There one can
expect the Reidemeister number to be infinite as long as the endomorphism is injective.
This can be proved in the case of surface groups due to a theorem of C. Epstein (see [8]).
He proves an estimate on numbers of geodesics, which when applied to the mapping torus
of a pseudo-Anosov map guarantees infinitely many loops which wrap around the mapping
torus exactly once. This is equivalent (see section 4.1) to saying that the Reidemeister
number is infinite. A rigid hyperbolic group has a finite outer automorphism group [26].
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This implies that the Reidemeister number of some iteration of the endomorphism equals
the number of usual conjugacy classes which is in this case infinite. We believe this
conjecture for the following reason. Let G be a group with exponential growth and let
l(g) be the length of an element of G. Then one might expect that most of the time

l(gxφ(g)−1) > (1 + ε)l(g)

for g, x ∈ G. This would imply that for fixed x,

#{gxφ(g)−1 : l(gxφ(g)−1) < N} < #{g ∈ G : l(gxφ(g)−1) < N/(1 + ε)}.

However since the group has exponential growth one can show that this would imply

#{gxφ(g)−1 : l(gxφ(g)−1) < N}
#{g ∈ G : l(gxφ(g)−1) < N}

→ 0 as N →∞.

If there were only finitely many twisted conjugacy classes then we could derive a contra-
diction by summing the left hand side of the above formula over a set of representatives
x for the classes, and observing that this sum is always equal to 1.

7. The Reidemeister and Nielsen zeta functions of a continuous map

Remark 4. Using lemma 6 we may apply all theorems of section 5 to the Reidemeister
zeta functions of continuous maps.

7.1. The Jiang subgroup and the Nielsen zeta function

Theorem 19. Suppose that there is an integer m such that f̃m∗ (π) ⊂ I(f̃m). If
L(fn) 6= 0 for every n > 0, then

Nf (z) = Rf (z) =
( k∏
i=0

det(1− Λif∞1∗ ⊗A · σ · z)(−1)i+1
)(−1)r

.(25)

If L(fn) = 0 only for finitely many n, then

Nf (z) = exp (P (z)) ·Rf (z)(26)

= exp (P (z)) ·
( k∏
i=0

det(1− Λif∞1∗ ⊗A · σ · z)(−1)i+1
)(−1)r

where P (z) is a polynomial, A, k, p, σ and r are as in theorem 14.

Proof. If L(fn) 6= 0 for every n > 0, then formula (19) follows from theorems 9
and 14. If L(fn) = 0, then N(fn) = 0. If L(fn) 6= 0, then N(fn) = R(fn) (see proof of
theorem 9). So the fraction Nf (z)/Rf (z) = exp(P (z)), where P (z) is a polynomial whose
degree is the maximal n such that L(fn) 6= 0.

Corollary 7. Let the assumptions of theorem 19 hold. Then the poles and zeros of
the Nielsen zeta function are complex numbers which are the reciprocals of eigenvalues of
one of the matrices Λi(f∞1∗ ⊗A · σ).

Corollary 8. Let I(idX̃) = π. If the assumptions of theorem 19 about Lefschetz
numbers hold, then formulas (24) and (25) are valid.
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Corollary 9. Suppose that X is aspherical and f is eventually commutative. If the
assumptions of theorem 19 about Lefschetz numbers hold, then formulas (25) and (26)
are valid.

7.2. Polyhedra with finite fundamental group and Nielsen zeta function

Theorem 20. Let X be a connected, compact polyhedron with finite fundamental
group π. Suppose that the action of π on the rational homology of the universal cover
X̃ is trival, i.e. for every covering translation α ∈ π, α∗ = id : H∗(X̃,Q) → H∗(X̃,Q).
If L(fn) 6= 0 for every n > 0, then

Nf (z) = Rf (z) =
1

det(1−Bz)
.(27)

If L(fn) = 0 only for finitely many n, then

Nf (z) = exp(P (z)) ·Rf (z) = exp (P (z)) · 1
det(1−Bz)

,(28)

where P (z) is a polynomial, B is defined in theorem 4.

Proof. If L(fn) 6= 0 for every n > 0, then formula (27) follows from theorems 10
and 15. If L(fn) = 0, then N(fn) = 0. If L(fn) 6= 0, then N(fn) = R(fn) (see proof
of theorem 10). So the fraction Nf (z)/Rf (z) = exp(P (z)), where P (z) is a polynomial
whose degree is the maximal n such that L(fn) 6= 0.

Corollary 10. Let X̃ be a compact 1-connected polyhedron which is a rational ho-
mology n-sphere, where n is odd. Let π be a finite group acting freely on X̃ and let
X = X̃/π. Then theorem 20 applies.

Corollary 11. If X is a closed 3-manifold with finite π, then theorem 20 applies.

Example 2 ([3]). Let f : S2 ∨ S4 → S2 ∨ S4 be a continuous map of the bouquet
of spheres such that the restriction f |S4 = idS4 and the degree of the restriction f |S2 :
S2 → S2 is −2. Then L(f) = 0, hence N(f) = 0 since S2 ∨ S4 is simply connected. For
k > 1 we have L(fk) = 2 + (−2)k 6= 0, therefore N(fk) = 1. From this we have by direct
calculation that

Nf (z) = exp(−z) · 1
1− z

.(29)

Remark 5. We remark that in all known cases the Nielsen zeta function is a nice
function. By this we mean that it is a product of an exponential of a polynomial with
a function some power of which is rational. Maybe this is a general pattern; it could
however be argued that this just reflects our inability to calculate the Nielsen numbers
in the general case.

7.3. Nielsen zeta function in other special cases. Theorem 17 implies

Theorem 21. Let f be any continuous map of a nilmanifold M to itself. If R(fn) is
finite for all n then

Nf (z) = Rf (z) =
( m∏
i=0

det(1− ΛiF̃ · σ · z)(−1)i+1
)(−1)r

(30)

where σ = (−1)p, p, r, m and F̃ are defined in section 5.4.
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Theorem 12 implies

Theorem 22. Let X be a compact surface of negative Euler characteristic and f :
X → X a pseudo-Anosov homeomorphism. Then

Nf (z) =
m∏
i=0

det(1−Ai · z)−εi(31)

where Ai and εi are the same as in theorem 12.

Theorem 13 implies

Theorem 23. Suppose M is an orientable compact connected 3-manifold such that
intM admits a complete hyperbolic structure with finite volume and f : M → M is an
orientation preserving homeomorphism. Then the Nielsen zeta function is rational and
Nf (z) = Lf (z).

7.4. Radius of convergence of the Nielsen zeta function. We denote by R the radius
of convergence of the Nielsen zeta function Nf (z), and by h(f) the topological entropy
of the continuous map f . Let h = inf{h(g) | g has the same homotopy type as f}.

Theorem 24 ([19]). For any continuous map f of any compact polyhedron X into
itself the Nielsen zeta function has positive radius of convergence R and

R ≥ exp(−h) > 0.(32)

In this section we propose another proof of positivity of R and give an exact algebraic
lower estimate for the radiusR using trace formulas (16) and (18) for generalized Lefschetz
numbers.

For any set S let ZS denote the free Abelian group with the specified basis S. The
norm in ZS is defined by ∥∥∥∑

i

kisi

∥∥∥ :=
∑
i

|ki| ∈ Z,(33)

when the si in S are all different.
For a ZH-matrix A = (aij), define its norm by ‖A‖ :=

∑
i,j ‖aij‖. Then we have

the inequalities ‖AB‖ ≤ ‖A‖ · ‖B‖ when A,B can be multiplied, and ‖TrA‖ ≤ ‖A‖
when A is a square matrix. For a matrix A = (aij) in ZS, its matrix of norms is defined
to be the matrix Anorm := (‖aij‖) which is a matrix of non-negative integers. In what
follows, the set S will be π, H or Hc. We denote by s(A) the spectral radius of A,
s(A) = limn(‖An‖|) 1

n , which coincides with the largest modulus of an eigenvalue of A.

Theorem 25. For any continuous map f of any compact polyhedron X into itself the
Nielsen zeta function has positive radius of convergence R, which admits the estimates

R ≥ 1
maxd ‖zF̃d‖

> 0(34)

and

R ≥ 1
maxd s(F̃normd )

> 0,(35)

where F̃d is the same as in section 4.
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Proof. By homotopy invariance we can suppose that f is a cell map of a finite cell
complex. By definition the Nielsen number N(fn) is the number of non-zero terms in
Lπ(fn) (see section 4). The norm ‖LH(fn)‖ is the sum of the absolute values of the
indices of all the n-orbit classes On. It equals ‖Lπ(fn)‖, the sum of the absolute values
of the indices of all the fixed point classes of fn, because any two fixed point classes
of fn contained in the same n-orbit class On must have the same index. From this we
have N(fn) ≤ ‖Lπ(fn)‖ = ‖LH(fn)‖ = ‖

∑
d(−1)d[Tr(zF̃d)n]‖ ≤

∑
d ‖[Tr(zF̃d)n]‖ ≤∑

d ‖Tr(zF̃d)n‖ ≤
∑
d ‖(zF̃d)n‖ ≤

∑
d ‖(zF̃d)‖n (see [29]). The radius of convergence R

is given by the Cauchy–Hadamard formula:

1
R

= lim sup
n

(
N(fn)
n

) 1
n

= lim sup
n

(N(fn))
1
n .

Therefore we have

R =
1

lim supn(N(fn))
1
n

≥ 1
maxd ‖zF̃d‖

> 0.

The inequalities:

N(fn) ≤ ‖Lπ(fn)‖ = ‖LH(fn)‖ = ‖
∑
d

(−1)d[Tr(zF̃d)n]‖ ≤
∑
d

‖[Tr(zF̃d)n]‖

≤
∑
d

||Tr(zF̃d)n|| ≤
∑
d

Tr((zF̃d)n)norm ≤
∑
d

Tr((zF̃d)norm)n ≤
∑
d

Tr((F̃d)norm)n

and the definition of spectral radius give the estimate:

R =
1

lim supn(N(fn))
1
n

≥ 1
maxd s(F̃normd )

> 0.

Example 3. Let X be a surface with boundary, and f : X → X be a map. Fadell
and Husseini [9] devised a method of computing the matrices of the lifted chain map for
surface maps. Suppose {a1, . . . , ar} is a free basis for π1(X). Then X has the homotopy
type of a bouquet B of r circles which can be decomposed into one 0-cell and r 1-cells
corresponding to the ai, and f has the homotopy type of a cellular map g : B → B. By
homotopy invariance, we can replace f with g in computations. The homomorphism f̃∗ :
π1(X)→ π1(X) induced by f and g is determined by the images bi = f̃∗(ai), i = 1, . . . , r.
The fundamental group π1(Tf ) has a presentation π1(Tf ) = 〈a1, . . . , ar, z | aiz = zbi, i =
1, . . . , r〉. Let

D =
(
∂bi
∂aj

)
be the Jacobian in Fox calculus (see [4]). Then, as pointed out in [9], the matrices of the
lifted chain map g̃ are

F̃0 = (1), F̃1 = D =
(
∂bi
∂aj

)
.

Now, we can find estimates for the radius R from (34) and (35).

Remark 6. Let X be a compact connected surface and f : X → X be a homeo-
morphism. Let χ(X) < 0. By Thurston’s classification theorem [47] f is isotopic to a
homeomorphism φ such that either (1) φ is a periodic map; or (2) φ is a pseudo-Anosov
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map with stretching factor λ > 1 (see section 3.3.1); or (3) φ is a reducible map, i.e.
there is a system of disjoint simple closed curves in intX which is invariant under φ and
which has a φ-invariant tubular neighborhood U such that each component of X − U
has negative Euler characteristic and on each φ-component of X − U , φ satisfies 1 or 2.
Then, as follows from [19], R = 1

λ , where λ > 1 is the largest stretching factor of the
pseudo-Anosov pieces (if there is no pseudo-Anosov piece then λ = 1).

8. Congruences for Reidemeister and Nielsen numbers

8.1. Endomorphisms of the direct sum of a free Abelian and a finite group. In this
section let F be a finite group and r a natural number. The group G will be the direct
sum

G = Zr ⊕ F.
We shall describe the Reidemeister numbers of an endomorphism φ : G → G. The
torsion elements of G are exactly the elements of the finite, normal subgroup F . For
this reason we have φ(F ) ⊂ F . Let φfinite : F → F be the restriction of φ to F , and
let φ∞ : G/F → G/F be the induced map on the quotient group. We have proved in
proposition 2 that

R(φ) = R(φfinite)×R(φ∞).

We shall prove the following result:

Proposition 3. In the notation described above

# Fix(φ̂) = # Fix(φ̂finite)×# Fix(φ̂∞).

Proof. Consider the dual Ĝ. This is the cartesian product of the duals of Zr and F :

Ĝ = Ẑr × F̂ , ρ = ρ1 ⊗ ρ2

where ρ1 is an irreducible representation of Zr and ρ2 is an irreducible representation of
F . Since Zr is Abelian, all of its irreducible representations are 1-dimensional, so ρ(v) for
v ∈ Zr is always a scalar matrix, and ρ2 is the restriction of ρ to F . If ρ = ρ1⊗ρ2 ∈ S(φ)
(see definition 1) then there is a matrix T such that

ρ ◦ φ = T · ρ · T−1.

This implies

ρfinite ◦ φfinite = T · ρfinite · T−1,

so ρ2 = ρfinite is in S(φfinite). For any fixed ρ2 ∈ S(φfinite), the set of ρ1 with ρ1⊗ ρ2 ∈
S(φfinite) is the set of ρ1 satisfying

ρ1(M · v)ρ2(ψ(v)) = T · ρ1(v) · T−1

for some matrix T independent of v ∈ Zr. Since ρ1(v) is a scalar matrix, the equation is
equivalent to

ρ1(M · v)ρ2(ψ(v)) = ρ1(v),

i.e.

ρ1((1−M)v) = ρ2(ψ(v)).



DYNAMICAL ZETA FUNCTIONS 103

Note that Ẑr is isomorphic to the torus Tn, and the transformation ρ1 → ρ1 ◦ (1 −M)
is given by the action of the matrix 1−M on the torus Tn. Therefore the number of ρ1

satisfying the last equation is the degree of the map (1−M) on the torus, i.e. |det(1−M)|.
From this it follows that

# Fix(φ̂) = # Fix(φ̂finite)× |det(1−M)|.

As in the proof of proposition 3 we have R(φ∞) = |det(1 −M)|. Since φ∞ is an endo-
morphism of an Abelian group we have # Fix(φ̂∞) = R(φ∞). Therefore

# Fix(φ̂) = # Fix(φ̂finite)×# Fix(φ̂∞).

As a consequence we have the following

Theorem 26. If φ be any endomorphism of G where G is the direct sum of a finite
group F and a finitely generated free Abelian group, then R(φ) = # Fix(φ̂).

Proof. Since φfinite is an endomorphism of a finite group, by theorem 4 we have
R(φfinite) = # Fix(φ̂finite). Since φ∞ is an endomorphism of a finitely generated free
Abelian group we have R(φ∞) = # Fix(φ̂∞) (see formula (5)). It now follows from propo-
sitions 2 and 3 that R(φ) = # Fix(φ̂).

8.2. Endomorphisms of almost Abelian groups. In this section let G be an almost
Abelian and finitely generated group. A group will be called almost Abelian if it has
an Abelian subgroup of finite index. We shall prove an analog of a theorem for almost
Abelian groups found by the second author. It seems plausible that one could prove the
same theorem for the so-called “tame” topological groups (see [32]). However we shall be
interested mainly in discrete groups, and it is known that the discrete tame groups are
almost Abelian.

We shall introduce the profinite completion G of G and the corresponding endomor-
phism φ : G → G. This is a compact totally disconnected group in which G is densely
embedded. The proof will then follow in three steps:

R(φ) = R(φ), # Fix(φ̂) = # Fix(φ̂), R(φ) = # Fix(φ̂).

If one omits the requirement that G is almost Abelian then one can still show that
R(φ) ≥ R(φ) and # Fix(φ̂) ≥ # Fix(φ̂). The third identity is a general fact for compact
groups.

8.2.1. Compact groups. Here we shall prove the third of the above identities.
Let K be a compact topological group and φ a continuous endomorphism of K. We

define the number # Fixtop(φ̂) to be the number of fixed points of φ̂ in the unitary dual of
K, where we only consider continuous representations of K. The number R(φ) is defined
as usual.

Theorem 27. For a continuous endomorphism φ of a compact group K one has
R(φ) = # Fixtop(φ̂).

The proof uses the Peter-Weyl Theorem:



104 A. L. FEL’SHTYN AND R. HILL

Theorem 28 (Peter-Weyl). If K is compact then there is the following decomposition
of the space L2(K) as a K ⊕K-module.

L2(K) ∼=
⊕
λ∈K̂

HomC(Vλ, Vλ).

We also use Schur’s Lemma:

Lemma 10 (Schur). If V and W are two irreducible unitary representations then

HomCK(V,W ) ∼=
{

0, V 6∼= W,

C, V ∼= W.

Proof of Theorem 27. The φ-conjugacy classes, being orbits of a compact group,
are compact. Since there are only finitely many of them, they are also open subsets of K
and thus have positive Haar measure.

We embed K in K ⊕ K by the map g 7→ (g, φ(g)). This makes L2(K) a K-module
with a twisted action. By the Peter-Weyl Theorem we have (as K-modules)

L2(K) ∼=
⊕
λ∈K̂

HomC(Vλ, Vφ̂(λ)).

We therefore have a corresponding decomposition of the space of K-invariant elements:

L2(K)K ∼=
⊕
λ∈K̂

HomCK(Vλ, Vφ̂(λ)).

We have used the well known identity HomC(V,W )K = HomCK(V,W ). The left hand
side consists of functions f : K → C satisfying f(gxφ(g)−1) = f(x) for all x, g ∈ K.
These are just functions on the φ-conjugacy classes. The dimension of the left hand side
is thus R(φ). On the other hand by Schur’s Lemma the dimension of the right hand side
is # Fixtop(φ̂).

8.2.2. Almost Abelian groups. Let G be an almost Abelian group with an Abelian
subgroup A of finite index [G : A]. Let A0 be the intersection of all subgroups of G of
index [G : A]. Then A0 is an Abelian normal subgroup of finite index in G and one has
φ(A0) ⊂ A0 for every endomorphism φ of G.

Lemma 11. If R(φ) is finite then so is R(φ|A0).

Proof. A φ-conjugacy class is an orbit of the group G. A φ|A0 -conjugacy class is an
orbit of the group A0. Since A0 has finite index in G it follows that every φ-conjugacy
class in A0 can be the union of at most finitely many φ|A0-conjugacy classes. This proves
the lemma.

Let G be the profinite completion of G with respect to its normal subgroups of finite
index. There is a canonical injection G → G and the map φ can be extended to a
continuous endomorphism φ̄ of G. We shall write R(φ) for the set of φ-conjugacy classes
of elements of G.

There is therefore a canonical map

R(φ)→ R(φ̄).
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Since G is dense in G, the image of a φ-conjugacy class {x}φ is its closure in G. From
this it follows that the above map is surjective. We shall actually see that the map is
bijective. This will then give us

R(φ) = R(φ̄).

However φ̄ is an endomorphism of the compact group G so by Theorem 27

R(φ̄) = # Fixtop(ˆ̄φ).

It thus suffices to prove the following two lemmas:

Lemma 12. If R(φ) is finite then # Fixtop(ˆ̄φ) = # Fix(φ̂).

Lemma 13. If R(φ) is finite then the map R(φ)→ R(φ̄) is injective.

Proof of Lemma 12. By Mackey’s Theorem (see [32]), every representation ρ of G is
contained in a representation which is induced by a 1-dimensional representation χ of A. If
ρ is fixed by φ̂ then for all a ∈ A0 we have χ(a) = χ(φ(a)). Let A1 = {a ·φ(a)−1 : a ∈ A0}.
By lemma 11 R(φ|A0) is finite and by lemma 1 R(φ|A0) = [A0 : A1]. Therefore A1 has
finite index in G. However we have shown that χ and therefore also ρ is constant on
cosets of A1. Therefore ρ has finite image, which implies that ρ is the restriction to G

of a unique continuous irreducible representation ρ̄ of G. One verifies by continuity that
ˆ̄φ(ρ̄) = ρ̄.

Conversely if ρ̄ ∈ S(φ̄) then the restriction of ρ̄ to G is in S(φ).

Proof of Lemma 13. We must show that the intersection with G of the closure of
{x}φ in G is equal to {x}φ. We do this by constructing a coset of a normal subgroup of
finite index in G which is contained in {x}φ. For every a ∈ A0 we have x ∼φ xa if there
is a b ∈ A0 with x−1bxφ(b)−1 = a. It follows that {x}φ contains a coset of the group
A2
x := {x−1bxφ(b)−1 : b ∈ A0}. It remains to show that A2

x has finite index in G.
Let ψ(g) = xφ(g)x−1. Then by corollary 1 we have R(ψ) = R(φ). This implies

R(ψ) < ∞ and therefore by lemma 11 that R(ψ|A0) < ∞. However by lemma 1 we
have R(ψ|A0) = [A0 : A2

x]. This finishes the proof.

Theorem 29. If φ is any endomorphism of G where G is an almost Abelian group,
then R(φ) = # Fix(φ̂).

Proof. This follows from lemmas 12, 13 and theorem 27.

8.3. Endomorphisms of nilpotent groups. In this section, we shall extend the compu-
tation of the Reidemeister number to endomorphisms of finitely generated torsion free
nilpotent groups via topological techniques. Let Γ be a finitely generated torsion free
nilpotent group. It is well known [33] that Γ = π1(M) for some compact nilmanifold M .
In fact, the rank (or Hirsch number) of Γ is equal to dimM , the dimension of M . Since
M is a K(Γ, 1), every endomorphism φ : Γ→ Γ can be realized by a self-map f : M →M

such that f# = φ and thus R(f) = R(φ).

Theorem 30 ([18]). Let Γ be a finitely generated torsion free nilpotent group of rank
n. For any endomorphism φ : Γ → Γ such that R(φ) is finite, there exists an endomor-
phism ψ : Zn → Zn such that R(φ) = # Fix ψ̂.
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8.4. Main theorem. The following lemma is useful for calculating Reidemeister num-
bers. It will also be used in the proof of the Main Theorem.

Lemma 14. Let φ : G → G be any endomorphism of any group G, and let H be a
subgroup of G with the properties

φ(H) ⊂ H, ∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

Then R(φ) = R(φH), where φH : H → H is the restriction of φ to H.

Proof. Let x ∈ G. Then there is an n such that φn(x) ∈ H. From Lemma 1 it is
known that x is φ-conjugate to φn(x). This means that the φ-conjugacy class {x}φ of x
has non-empty intersection with H.

Now suppose that x, y ∈ H are φ-conjugate, i.e. there is a g ∈ G such that

gx = yφ(g).

We shall show that x and y are φH -conjugate, i.e. we can find a g ∈ H with the above
property. First let n be large enough that φn(g) ∈ H. Then applying φn to the above
equation we obtain

φn(g)φn(x) = φn(y)φn+1(g).

This shows that φn(x) and φn(y) are φH -conjugate. On the other hand, one knows by
lemma 7 that x and φn(x) are φH -conjugate, and y and φn(y) are φH conjugate, so x

and y must be φH -conjugate.
We have shown that the intersection with H of a φ-conjugacy class in G is a φH -

conjugacy class in H. We therefore have a map

Rest : R(φ)→ R(φH), {x}φ 7→ {x}φ ∩H,

This clearly has the two-sided inverse {x}φH
7→ {x}φ. Therefore Rest is a bijection and

R(φ) = R(φH).

Corollary 12. Let H = φn(G). Then R(φ) = R(φH).

Let µ(d), d ∈ N be the Möbius function, i.e.

µ(d) =


1 if d = 1,
(−1)k if d is a product of k distinct primes,
0 if d is not square-free.

Theorem 31 (Congruences for the Reidemeister numbers). Let φ : G → G be an en-
domorphism of the group G such that all numbers R(φn) are finite and let H be a subgroup
of G with the properties

φ(H) ⊂ H, ∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

Suppose one of the following conditions is satisfied:

(I) H is finitely generated Abelian,
(II) H is finite,

(III) H is a direct sum of a finite group and a finitely generated free Abelian group,
or more generally

(IV) H is finitely generated almost Abelian, or
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(V) H is finitely generated, nilpotent and torsion free.

Then one has for all natural numbers n,∑
d|n

µ(d) ·R(φn/d) ≡ 0 mod n.

Proof. It follows immediately that, in cases I - IV, for every n

R(φn) = # Fix[φ̂H
n

: Ĥ → Ĥ].

Let Pn denote the number of periodic points of φ̂H of least period n. One sees imme-
diately that

R(φn) = # Fix[φ̂H
n
] =

∑
d|n

Pd.

Applying Möbius’ inversion formula, we have

Pn =
∑
d|n

µ(d)R(φn/d).

On the other hand, we know that Pn is always divisible by n, because Pn is exactly n times
the number of φ̂H -orbits in Ĥ of length n. In the case V when H is finitely generated,
nilpotent and torsion free, we know from theorem 30 that there exists an endomorphism
ψ : Zn → Zn such that R(φn) = # Fix ψ̂n. The proof then follows as in the previous
cases.

Remark 7. For finite groups, congruences for Reidemeister numbers follow from
those of Dold for Lefschetz numbers since we have identified in remark 2 the Reidemeister
numbers with the Lefschetz numbers of induced dual maps.

8.5. Congruences for Reidemeister numbers of a continuous map. Using corollary 1
we may apply the main theorem to the Reidemeister numbers of continuous maps.

Theorem 32. Let f : X → X be a self-map such that all numbers R(fn) are finite.
Let f∗ : π1(X)→ π1(X) be an induced endomorphism of the group π1(X) and let H be a
subgroup of π1(X) with the properties

f∗(H) ⊂ H, ∀x ∈ π1(X) ∃n ∈ N such that fn∗ (x) ∈ H.

Suppose one of the following conditions is satisfied:

(I) H is finitely generated Abelian,
(II) H is finite,

(III) H is a direct sum of a finite group and a finitely generated free Abelian group or
more generally,

(IV) H is finitely generated almost Abelian, or
(V) H is finitely generated, nilpotent and torsion free.

Then one has for all natural numbers n,∑
d|n

µ(d) ·R(fn/d) ≡ 0 mod n.
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8.6. Congruences for Nielsen numbers of a continuous map

Theorem 33. Suppose that there is a natural number m such that f̃m∗ (π) ⊂ I(f̃m).
If for every d dividing a certain natural number n we have L(fn/d) 6= 0, then one has for
that particular n, ∑

d|n

µ(d)N(fn/d) ≡ 0 mod n.

Proof. From the results of Jiang [28] we have that N(fn/d) = R(fn/d) for the same
particular n and f̃∗ is eventually commutative. The result now follows from theorem 32.

Corollary 13. Suppose I(idX̃) = π and for every d dividing a certain natural num-
ber n we have L(fn/d) 6= 0. Then theorem 33 applies.

Corollary 14. Suppose that X is aspherical, f is eventually commutative and for
every d dividing a certain natural number n we have L(fn/d) 6= 0. Then theorem 33
applies.

Example 4. Let f : Tn → Tn be a hyperbolic endomorphism. Then for every natu-
ral n, ∑

d|n

µ(d)N(fn/d) ≡ 0 mod n.

Example 5. Let g : M → M be an expanding map [45] of the orientable smooth
compact manifold M . Then M is aspherical and is a K(π1(M), 1), and π1(M) is torsion
free [45]. According to Shub [45] any lifting g̃ of g has exactly one fixed point. From
this and the covering homotopy theorem it follows that the fixed points of g are pairwise
inequivalent. The same is true for all iterates gn. Therefore N(gn) = # Fix(gn) for all
n. So the sequence of the Nielsen numbers N(gn) of an expanding map satisfies the
congruences as above.

Theorem 34. Let X be a connected, compact polyhedron with finite fundamental
group π. Suppose that the action of π on the rational homology of the universal cover
X̃ is trival, i.e. for every covering translation α ∈ π, α∗ = id : H∗(X̃,Q)→ H∗(X̃,Q). If
for every d dividing a certain natural number n we have L(fn/d) 6= 0, then one has for
that particular n, ∑

d|n

µ(d)N(fn/d) ≡ 0 mod n.

Proof. From the results of Jiang [28] we have that N(fn/d) = R(fn/d) for the same
particular n. The result now follows from theorem 32.

Lemma 15. Let X be a polyhedron with finite fundamental group π and let p : X̃ → X

be its universal covering. Then the action of π on the rational homology of X̃ is trivial
iff H∗(X̃; Q) ∼= H∗(X; Q).

Corollary 15. Let X̃ be a compact 1-connected polyhedron which is a rational ho-
mology n-sphere, where n is odd. Let π be a finite group acting freely on X̃ and let
X = X̃/π. Then theorem 34 applies.
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Proof. The projection p : X̃ → X = X̃/π is a universal covering space of X. For
every α ∈ π, the degree of α : X̃ → X̃ must be 1, because L(α) = 0 (α has no fixed
points). Hence α∗ = id : H∗(X̃; Q)→ H∗(X̃; Q).

Corollary 16. If X is a closed 3-manifold with finite π, then theorem 34 applies.

Proof. X̃ is an orientable, simply connected manifold, hence a homology 3-sphere.
We apply corollary 15.

Example 6. Let X = L(m, q1, . . . , qr) be a generalized lens space and f : X → X a
continuous map with f1∗(1) = k where |k| 6= 1. Then for every natural n∑

d|n

µ(d)N(fn/d) ≡ 0 mod n.

Proof. By corollary 15 we see that theorem 34 applies for lens spaces. Since π1(X) =
Z/mZ, the map f is eventually commutative. A lens space has the structure of a CW
complex with one cell ei in each dimension 0 ≤ i ≤ 2n+1. The boundary map is given by
∂e2k = m.e2k−1 for even cells, and ∂e2k+1 = 0 for odd cells. From this we may calculate
the Lefschetz numbers:

L(fn) = 1− k(l+1)n 6= 0.
This is true for any n as long as |k| 6= 1. The result now follows from theorem 34.

Remark 8. It is known that in the previous example

N(fn) = R(fn) = # Coker(1− fn1∗) = gcd(1− kn,m)

for every n. So we obtain a pure arithmetical fact: the sequence n 7→ gcd(1 − kn,m)
satisfies the congruences above for every natural n if |k| 6= 1.

8.7. Some conjectures for wider classes of groups. For the case of almost nilpotent
groups (i.e. groups with polynomial growth, in view of Gromov’s theorem [25]) we believe
that the congruences for the Reidemeister numbers are also true. We intend to prove this
conjecture by identifying the Reidemeister number on the nilpotent part of the group with
the number of fixed points in the direct sum of the duals of the quotients of successive
terms in the central series. We then hope to show that the Reidemeister number of the
whole endomorphism is a sum of numbers of orbits of such fixed points under the action
of the finite quotient group (i.e. the quotient of the whole group by the nilpotent part).
The situation for groups with exponential growth is very different. There one can expect
the Reidemeister number to be infinite as long as the endomorphism is injective.

9. Connection with Reidemeister torsion

9.1. Preliminaries

9.1.1. Reidemeister torsion. Like the Euler characteristic, the Reidemeister torsion is
algebraically defined. Roughly speaking, the Euler characteristic is a graded version of
the dimension, extending the dimension from a single vector space to a complex of vector
spaces. In a similar way, the Reidemeister torsion is a graded version of the absolute value
of the determinant of an isomorphism of vector spaces. Let di : Ci → Ci+1 be a cochain
complex C∗ of finite dimensional vector spaces over C with Ci = 0 for i < 0 and large
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i. If the cohomology Hi = 0 for all i we say that C∗ is acyclic. If one is given positive
densities ∆i on Ci then the Reidemeister torsion τ(C∗,∆i) ∈ (0,∞) for acyclic C∗ is
defined as follows:

Definition 7. Consider a chain contraction δi : Ci → Ci−1, i.e. a linear map such
that d◦δ+δ◦d = id. Then d+δ determines a map (d+δ)+ : C+ := ⊕C2i → C− := ⊕C2i+1

and a map (d+ δ)− : C− → C+. Since the map (d+ δ)2 = id+ δ2 is unipotent, (d+ δ)+

must be an isomorphism. One defines τ(C∗,∆i) := |det(d+ δ)+| (see [24]).

Reidemeister torsion is defined in the following geometric setting. Suppose K is a fi-
nite complex and E is a flat, finite dimensional, complex vector bundle with base K. We
recall that a flat vector bundle over K is essentially the same thing as a representation of
π1(K) when K is connected. If p ∈ K is a basepoint then one may move the fibre at p in
a locally constant way around a loop in K. This defines an action of π1(K) on the fibre
Ep of E above p. We call this action the holonomy representation ρ : π → GL(Ep). Con-
versely, given a representation ρ : π → GL(V ) of π on a finite dimensional complex vector
space V , one may define a bundle E = Eρ = (K̃×V )/π. Here K̃ is the universal cover of
K, and π acts on K̃ by covering transformations and on V by ρ. The holonomy of Eρ is
ρ, so the two constructions give an equivalence of flat bundles and representations of π.

If K is not connected then it is simpler to work with flat bundles. One then defines
the holonomy as a representation of the direct sum of π1 of the components of K. In this
way, the equivalence of flat bundles and representations is recovered.

Suppose now that one has on each fibre of E a positive density which is locally constant
on K. In terms of ρE this assumption just means |det ρE | = 1. Let V denote the fibre
of E.

Then the cochain complex Ci(K;E) with coefficients in E can be identified with the
direct sum of copies of V associated to each i-cell σ of K. The identification is achieved
by choosing a basepoint in each component of K and a basepoint from each i-cell. By
choosing a flat density on E we obtain a preferred density ∆i on Ci(K,E). One defines
the R-torsion of (K,E) to be τ(K;E) = τ(C∗(K;E),∆i) ∈ (0,∞).

The Reidemeister torsion of an acyclic bundle E on K has many nice properties.
Suppose that A and B are subcomplexes of K. Then we have a multiplicative law:

τ(A ∪B;E) · τ(A ∩B;E) = τ(A;E) · τ(B;E)(36)

that is interpreted as follows. If three of the bundles E|A ∪ B, E|A ∩ B, E|A, E|B are
acyclic then so is the fourth and the equation (36) holds.

Another property is the simple homotopy invariance of the Reidemeister torsion.
Suppose K ′ is a subcomplex of K obtained by an elementary collapse of an n-cell σ in K.
This means that K = K ′ ∪σ∪σ′ where σ′ is an (n− 1)-cell of K such that ∂σ′ = σ′ ∩K ′
and σ′ ⊂ ∂σ, i.e. σ′ is a free face of σ. So one can push σ′ through σ into K ′ giving a
homotopy equivalence. Then H∗(K;E) = H∗(K ′;E) and

τ(K;E,Di) = τ(K ′;E,Di).(37)

By iterating a sequence of elementary collapses and their inverses, one obtains a homotopy
equivalence of complexes that is called simple. Plainly one has, by iterating (37), that the
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Reidemeister torsion is a simple homotopy invariant. In particular τ is invariant under
subdivision. This implies that for a smooth manifold, one can unambiguously define
τ(K;E,Di) to be the torsion of any smooth triangulation of K.

In the case K = S1 is a circle, let A be the holonomy of a generator of the fundamental
group π1(S1). One has that E is acyclic iff I −A is invertible and then

τ(S1;E) = |det(I −A)|.(38)

Note that the choice of the generator is irrelevant as I − A−1 = (−A−1)(I − A) and
|det(−A−1)| = 1.

These three properties of the Reidemeister torsion are the analogues of the proper-
ties of Euler characteristic (cardinality law, homotopy invariance and normalization at a
point), but there are differences. Since a point has no acyclic representations (H0 6= 0)
one cannot normalize τ at a point as we do for the Euler characteristic, and so one must
use S1 instead. The multiplicative cardinality law for the Reidemeister torsion can be
made additive just by using log τ , so the difference here is inessential. More important
for some purposes is that the Reidemeister torsion is not an invariant under a general
homotopy equivalence: as mentioned earlier this is in fact why it was first invented.

It might be expected that the Reidemeister torsion counts something geometric (like
the Euler characteristic). D. Fried showed that it counts the periodic orbits of a flow
and the periodic points of a map. We will show that the Reidemeister torsion counts the
periodic point classes of a map (fixed point classes of the iterations of the map).

Some further properties of τ describe its behaviour under bundles.
Let p : X → B be a simplicial bundle with fiber F where F,B,X are finite complexes

and p−1 sends subcomplexes of B to subcomplexes of X over the circle S1. We assume
here that E is a flat, complex vector bundle over B. We form its pullback p∗E over X.
Note that the vector spaces Hi(p−1(b),C) with b ∈ B form a flat vector bundle over B,
which we denote HiF . The integral lattice in Hi(p−1(b),R) determines a flat density by
the condition that the covolume of the lattice is 1. We suppose that the bundle E⊗HiF

is acyclic for all i. Under these conditions D. Fried [24] has shown that the bundle p∗E
is acyclic, and

τ(X; p∗E) =
∏
i

τ(B;E ⊗HiF )(−1)i

.(39)

The opposite extreme is when one has a bundle E on X for which the restriction E|F is
acyclic. Then, for B connected,

τ(X;E) = τ(F ;E|F )χ(B).(40)

Suppose in (40) that F = S1, i.e. X is a circle bundle. Then (40) can be regarded as
saying that

log τ(X;E) = χ(B) · log τ(F ;E|F )

is counting the circle fibres in X in the way that χ counts points in B, with a weighting
factor of log τ(F ;E|F ).

9.2. The Reidemeister zeta function and the Reidemeister torsion of the mapping
torus of the dual map. Let f : X → X be a homeomorphism of a compact polyhedron
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X. Let Tf := (X × I)/(x, 0) ∼ (f(x), 1) be the mapping torus of f . We shall consider the
bundle p : Tf → S1 over the circle S1. We assume here that E is a flat, complex vector
bundle with finite dimensional fibre and base S1. We form its pullback p∗E over Tf . Note
that the vector spaces Hi(p−1(b), c) with b ∈ S1 form a flat vector bundle over S1, which
we denote HiF . The integral lattice in Hi(p−1(b),R) determines a flat density by the
condition that the covolume of the lattice is 1. We suppose that the bundle E ⊗HiF is
acyclic for all i. Under these conditions D. Fried [24] has shown that the bundle p∗E is
acyclic, and we have

τ(Tf ; p∗E) =
∏
i

τ(S1;E ⊗HiF )(−1)i

.(41)

Let g be the preferred generator of the group π1(S1) and let A = ρ(g) where ρ : π1(S1)→
GL(V ). Then the holonomy around g of the bundle E ⊗HiF is A⊗ f∗i .

Since τ(E) = |det(I −A)| it follows from (39) that

τ(Tf ; p∗E) =
∏
i

|det(I −A⊗ f∗i )|(−1)i

.(42)

We now consider the special case in which E is one-dimensional, so A is just a complex
scalar λ of modulus one. Then in terms of the rational function Lf (z) we have [24]:

τ(Tf ; p∗E) =
∏
i

|det(I − λ.f∗i )|(−1)i

= |Lf (λ)|−1.(43)

Theorem 35. Let φ : G → G be an automorphism of G, where G is the direct sum
of a finite group and a finitely generated free Abelian group. Then

τ(Tφ̂; p∗E) = |Lφ̂(λ)|−1 = |Rφ(σλ)|(−1)r+1
,

where λ is the holonomy of the one-dimensional flat complex bundle E over S1, r and σ
are the constants described in theorem 5.

Proof. We know from theorem 26 that R(φn) is the number of fixed points of the
map φ̂n. In general it is only necessary to check that the number of fixed points of φ̂n is
equal to the absolute value of its Lefschetz number. We assume without loss of generality
that n = 1. We are assuming that R(φ) is finite, so the fixed points of φ̂ form a discrete
set. We therefore have

L(φ̂) =
∑

x∈Fix φ̂

Index(φ̂, x).

Since φ is a group endomorphism, the trivial representation x0 ∈ Ĝ is always fixed. Let
x be any fixed point of φ̂. Since Ĝ is a union of tori Ĝ0, . . . , Ĝt and φ̂ is a linear map, we
can shift any two fixed points to one another without altering the map φ̂. This gives us
for any fixed point x the equality

Index(φ̂, x) = Index(φ̂, x0)

and so all fixed points have the same index. It is now sufficient to show that Index(φ̂, x0) =
±1. This follows because the map φ̂ : Ĝ0 → Ĝ0 on the torus lifts to a linear map of the
universal cover, which is a euclidean space. The index is then the sign of the determinant
of the identity map minus this lifted map. This determinant cannot be zero, because 1− φ̂
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must have finite kernel by our assumption that the Reidemeister number of φ is finite
(if det(1 − φ̂) = 0 then the kernel of 1 − φ̂ is a positive dimensional subspace of Ĝ, and
therefore infinite).

Corollary 17. Let f : X → X be a homeomorphism of a compact polyhedron X. If
π1(X) is the direct sum of a finite group and a free Abelian group, then

τ(T
(̂f1∗)

; p∗E) = |L
(̂f1∗)

(λ)|−1 = |Rf (σλ)|(−1)r+1
,

where r and σ are the constants described in theorem 9.

10. Concluding remarks

10.1. Reidemeister and Nielsen numbers and zeta functions modulo a normal sub-
group. In the theory of (ordinary) fixed point classes, we work on the universal covering
space. The group of covering transformations plays a key role. It is not surprising that this
theory can be generalized to work on all regular covering spaces. Let K be a normal sub-
group of the fundamental group π1(X). Consider the regular covering pK : X̃/K → X

corresponding to K. A map f̃K : X̃/K → X̃/K is called a lifting of f : X → X if
pK ◦ f̃K = f ◦ pK . We know from the theory of covering spaces that such liftings exist if
and only if f∗(K) ⊂ K. If K is a fully invariant subgroup of π1(X) (in the sense that every
endomorphism sends K into K) such as, for example, the commutator subgroup of π1(X),
then there is a lifting of any continuous map. We may define the mod K-Reidemeister
and Nielsen numbers (see [28]) and zeta functions (see [13]) and develop a similar the-
ory by simply replacing X̃ and π1(X) by X̃/K and π1(X)/K in every definition, every
theorem and every proof, since everything was done in terms of liftings and covering
translations.

10.2. Minimal dynamical zeta function

10.2.1. Radius of convergence of the minimal zeta function. In the Nielsen theory for
periodic points, it is well known that N(fn) is often poor as a lower bound for the number
of fixed points of fn. A good homotopy invariant lower bound NFn(f), called the Nielsen
type number for fn, is defined in [28]. Consider any finite set of periodic orbit classes
{Okj} of varied period kj such that every essential periodic m-orbit class, m|n, contains
at least one class in the set. Then NFn(f) is the minimal sum

∑
j kj for all such finite

sets. Halpern (see [28]) has proved that for all n NFn(f) = min{# Fix(gn) | g has the
same homotopy type as f}. Recently, Jiang [29] found that as far as asymptotic growth
rate is concerned, these Nielsen type numbers are no better than the Nielsen numbers.

Lemma 16 ([29]).

lim sup
n

(N(fn))
1
n = lim sup

n
(NFn(f))

1
n .(44)

Let us consider the minimal dynamical zeta function

Mf (z) := exp
( ∞∑
n=1

NFn(f)
n

zn
)
.
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In [14] it was proved that Mf (z) has positive radius of convergence R. Below we
propose another proof of this fact and give an exact algebraic lower estimate for R.

Theorem 36. For any continuous map f of any compact polyhedron X into itself the
minimal zeta function has positive radius of convergence R which admits the estimates

R ≥ exp(−h) > 0,(45)

R ≥ 1
maxd ‖zF̃d‖

> 0,(46)

and

R ≥ 1
maxd s(F̃normd )

> 0,(47)

where F̃d and h are the same as in section 6.1.

Proof. The theorem follows from the Cauchy-Hadamard formula, lemma 11 and
theorems 24 and 25.

10.3. Open questions

Question 1. For which spaces and maps does equality hold in (34)-(35)?

Sometimes, the minimal zeta function coincides with the Nielsen zeta function, for
example, for a hyperbolic endomorphism of a torus and for an expanding map of an
orientable smooth manifold (see [14]). This motivates the following

Question 2. For which spaces and maps is the minimal zeta function a rational
function? When is it a meromorphic function? When does it have a functional equation?
What zeros and poles does it have?

Question 3. For which spaces and maps do we have a trace formula for Nielsen type
numbers? When do we have the Dold congruences for these numbers? When does equality
hold in the inequalities (45)-(47)?

The trace formulae which we have obtained in this article appear to be very similar to
formulae arising in thermodynamical formalism. The relation of the radius of convergence
with the entropy (theorem 24), Markov partition in the pseudo-Anosov case (theorem 22)
and the relation of the Reidemeister zeta function to the Artin-Mazur zeta function on
the unitary dual space (theorem 26) also indicate a connection with this theory. It is
another open question to understand this connection.
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