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About 30 years ago, Robin Brooks [B1] undertook a study of the coincidence equation

f(x) = g(x) for maps f, g: X → Y . The focus of the subject, as initiated ten years earlier

by Schirmer [S], was the determination of the minimum cardinality of the set of solutions

to the equation f ′(x) = g′(x) among all maps f ′, g′ homotopic to f and g respectively.

Brooks observed that there are two natural special cases of the coincidence equation.

In addition to the well-known fixed point equation f(x) = x, for which X = Y and g

is the identity map, there is what he called the root equation f(x) = a for which g is

the constant map g(x) = a ∈ Y . Thus, given a map f : X → Y and a point a ∈ Y ,

he investigated MR[f, a], the minimum cardinality of the set f ′−1(a) for all maps f ′

homotopic to f . Brooks’ original approach, which arose in the context of coincidence

theory, was published in [BB] and subsequent papers and given an exposition in [K].

However, starting with [B2] (see also [BO]), Brooks presented an equivalent, but in some

ways more convenient, approach to root theory based on covering space theory.

The goals of this paper are to give a more complete account of Brooks’ covering space

approach to root theory than can be found in [B2] and [BO] and to present arguments

for some of the main results of the theory that are more direct than those currently in

the literature. These arguments arose as the result of taking a fresh look at the subject

of root theory independent of its background of coincidence theory and finding that some

technical apparatus that is essential in the more general theory is unneccessary if one

is concerned only with roots. It was a problem to decide how to present this material.

On the one hand, because the results are already known, a detailed, formal exposition

of the material didn’t seem justified. On the other hand, a mere listing of definitions

and results would fail to elucidate the novel features of the covering space approach and

the non-traditional arguments. If we think of root theory as an unfamiliar village that

I am trying to describe to the reader, the detailed exposition would be like listing every
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street and house in the village, which gives the reader a lot of information but little

idea of the overall plan of the village. On the other hand, a listing of definitions and

results is like telling the reader what can be seen of the village while flying over it in a

plane. This exposition will be considerably more detailed than that, including some sort

of argument, generally of a pictorial nature, for each result, but leaving out many of the

details. Thus, as its title indicates, this paper is like the description of the village as seen

from the middle-distance, from the top of a nearby hill for instance. The general plan of

the village and its major landmarks should be clear, but many of the details will remain

obscure. Thus, my objective is to give the reader a pretty good overall idea of what root

theory is like, and also to include enough information about proofs to show what the main

ideas are, but omitting the technical details required to make those arguments entirely

convincing.

We begin with connected finite polyhedra X and Y (root theory can start out in a

more general setting, but we will need to specialize even further later on anyhow), a point

a ∈ Y and a map f : X → Y . Choosing a base point x0 ∈ X and letting y0 = f(x0), we

have the induced homomorphism fπ: π1(X, x0) → π1(Y, y0). Denote the set of paths in Y

that start at y0 by P(Y, y0) and impose an equivalence relation on it by defining paths σ

and τ to be equivalent if σ(1) = τ(1) and the loop σ · τ−1 is homotopic rel y0 to fω for

some loop ω in X based at x0 (see Figure 1).

Fig. 1

We will represent the set of equivalence classes, written 〈σ〉, by Ŷf . With the usual cov-

ering space topology, we have pf : Ŷf → Y given by pf〈σ〉 = σ(1), the covering space corre-

sponding to the subgroup fπ(π1(X)) of π1(Y ), with fiber Coker(fπ) = π1(X)/fπ(π1(Y )),

the cokernel of fπ. There is a natural way to lift f to a map f̂ : X→ Ŷf , namely, for x ∈ X

let αx be any path from x0 to x and define f̂(x) = 〈fαx〉. It is easy to see that it does

not matter which path we choose because, as in Figure 2, for two choices αx and α′

x we

get the same equivalence class in Ŷf since fαx · (fα′

x)−1 is the image of the loop αx ·α′−1

x .

One way to think about covering spaces is as a way of using one of the subgroups of

the fundamental group of a space to spread the space out. Then the fiber over any point

decomposes that point into a discrete set of factors of the point. Since the subgroup for

the covering space Ŷf depends on the map f , I’ll call the points of p−1

f (a), which I denote
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Fig. 2

Fig. 3

by â, the f -factors of a. The closed sets f̂−1(â) ⊆ X are called the root classes of f at a

(see Figure 3).

It follows from these definitions that x, x′ ∈ X are in the same root class if and only

if there is a path ζ from x to x′ such that the loop fζ is homotopic to the constant loop

rel a (see Figure 4).
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Fig. 4

Fig. 5

Fig. 6

Suppose H = {ht}: X × I → Y is a homotopy with h0 = f , then the covering spaces

Ŷf and ŶH are both defined to be spaces of equivalence classes of P(Y, y0) (take (x0, 0)
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Fig. 7

Fig. 8

to be the base point of X × I) but, as Figure 5 demonstrates, they are the same spaces,

that is, Ŷf = ŶH , because a loop in ω in X × I is homotopic to its projection ω0 onto

X × {0}.
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Fig. 9

Thus, when one lifts a homotopy starting at f , it doesn’t matter whether the lift is

thought of as a mapping to the covering space determined by f or by the entire homotopy.

This observation supports the following definition. An f -factor â ∈ p−1

f (a) ⊆ Ŷf of a is

inesssential if there exists a homotopy K̂: X × I → Ŷf such that k̂0 = f̂ and k̂−1

1
(â) = ∅

(see Figure 6); otherwise, â is said to be an essential f -factor of a.

The Nielsen number of roots N(f ; a) is defined to be the number of essential f -factors

of a.

Given a homotopy H : X× I → Y with h0 = f and h1 = g, there is a homeomorphism

h: Ŷg → Ŷf defined by h〈σ〉 = 〈H(x0 × I) · σ〉 (note that composing a path that starts at

g(x0) with the path H(x0 × I) produces a path that starts at f(x0); see Figure 7).

As Figure 8 suggests, h is fiber-preserving.

Furthermore, as we indicate in Figure 9, h carries an inessential g-factor of a to an

inessential f -factor.

Figure 9 is easy to reverse, so we can see why the following is true:

Homotopy Invariance Theorem. If f, g: X → Y are homotopic maps, then

N(f ; a) = N(g; a) and therefore N(f ; a) ≤ MR[f, a].
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From now on we will require that X and Y be connected, closed piecewise-linear (PL)

manifolds of the same dimension, which we denote by n. Since Y is a manifold without

boundary, so also is Ŷf , thus it is homogeneous and, in particular, given f -factors â1

and â2 there is a homotopy ut: Ŷf → Ŷf such that u0 is the identity map and u1 is a

homeomorphism taking â1 to â2. As Figure 10 demonstrates, if â1 is inessential, so also

is â2 and therefore we conclude that either all the f -factors or essential or none are.

Fig. 10

To put it another way

Brooks’ Theorem [B3]. For any map f : X → Y of closed manifolds of the same

dimension, either N(f ; a) equals the cardinality of the cokernel of fπ or else N(f ; a) = 0.

A major result in root theory states that, for manifolds of sufficiently high dimension,

f : X → Y is homotopic to a map with precisely N(f ; a) points in the pre-image of a, that

is, N(f ; a) = MR[f, a]. The first step in proving that result is to make the pre-image

finite. Since we are working with manifolds, we could appeal to transversality theory. A

more elementary argument is the following. Choose a euclidean neighborhood U of a in

Y and make f simplicial with respect to a triangulation of X fine enough so that if the
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image of a simplex intersects a, then any simplex containing that simplex maps into U

(see Figure 11).

Fig. 11

Using the Homotopy Extension Theorem, we can work through the skeleta of X to

homotope the map to a map g′ such that no point in the (n−1)-skeleton of X is mapped

to a by g′. Modifying g′ over the n-simplices that it maps to a by coning, as shown in

Figure 12, we obtain a map g homotopic to f such that g−1(a) is finite.

Fig. 12

Next we recall two standard results about PL manifolds (see [R]). The first comes

from the theory of general position, so we label it by GP:

GP. Let P0 be a PL submanifold of a p-dimensional PL manifold P and let φ: P → M

be a map to an m-dimensional PL manifold M such that the restriction of φ to P0 is an

embedding. If m ≥ 2p + 1 then, given ǫ > 0, there is an embedding of P into M that is

ǫ-homotopic to φ rel P0.

The other result comes from the theory of regular neighborhoods:

RN. If K is a subpolyhedron of an m-dimensional PL manifold M and K is homeo-

morphic to a ball, then the regular neighborhood of K in M is an m-ball and therefore

K lies in a euclidean neighborhood in M .
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We will use these results to prove

Reduction Theorem. Suppose n ≥ 5 and f : X → Y such that f−1(a) is finite.

Given x, x′ ∈ f−1(a) in the same root class, there is a map f ′ homotopic to f with

f ′−1(a) = f−1(a) − {x′}.

We view the homotopy shrinking fζ to the constant loop at a as a map from the disc

D2, as in Figure 13.

Fig. 13

Using GP, we can replace the path ζ by an arc ζ′ and, after adjusting f near x and

x′, we can modify the map (still call it f) so that the image of ζ′ is embedded, except of

course at the endpoints, and the set of roots is unchanged (see Figure 14).

Fig. 14
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Then the hypothesis n ≥ 5 is needed to replace the map of D2 by an embedding so

that, by RN, we know that both the path ζ′ and the image of D2, and in particular the

image of ζ′ under the map, lie in euclidean neighborhoods, as in Figure 15.

Fig. 15

The coneing argument described by Figure 16 allows us to modify f in a neighborhood

of ζ in such a way that only x is mapped to a.

Fig. 16

The reduction argument we gave can be adjusted to hold also in the case n = 4 but in

fact a more sophisticated argument shows that the hypothesis n ≥ 3 is sufficient, though

the result is not true in general when n = 2, see [L].

The Reduction Theorem allows us to replace each nonemply root class of f at a by a

single point. If we further assume that the manifold X is orientable, we can go further:
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Removal Theorem. If X is orientable and â is an inessential f -factor of a such

that f̂−1(â) = x, then f may be homotoped near x to a map f ′ such that f ′−1(a) =

f−1(a) − {x}.

The inessentiality of â gives us K̂: X × I → Ŷf and thus the situation described by

Figure 17.

Fig. 17

Thus letting

jt: X → (X × {t}, (X × {t}) − k̂−1

t (â))

be inclusion, Figure 17 shows us that f̂∗j0∗ = k̂1∗j1∗ = 0. Since the orientability of X

implies that j0: X → (X, X − x) induces an isomorphism, we conclude that the local

degree of f̂ at x is zero. Thus, as Figure 18 indicates, the map f has the same property,

so it can be deformed locally away from a.

The previous two theorems therefore imply, with a restriction on dimension that has

allowed us to use very elementary methods,

Minimality Theorem. If X is orientable and n ≥ 5, then there is a map homotopic

to f : X → Y with precisely N(f ; a) points in the pre-image of a, and so N(f ; a) =

MR[f, a].

An immediate consequence of this result is

Degree Theorem. Suppose X and Y are both orientable and n ≥ 5. If the degree

of f : X → Y is nonzero, then N(f ; a) equals the cardinality of the cokernel of fπ.
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Fig. 18

The reason is that if N(f ; a) is not equal to the cardinality of the cokernel then, by

Brooks’ Theorem, N(f ; a) = 0 and the Minimality Theorem tells us we can homotope f

to a map f ′ with f ′−1(a) = ∅, that is, f ′(X) ⊆ Y − a. But Hn(Y − a) = 0 so the degree

of f ′ and thus of f , equals zero.

The Minimality Theorem does hold for dimensions n ≥ 3, as in [L], but not for n = 2.

However, the Degree Theorem does not really require any dimension restriction, as the

following sketch of an alternative argument indicates. Without a dimension restriction,

we can assume only that f̂−1(â) is finite, but if some â is inessential, and thus all f -factors

are by Brooks’ Theorem, then the composition

Hn(X)
j∗
−→ Hn(X, X − f−1(a))

f̂∗

−→ Hn(Ŷf , Ŷf − â)

is the zero homomorphism. The reason is that if that composition were not zero, then

the homomorphism f̂∗j0∗ that we discussed with regard to Figure 17 would have to be

nonzero for at least one f -factor â. The commutative diagram of Figure 19 completes

this argument because the inclusion induced homomorphims j′
∗

is an isomorphism by the

orientability of Y , so f∗: Hn(X) → Hn(Y ) is again the zero homomorphism.
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Fig. 19
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