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Abstract. We present J. Jezierski’s approach to the Nielsen fixed point theory for a broad
class of multivalued mappings [Je1]. We also describe some generalizations and different tech-
niques existing in the literature.

1. Notations and definitions. Let X,Y be metric spaces. By a multivalued map-
ping Φ : X → Y we mean a transformation Φ : X → 2Y with nonempty compact values.
Many notions known for singlevalued transformations can be generalized to multivalued
mappings. For A ⊂ X the image of A is the set Φ(A) =

⋃
x∈A Φ(x). The set

ΓΦ = {(x, y) : y ∈ Φ(x)}
is called the graph of Φ.

There are several notions of continuity.

Definition 1. The mapping Φ is lower semicontinuous (lsc) (respectively upper
semicontinuous (usc)) if for every open subset V ⊂ Y the set Φ−1(V ) = {x ∈ X :
Φ(x) ∩ V 6= ∅} (respectively Φ−1

+ (V ) = {x ∈ X : Φ(x) ⊂ V }) is an open subset of X. If
Φ is both lsc and usc, then we say that Φ is continuous.

In the singlevalued case these three notions coincide. For basic properties and examples
of usc (lsc) mappings we refer the reader to [AC] or [Gor].

In order to have a nontrivial fixed point theory we have to consider special classes of
multivalued mappings.

Definition 2. A subset A ⊂ X satisfies the ?-property if it is nonempty, connected
and there exists an open neighbourhood U of A such that each loop in U is homotopic
(with fixed ends) in X to a constant loop.
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Definition 3. A multivalued mapping Φ : Y → X is called an m-mapping iff it is
upper semicontinuous and the image of each point has the ?-property in X.

Let us denote by ∆n the standard n-dimensional simplex and by ∂∆n its boundary.

Definition 4. A compact subset A ⊂ X is ∞-proximally connected provided for
every ε > 0 there is δ > 0 such that for any map g : ∂∆n → Oδ(A) there is a map
g̃ : ∆n → Oε(A) such that g(x) = g̃(x) for x ∈ ∂∆n (for any natural n).

If X is an ANR, then the notion of ∞-proximally connected sets is equivalent to the
notion of Rδ-sets (see e.g. [Gor]) . In particular, AR’s are ∞-proximally connected.

Definition 5. An usc mapping Φ : X → Y is called a J-mapping provided all values
Φ(x) are ∞-proximally connected.

2. Reidemeister and Nielsen relations. In this section we assume that a space X
is connected and admits a universal covering. Let us fix a universal covering p : X ′ → X.

Definition 6. A mapping F ′ : Y → X ′ such that the following diagram commutes

Y X

X ′

F

F ′

-
?��

��
��*

is called a lift of the mapping F : Y → X.

The following natural property was proved in [Je1], 1.6.

Theorem 1. Let F : X → X be an m-mapping and let x1, x2 ∈ X ′ be two points such
that p(x2) ∈ F (p(x1)). Then there exists a unique m-mapping F ′ : X ′ → X ′ for which
x2 ∈ F ′(x1) and the following diagram commutes:

X X

X ′ X ′

-

-

? ?F

F ′

p p

Let us denote by L(F ) the set of all m-mappings F ′ : X ′ → X ′ making the above diagram
commutative. We call the elements of L(F ) the lifts of the m-mapping F . Recall that all
lifts of the identity mapping (called deck transformations) form a group isomorphic to
the fundamental group of X. Denote this group by θ. If we fix one element F ′ ∈ L(F ),
then each lift of F is of the form αF ′, where α ∈ θ.

Now we can define an equivalence relation R on the set L(F ):

F ′RF ′′ iff F ′ = γF ′′γ−1 for some γ ∈ θ.

This is the so called Reidemeister relation. Let us denote the set of equivalence classes of
the Reidemeister relation by ∇(F ). The cardinality of ∇(F ) is independent of the choice
of a universal covering of X.

Definition 7. The number of elements in ∇F is called the Reidemeister number of
the mapping F .
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This number is a homotopy invariant ([Je1], 1.12):

Theorem 2. If two m-mappings are homotopic by an m-homotopy, then their Reide-
meister classes are in one to one correspondence.

Now we can define the Nielsen relation in two equivalent ways (comp. [Jia]). Consider
the fixed point set of the m-mapping F : X → X

FixF = {x ∈ X : x ∈ F (x)}.

Definition 8. Let x, x′ ∈ FixF . We say that x and x′ are Nielsen equivalent iff there
exists a lift F ′ ∈ L(F ) such that x, x′ ∈ p(FixF ′). We write x ∼N x′ , and denote the
quotient set by Φ′(F ).

Similarly to the singlevalued case one proves

Theorem 3 (see [Je1]). Let F : X → X be an m-mapping. Then

(i) FixF =
⋃
F ′∈L(F ) p(FixF ′);

(ii) the sets p(FixF ′), p(FixF ′′) are either equal or disjoint for any F ′, F ′′ ∈ L(F );
(iii) p(FixF ′) = p(FixF ′′) 6= ∅ implies that F ′ ∼R F ′′.

Consequently there is an injective mapping from Φ′(F ) to ∇(F ).

Now we turn to the more popular definition of the Nielsen relation. If f : X → X

is a singlevalued mapping then two points x, x′ ∈ Fix f are equivalent iff there is a path
ω : I → X joining them such that ω and fω are fixed end homotopic. We can reformulate
it in the language of the fundamental grupoid. Recall that the fundamental grupoid Π(X)
is a category. Objects of this category are points of the space X and morphisms from x

to x′ are the fixed end homotopy classes of paths joining these two points. We denote
the set of all morphisms between x and x′ by Π(X;x, x′). Every continuous singlevalued
mapping f : X → Y induces a functor Π(f) : Π(X)→ Π(Y ) by

Π(f)(x) = f(x); Π(f)[ω] = [fω].

Proposition 4. Let f : X → X be a continuous singlevalued mapping. Then two
points x, x′ ∈ Fix f are equivalent if and only if the mapping

Π(f) : Π(X;x, x′)→ Π(X;x, x′)

has a fixed point.

Now let X be a connected, locally pathwise connected, semilocally simply-connected
topological space (i.e. admitting a universal covering). Let A0, A1 be two subsets of X
satisfying the ?-property. Then the sets Π(X; a0, a1),Π(X; a′0, a

′
1) are identified as follows:

let Ui be a pathwise connected neighbourhood of Ai as in the ?-property (definition 2)
for i = 0, 1. Let ai, a′i ∈ Ai and let ωi be a path in Ui joining the points ai and a′i. We
identify [α] ∈ Π(X; , a0, a1) with [ω−1

0 ∗ α ∗ ω1] ∈ Π(X; , a′0, a
′
1) and define the quotient

set

Π̂(X;A0, A1) =
⋃

(a0,a1)∈A0×A1

Π(X; a0, a1)/ ∼ .



72 Z. DZEDZEJ

For each a0 ∈ A0, a1 ∈ A1 we denote by

ia0,a1 : Π(X; a0, a1)→ Π̂(X;A0, A1)

the natural bijection.

Definition 9. The generalized fundamental grupoid of the space X is the category
in which objects are subsets of X satisfying the ?-property and Π̂(X;A0, A1) is the set
of all morphisms between the objects A0 and A1. We will denote this category by Π̂(X).

Proposition 5. Let X be a connected space admitting a universal covering and let Y
be a topological space. Then each m-mapping F : Y → X induces a functor

Π̂(F ) : Π(Y )→ Π̂(X)

which coincides with Π(F ) when F is a singlevalued mapping.

Proof. We define Π̂(F )(y) = F (y) for each y ∈ Y . Let [ω] ∈ Π(Y ; y0, y1). Let us
fix a universal covering p : X ′ → X and points x0 ∈ F (y0), x1 ∈ F (y1), x′0 ∈ p−1(x0).
Consider the diagram

I Y X

X ′

- -
?ω F

p

It admits a unique lift ˜(Fω) : I → X ′ such that x′0 ∈ ˜(Fω)(0). Let {x′1} = ˜(Fω)(1) ∩
p−1(x1) and let τ be a path in X ′ joining x′0 to x′1. We define

Π̂(F )[ω] = ix0,x1 [pτ ] ∈ Π̂(X;F (y0), F (y1)).

One checks that the definition is independent of the choice of the points x0, x1, x
′
1 and

the path τ .

Definition 10. Two fixed points x1, x2 of the m-mapping F : X → X are in ∼N ′

relation iff the maps

Π̂(F ), ix1,x2 : Π(X;x1, x2)→ Π̂(X;F (x1), F (x2))

have a coincidence point.

Theorem 6 ([Je1], 3.12). The above relation ∼N ′ is equal to ∼N .

Equivalence classes of the above relation are called Nielsen classes of the mapping F .

3. The Nielsen number. In order to define the Nielsen number one has to define
the notion of an essential class. The best way to do it is to use a fixed point index.
Therefore we have to consider those classes of m-mappings which admit an index theory.

Let X be a metric ANR.

Definition 11. An m-mapping F : X → X is called a Nielsen m-mapping if the
image of each point is a Q-acyclic continuum and the image F (X) is relatively compact
in X.
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For the above class of mappings there exists a fixed point index theory satisfying all
the standard properties (see e.g. [Dz1]).

Let F : X → X be a Nielsen m-mapping and let A be one of its Nielsen classes.
Choose an open set U ⊂ X such that U ∩ FixF = A.

Definition 12. The class A is essential provided i(X,F,U) 6= 0. The number of all
essential classes is called the Nielsen number of F and is denoted by N(F ).

The proofs of two basic properties of the Nielsen number are standard.

Theorem 7 ([Dz1], 9.15). If H : X × I → X is a homotopy in the class of Nielsen
m-mappings, then N(H0) = N(H1).

Theorem 8 ([Dz1], 9.13). A Nielsen m-mapping F : X → X has at least N(F ) fixed
points.

4. Approximation approach. Observe that the property from Definition 4 is
stronger than the ? property if X is an ANR. Therefore our definition of the Nielsen
relation works for the class of J-mappings. Roughly speaking, mappings of this class can
be approximated on the graph by singlevalued transformations, so the Nielsen number
of a J-mapping is just the Nielsen number of its sufficiently close approximation. This
approach has been used in [KrM] for J-mappings and also for their finite compositions.

Let X,Y be two metric spaces. For Γ ⊂ X × Y we will denote by Oε(Γ) the ε-
neighbourhood of Γ in X × Y with the ”maximum” metric.

Definition 13. A continuous mapping f : X → Y is an ε-approximation of a multi-
valued mapping F : X → Y provided

Γf ⊂ Oε(ΓF ).

Theorem 9. Let X be a compact ANR and F : X → Y a J-mapping. Then for any
ε > 0 there exists an ε-approximation of F. Moreover, for each δ > 0 there exists an
ε such that any two ε-approximations of F are homotopic by a homotopy H such that
Ht = H(·, t) is a δ-approximation of F for every t ∈ I.

For the proof we refer the reader to [Gor], [GGK]. We now apply Theorem 9 to define
a fixed point index (a Nielsen number) of F to be the index (the Nielsen number) of a
sufficiently fine approximation of F. This definition does not depend on the choice of the
approximation ([KrM], 6.5).

Remark 1. There are examples in [KrM] showing that if one defines the Nielsen
number in an analogous way for compositions of J-mappings dropping out the assumption
of the type ? then the numbers obtained may depend on the way of composition.

5. Other classes of mappings. There were some attempts to consider other classes
of mappings for Nielsen theory (see [Dz1-2], [Mas], [S1-4]). If we do not assume that images
of points are connected, then we have to consider only continuous (i.e. both usc and lsc)
mappings, as the following simple example shows.
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Example 1. The map F : [−1, 1]→ [−1, 1] given by

F (x) =


{x+ 1, 1} if x < 0,
{−1, 1} if x = 0,
{−1, x− 1} if x > 0,

is usc and has no fixed points.

One can use the following observation of S. Banach.

Proposition 10. Let F : X → Y be a continuous mapping such that for each point
x ∈ X the image F (x) consists of exactly n components. If X is path connected and
simply connected then the graph ΓF has exactly n components and consequently F splits
into n disjoint usc mappings.

This is true, in particular, for n-valued continuous mappings. If we assume that the
components of images of points are Q-acyclic continua satisfying the ?-property, then
we are able to prove a version of Thm. 1 (see [Dz1], 9.4). Therefore one can repeat the
definition of Nielsen relation and Nielsen number after Section 2 and 3 (see [Dz1] for
details).

In general it is hard to expect minimum theorems for multivalued mappings. But for
n-valued continuous mappings the following theorem is true.

Theorem 11 (H. Schirmer [S2]). If X is a compact, connected manifold of dimension
at least 3 and F : X → X is an n-valued continuous mapping, then there exists an n-
valued mapping G homotopic to F such that the number of fixed points of G is equal to
N(F ).

One could try to extend the theory to finite-valued continuous mappings. Unfortu-
nately even the Lefschetz fixed point theorem is not true then. In fact in [Je2] an example
was given of a continuous mapping with values which are either 1- or 2- or 3-point sets
from the two-dimensional disc onto itself without fixed points. However, if we restrict
our attention to simpler combinations (e.g. if the images of points have either one or n
components) then the index theory works (see [Dz1]). Such mappings determine contin-
uous mappings into symmetric products. This approach has been used to build a Nielsen
theory in [Mas], [Dz2], [S3-4]. But the following observation was made in [Mik]. Recall
that the symmetric product Xn is the orbit space of the action of the symmetric group
S(n) on the n-fold Cartesian product Xn by permutation of coordinates.

Proposition 12. If X is a pathwise connected space, then every symmetric product
mapping f : X → Xn has at most one fixed point class.

This is true also in a multivalued setting (see [Dz2]). Using this fact the following
minimum theorem has been proved by H. Schirmer [S4].

Theorem 13. Let X be a compact, connected manifold of dimension at least 3, and
F : X → X a continuous mapping with images of points being either singletons or
two-point sets. Then there exists a mapping G of the same type, which is homotopic to
F with only one fixed point if the Lefschetz number of F is non-zero, and fixed point free
otherwise.
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