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1. Introduction. This paper is an expository paper on G-sequences. Gottlieb [2,3,4]
defined and studied the Gottlieb groups Gn(X) of the homotopy groups πn(X). The
importance of Gottlieb groups is that these subgroups have many applications in topology,
especially, in fibration theory, in fixed point theory, and in the theory of identification of
spaces. For instance, the nontriviality of the Gottlieb group of a finite complex suffices
to ensure the vanishing of the Euler characteristic [2], the triviality of the n-th Gottlieb
group of a space ensures that every fiber space over an (n+ 1)-dimensional sphere with
the space as fiber has a cross section [3] or the condition that the image of an element of
the evaluation subgroup under the Hurewicz homomorphism becomes a generator of the
homology group ensures that the space is homotopy equivalent to Sn [3].

Though several authors [6, 7, 11, 13, 14, 15, 18, 19, 21] have studied and generalized
Gn(X), few Gn(X) are known. The exactness of homotopy sequences plays an important
role in computing homotopy groups. If we can construct an exact sequence containing
the Gottlieb groups, then this sequence can be used in computing these groups.

In order to define such a sequence, we introduce some subgroups of the homotopy
groups πn(A), πn(X) and πn(X,A). First we consider the Gottlieb group Gn(A) as a
subgroup of πn(A). Next if we consider the Gottlieb groupGn(X) as a subgroup of πn(X),
it does not contain the image of Gn(A) under the homomorphism i∗ : πn(A) → πn(X).
Thus we need to introduce a slightly larger subgroup Gn(X,A) of πn(X) containing the
image of Gn(A) (see [6]). As a subgroup of πn(X,A), we introduce a subgroup Grel

n (X,A)
such that Gn(A), Gn(X,A) and Grel

n (X,A) make a G-sequence (see [8,11]).
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In this paper, we examine the difference of Gn(X) and Gn(X,A), the existence of
nonexact G-sequences and the conditions for exactness of the G-sequence of a CW -pair.
We also show some applications of G-sequences and introduce a new homology.

2. Evaluation subgroups. Gottlieb [2,3] introduced the Gottlieb group Gn(X) =
{[f ] ∈ πn(X) | ∃ map H : X × In → X such that [H|x0×In ] = [f ] and H|X×u = 1X

for u ∈ ∂In} as a subgroup of πn(X). He showed this subgroup is equal to the image of
ω∗ : πn(XX , 1X)→ πn(X,x0), where ω : XX → X is the evaluation map.

In particular G1(X) is equal to the Jiang group [5] of X.
Gottlieb also showed that

Gn(Sn) =


0 if n is even,
2Z ⊂ Z = πn(Sn) if n is odd and n 6= 1, 3, 7,
Z = πn(Sn) n = 1, 3, 7.

Since then, many authors studied and generalized Gn(X), for instance, G. E. Lang,
J. Siegel, K. L. Lim, J. Oprea, J. Kim, K. Y. Lee and M. H. Woo and Varadarajan. In
[6], the author and J. Kim generalized Gn(X) to Gn(X,A). This subgroup is defined
by Gn(X,A) = {[f ] ∈ πn(X)| ∃ map H : A × In → X such that [H|x0×In ] = [f ] and
H|A×u = i for u ∈ ∂In} and is equivalent to the image ω∗ : πn(XA, i) → πn(X,x0),
where XA is the space of maps from A to X, i : A→ X is the inclusion and ω : XA → X

is the evaluation map.
Gn(X,A) always contains Gn(X) and

Gn(X,A) =
{
Gn(X) if A = X,
πn(X) if A = {x0}.

In [8], Lee and the author introduced the subgroup Grel
n (X,A) of the relative ho-

motopy group πn(X,A) which is defined by Grel
n (X,A) = {[f ] ∈ πn(X,A)| ∃ map

H : (X × In, A × ∂In) → (X,A) such that [H|x0×In ] = [f ] and H|X×u = 1X for
u ∈ Jn−1},where Jn−1 = In−1 × 1 ∪ ∂In−1 × I. They also showed this group is the im-
age ω∗ : πn(XA, AA, i) → πn(X,A, x0), where AA is the subspace of XA which consists
of maps from A into itself.

Therefore the subgroups Gn(X), Gn(X,A) and Grel
n (X,A) mentioned above are called

evaluation subgroups, generalized evaluation subgroups and relative evaluation subgroups
respectively.

In [22], Zhao used the generalized evaluation subgroups to solve a problem in fixed
point theory. In order to apply the generalized evaluation subgroups to fixed point theory,
we need to compute the generalized evaluation subgroups for many topological spaces.
Especially we need the computations of Gn(X,A) which are proper subgroups of πn(X)
and contain Gn(X) properly.

The following theorem is very useful to compute the generalized evaluation subgroups
of some CW -pairs. We will consider the pair (X × Y, x0 × Y ) (for a fixed x0 ∈ X) which
will be denoted (X × Y, Y ).

Theorem 2.1. Gn(X × Y, Y ) ∼= πn(X)⊕Gn(Y ).
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Proof (sketch).

Gn(X × Y, Y )

= Image of ω∗ : πn((X × Y )Y , i2)→ πn(X × Y )

= Image of ω∗ : πn(XY , c)× πn(Y Y , 1Y )→ πn(X)× πn(Y )

= (Image of ω∗ : πn(XY , c)→ πn(X))× (Image of ω∗ : πn(Y Y , 1Y )→ πn(Y ))

= πn(X)×Gn(Y )

where c is the constant map from Y to X and ω’s are evaluation maps.

Gottlieb showed that Gn(X × X) is isomorphic to Gn(X) ⊕ Gn(X) [3]. It is also
clear that πn(X × X) is isomorphic to πn(X) ⊕ πn(X). The following diagram tells
us the difference between the Gottlieb group, the generalized evaluation subgroups and
homotopy groups.

Gn(X ×X) == Gn(X)⊕Gn(X)
↓∩
y ↓∩

y
Gn(X ×X,X) == πn(X)⊕Gn(X)

↓∩
y ↓∩

y
πn(X ×X) == πn(X)⊕ πn(X),

Corollary 2.2. The pair (X × X,X) has the proper n-th generalized evaluation
subgroup if and only if Gn(X) is a proper subgroup of πn(X).

If we use Theorem 2.1 and the computations of πm(Sn) and Gm(Sm), then we can
compute the generalized evaluation subgroups of the pairs (Sn × Sm, Sm).

By the fact that πn+1(Sn) is cyclic of order 2 for every n = 3 and computations of
Gn(Sn), we have the following.

Example 2.1.

Gn+1(Sn × Sn+1, Sn+1) ∼=


0, n = 1,
Z⊕ Z, n = 2,
Z2, n = 3 and n is odd,
Z2 ⊕ Z, n = 6,
Z2 ⊕ 2Z, n > 3 and n is even and n 6= 6.

By the fact that πn+2(Sn) is cyclic of order 2 for every n = 3 and computations of
Gn+2(Sn+2), we have the following.

Example 2.2.

Gn+2(Sn × Sn+2, Sn+2) ∼=



Z, n = 1,
Z, n = 2,
Z2 ⊕ 2Z, n = 3,
Z2, n > 3 and n is even,
Z2 ⊕ Z, n = 5,
Z2 ⊕ 2Z, n > 5 and n is odd.

The generalized evaluation subgroups satisfy the homotopy invariance property (see
[6]).
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Theorem 2.3. Let (X,A) and (Y,B) be path-connected CW -pairs of the same homo-
topy type. If f : (X,A) → (Y,B) is a homotopy equivalence, then f∗ carries Gn(X,A)
isomorphically onto Gn(Y,B).

Let hp : πn(X) h→ Hn(X;Z)
⊗Zp−→ Hn(X; Zp) be the mod p Hurewicz homomorphism

as composition of the Hurewicz homomorphism h tensored with Zp and h∞ : πn(X) →
Hn(X;R) be the Hurewicz map where R is the field of rationals. In [3], Gottlieb shows
that, for X a topological space with finitely generated homology,

(1) if n is an odd integer, then Gn(X) is contained in the kernel of hp, for any prime
number p or ∞ provided χ(X) 6= 0,

(2) if n is an even integer, then Gn(X) is contained in the kernel of hp, for any prime
number p which does not divide χ(X).

Since Gn(X) is contained in Gn(X,A), we generalize the above results to Gn(X,A).
In order to generalize these, we studied the algebraic structure induced by φ : A×Sn → X

affiliated to some α ∈ Gn(X,A), on the homology, which is a modification of Gottlieb
methods, so that we obtained the following theorems. For the proofs, see [9].

Theorem 2.4. Let A have a finitely generated integral homology and i : A→ X be the
inclusion map which has a left homotopy inverse r. If n is an odd integer, then Gn(X,A)
is contained in the kernel of r∗hp, for any prime number p or ∞ provided χ(A) 6= 0,
where r∗ : Hn(X;Zp)→ Hn(A;Zp) is induced by r.

Theorem 2.5. Let A have a finitely generated integral homology and i : A→ X be the
inclusion map which has a left homotopy inverse r. Suppose p is a prime number which
does not divide χ(A). Then Gn(X,A) is contained in the kernel of r∗hp, for even n.

In [2], Gottlieb showed that G1(X) is contained in the center of π1(X).

Theorem 2.6. Let (X,A) be a CW-pair. Then Grel
2 (X,A) is contained in the center

of π2(X,A). Especially, if A is a connected aspherical polyhedron, then G1(X,A) is also
contained in Z(i∗(π1(A)), π1(X)).

Proof (sketch). Let [g] ∈ π2(X,A), [f ] ∈ Grel
2 (X,A) and H be an affiliated map for

[f ]. If we define a homotopy

G : (I2 × I, ∂I2 × I, J1 × I)→ (X,A, x0)

by

G((t1, t2), s) =
{
H(g(2t1(1− s), t2), (2t1s, t2)) if 0 ≤ t1 ≤ 1

2 ,
H(g(1− (2− 2t1)s, t2), ((2− 2t1)s+ 2t1 − 1, t2)) if 1

2 ≤ t1 ≤ 1,

then we have [g][f ] = [f ][g]. This completes the proof of the first part.
The remaining part is quite analogous to Theorem 10 of [7A, 1].

3. The G-sequence and its exactness. The inclusion map i and the evaluation
map ω induce the following commutative diagram:
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· · · → πn(AA) i∗→ πn(XA)
j∗→ πn(XA, AA) ∂→ πn−1(AA) → · · ·

↓ ω∗ ↓ ω∗ ↓ ω∗ ↓ ω∗
· · · → Gn(A) i∗→ Gn(X,A)

j∗→ Grel
n (X,A) ∂→ Gn−1(A) → · · ·

↓ ∩ ↓ ∩ ↓ ∩ ↓ ∩
· · · → πn(A) i∗→ πn(X)

j∗→ π(X,A) ∂→ πn−1(A) → · · ·
where the top and bottom rows are exact and the middle sequence forms a chain complex.
Thus we have the following.

Theorem 3.1. Gn(A), Gn(X,A) and Grel
n (X,A) form a sequence

· · · → Gn(A) i∗→ Gn(X,A)
j∗→ Grel

n (X,A) ∂→ Gn−1(A)→ · · ·

We call this middle sequence the G-sequence of a CW -pair (X,A). This sequence is
not necessarily exact.

Example 3.1. The G-sequences of (B2 ∨ S1, S1 ∨ S1) and (Zp, S
7) are not exact,

where p : S7→S4 is the Hopf bundle and Zp is the mapping cylinder of p. For the proofs
of these examples, see [11] and [16].

The following theorems give some conditions for the G-sequence to be exact.

Theorem 3.2. Let (X,A) be a CW -pair and the inclusion i : A → X have a left
homotopy inverse. Then the G-sequence of (X,A) is exact.

Proof (sketch). Let us consider the G-sequence for (X,A)

→ Grel
n+1(X,A) ∂→ Gn(A) i∗→ Gn(X,A)

j∗→ Grel
n (X,A)→

Since i has a left homotopy inverse, the G-sequence is exact at Gn(A). Since Gn(X,A)∩
i∗(πn(A)) = i∗(Gn(A)), we have i∗(Gn(A)) = ker(j∗|Gn(X,A)) and hence the G-sequence
is exact at Gn(X,A).

Since the inclusion i : A→ X has a left homotopy inverse, the inclusion ī : AA → XA

given by ī(f) = f has a left homotopy inverse. Thus the diagram

πn(XA, 1A)
j̄∗−→ πn(XA, AA, 1A)yω∗

yω∗

Gn(X,A)
j∗−→ Grel

n (X,A)

is commutative and j̄∗ : πn(XA, i) → πn(XA, AA, i) is an epimorphism. So we have
Grel

n (X,A) = j∗Gn(X,A). Thus the G-sequence is exact at Grel
n (X,A).

Corollary 3.3. If (X,A) is a CW -pair and the inclusion i : A → X has a left
homotopy inverse, then

Gn(X,A) ∼= Gn(A)⊕Grel
n (X,A) for n > 1.

Let Bn be the n-dimensional ball and Sn−1 the boundary of Bn. Even if the inclusion
map i : Sn−1 → Bn does not have a left homotopy inverse, the G-sequence of (Bn, Sn−1)
is exact [10]. From this result, we can show that if the inclusion i : A → X is null
homotopic, then (X,A) has the exact G-sequence.
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Let us consider the homotopy sequence

· · · j∗→ πn+1(X,A) ∂→ πn(A) i∗→ πn(X)→ · · · j∗→ π1(X,A) ∂→ π0(A) i∗→ π0(X)

of a CW-pair (X,A). If the inclusion i : A→ X is homotopic to a constant map, then i∗
is the 0-homomorphism. Thus the connecting homomorphism ∂ is an epimorphism. This
is also true for the G-sequence of (X,A).

Theorem 3.4. Let (X,A) be a CW -pair. If the inclusion i : A→ X is homotopic to
a constant map, then the G-sequence of (X,A) is exact.

Proof (sketch). Consider the following commutative ladder:

· · · → πn(A) i∗→ πn(X)
j∗→ πn(X,A) ∂→ πn−1(A) → · · ·x x x x

· · · → Gn(A) → Gn(X,A) → Grel
n (X,A) → Gn−1(A) → · · ·

for n ≥ 1. Since the inclusion i : A→ X is homotopic to a constant map, i∗|Gn(A) is the
0-homomorphism and j∗|Gn(X,A) is a monomorphism. It is easy to show ∂(Grel

n (X,A)) =
Gn−1(A) for n ≥ 1. Thus we have an epimorphism ∂|Grel

n (X,A) and hence the lower
sequence on the commutative ladder is exact at Gn(X,A) and Gn(A). We also show that
the G-sequence is exact at Grel

n (X,A). It is clear that

image of j∗|Gn(X,A) ⊂ kernel of ∂|Grel
n (X,A).

Since the inclusion i : A→ X is homotopic to a constant map, we can show Gn(X,A) =
πn(X). Thus we have

kernel of ∂|Grel
n (X,A) ⊂ kernel of ∂ = j∗(πn(X))

= j∗(Gn(X,A)) = image of j∗|Gn(X,A).

4. Applications of G-sequences. As an application of the exact G-sequences, we
first show the computation of relative evauation subgroups of the pairs (Sn, Sn−1). Since
πk(Sn, Sn−1) = 0 for 1 < k < n, we have Grel

k (Sn, Sn−1) = 0. By exactness of the
G-sequence of (Sn, Sn−1), we can estimate Grel

n (Sn, Sn−1) as follows.

Theorem 4.1. Grel
n (Sn, Sn−1) 6= 0 for all n ≥ 2. In particular, if n is odd, then

Grel
n (Sn, Sn−1) ∼= Z and if n = 2, 4, 8, then Grel

n (Sn, Sn−1) = πn(Sn, Sn−1) ∼= Z⊕ Z.

Proof (sketch). By Theorem 3.4, the G-sequence of (Sn, Sn−1) is exact. If we
consider the commutative ladder

0 → Gn(Sn, Sn−1)
j∗→ Grel

n (Sn, Sn−1) ∂→ Gn−1(Sn−1) i∗→ 0∥∥∥ y y
0 → πn(Sn)

j∗→ πn(Sn, Sn−1) ∂→ πn−1(Sn−1) i∗→ 0

and Gn(Sn, Sn−1) = πn(Sn) ∼= Z, we have Grel
n (Sn, Sn−1) 6= 0 for all n ≥ 2.

Let n be odd. Then Gn−1(Sn−1) = 0 (see [3]). By exactness of the top row at
Grel

n (Sn, Sn−1), we see Grel
n (Sn, Sn−1) is isomorphic to Z.

For n = 2, 4 or 8, we have Gn−1(Sn−1) = πn−1(Sn−1) ∼= Z. It is easy to show that
Grel

n (Sn, Sn−1) = πn(Sn, Sn−1) using the above diagram and the short Five Lemma.
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Next, we use the exact G-sequence to show that Theorems 2.4 and 2.5 are closely
related to Grel

n (X,A). We know that there is a transformation k : πn(X,A)→ Hn(X,A)
called the Hurewicz homomorphism. Define kp : πn(X,A)→ Hn(X,A)→ Hn(X,A;Zp)
as composition of h tensored with Zp.

Theorem 4.2. Let A be a retract of a CW -complex X. Then Gn(X,A) ⊂ Ker r∗hp

and Grel
n (X,A) ⊂ Ker kp if and only if Gn(X,A) ⊂ Kerhp, where r is the retraction and

hp and kp are the Hurewicz homomorphisms tensored with Zp for all prime numbers p.

Proof (sketch). Consider the following commutative diagram of exact sequences:

→ Grel
n+1(X,A) → Gn(A) i∗→ Gn(X,A)

j∗→ Grel
n (X,A) →ykp

yhp

yhp

ykp

→ Hn+1(X,A;Zp) → Hn(A;Zp) i∗→ Hn(X;Zp)
j∗→ Hn(X,A;Zp) →

Since j∗ is surjective, the sufficiency is trivial.
Conversely, suppose Gn(X,A) ⊂ Ker r∗hp and Grel

n (X,A) ⊂ Ker kp. Then we have
j∗hp(Gn(X,A)) = 0 and hence hp(Gn(X,A)) ⊂ Ker j∗ = Im i∗. Therefore, for every
α ∈ Gn(X,A), there is a β ∈ Hn(A;Zp) such that i∗(β) = hp(α). Since β = r∗i∗(β) =
r∗hp(α) = 0, we have hp(α) = i∗(β) = 0.

In general, the G-sequence is not exact but it is half exact. Thus we can think of the
G-sequence of a CW -pair (X,A)

jn+1
∗→ Grel

n+1(X,A) ∂n+1

→ Gn(A)
in
∗→ Gn(X,A)→ · · · j2

∗→ Grel
1 (X,A) ∂1

→ G0(A)
i0∗→ G0(X,A)

as a chain complex. Finally we apply G-sequences to introduce a new homology. Let
(X,A) be a CW -pair. The ω-homology

Hω
∗ (X,A) = {Hgω

n+1(X,A), Hrω
n+1(X,A), Haω

n (X,A)}n≥0

of (X,A) is defined to be

Hgω
n+1(X,A) = Kernel of jn+1

∗ /Image of in+1
∗

Hrω
n+1(X,A) = Kernel of ∂n+1/Image of jn+1

∗

Haω
n (X,A) = Kernel of in∗/Image of ∂n+1

for n ≥ 0.
By the definition, the ω-homology of a CW-pair is trivial if and only if its G-sequence

is exact. Let A = S1∨S1 and X = B2∨S1. Then we have Hgω
1 (X,A) = Z (see Theorem

3.4 in [11]). Therefore there is a finite CW -pair with nontrivial ω-homology. There is an
example of a finite CW -pair with nontrivial ω-homology in higher dimensions (see [16]).
Let X = K(Z, n) be an Eilenberg-McLane space. It is well known that K(π, n) is an
H-space if π is an abelian group. Thus K(Z, n) is an H-space and (K(Z, n), Sn) becomes
a CW -pair. By a Gottlieb result [3], we have Gn(K(Z, n)) ∼= Z ∼= πn(K(Z, n)). In [17],
we showed the following.

Example 4.1.

Hgω
n (K(Z, n), Sn) ∼=

{
Z for n even,
Z2 for n odd and n 6= 1, 3, 7,
0 for n = 1, 3, 7.
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By Theorems 3.2 and 3.4, we have the following.

Theorem 4.3. Let (X,A) be a CW -pair. If the inclusion i : A → X has a left
homotopy inverse or is homotopic to the constant map, then the ω-homology of (X,A) is
trivial.

Example 4.2. If we identify Sk with {(x1, . . . , xi, . . . , xn+1) ∈ Sn | xi = 0 for
i > k+ 1} for k < n, then the inclusion map i : Sk → Sn is homotopic to a constant map
and hence Hω

∗ (Sn, Sk) = 0 for n > k > 0.

In general, a map between pairs does not induce a homomorphism on ω-homology.
Thus the following theorem gives a condition for a map between pars to induce a homo-
morphism on ω-homology [11].

Theorem 4.4. A map between CW -pairs with a right homotopy inverse induces a
homomorphism on ω-homology.

A triple (X,A,B) is called a CW -triple if (X,A), (X,B) and (A,B) are CW -pairs.
It is well known that the homotopy sequence

· · · → πn(A,B) i∗→ πn(X,B)
j∗→ πn(X,A) ∂→ πn−1(A,B)→ · · ·

of a triple (X,A,B) is exact, where the boundary operator ∂ : πn(X,A) → πn−1(A,B)
is defined as the composite πn(X,A) → πn−1(A) → πn−1(A,B). A space X satisfying
Gn(X) = πn(X) for all n is called a G-space [18]. It is clear every H-space is a G-space,
but the converse is not true.

Lemma 4.5. Let (X,A,B) be a CW -triple. If A is a G-space and the inclusion i :
A→ X is homotopic to a constant map, then we have

i∗(Grel
n (A,B)) ⊂ Grel

n (X,B) for n > 0,

j∗(Grel
n (X,B)) ⊂ Grel

n (X,A) for n > 0

∂∗(Grel
n (X,A)) ⊂ Grel

n−1(A,B) for n > 1.

Proof (sketch). If we consider the following commutative diagram

πn(AB , BB , i) ī∗→ πn(XB , BB , i)yω∗

yω∗

πn(A,B, x0) →
i∗

πn(X,B, x0),

then we obtain i∗(Grel
n (A,B)) ⊂ Grel

n (X,B).
Since A is a G-space and the inclusion i : A → X is homotopic to a constant map,

(X,A) has the exact G-sequence, Gn(X,A) = πn(X) and Gn(A)=πn(A). Thus, we have
the commutative ladder

0 i∗→ πn(X)
j∗→ πn(X,A) ∂→ πn−1(A)→ 0∥∥∥ x ∥∥∥

0 i∗→ Gn(X,A)
j∗→ Grel

n (X,A) ∂→ Gn−1(A)→ 0

and hence j∗(Grel
n (X,B)) ⊂ Grel

n (X,A).
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Since the boundary operator ∂∗ : πn(X,A) → πn−1(A,B) is the composite πn(X,A)
∂→ πn−1(A)

j∗→ πn−1(A,B) and Gn−1(A) ⊂ Gn−1(A,B), we obtain

∂∗(Grel
n (X,A)) = j∗∂(Grel

n (X,A)) ⊂ j∗(Gn−1(A)) ⊂ Grel
n−1(A,B).

By Lemma 4.5, the relative evaluation subgroups Grel
n (A,B), Grel

n (X,B) and
Grel

n (X,A) for a CW -triple (X,A,B) form a sequence

· · · ∂n+1

→ Grel
n (A,B)

in
∗→ Grel

n (X,B)
jn
∗→ Grel

n (X,A) · · · j1
∗→ Grel

1 (X,A)y y y y
· · · → πn(A,B) i∗→ πn(X,B)

j∗→ πn(X,A) · · · j∗→ π1(X,A)

on the assumption that A is a G-space and the inclusion from A to X is null homotopic.
This will be called the G-sequence of a CW-triple (X,A,B).

The following theorem gives a condition for a CW -triple (X,A,B) to have the exact
G-sequence.

Theorem 4.6. Let (X,A,B) be a CW -triple such that A is a G-space. If the inclusion
maps i : A→ X and i : B → A are homotopic to a constant map, then (X,A,B) has the
exact G-sequence.

Proof (sketch). By Theorem 3.4, the CW-pairs (A,B), (X,B) and (X,A) have the
exact G-sequences. Since A is a G-space, we also have Gn(A) = Gn(A,B) = πn(A) for
n ≥ 0. Thus we have the commutative diagram

Gn(B)
i2∗→ Gn(X,A) = Gn(X,B)

j3∗→ Grel
n (X,A) ∂∗→ Grel

n−1(A,B)

i1∗ ↘ i3∗ ↗ j2∗ ↘ ↗ j∗ ↘ ∂3 ↗ j1∗

Gn(A,B) = Gn(A) Grel
n (X,B) Gn−1(A,B) = Gn−1(A)

∂3 ↗ j1∗ ↘ i∗ ↗ ↘ ∂2 ↗ i1∗ ↘ i3∗

Grel
n+1(X,A) →

∂∗
Grel

n (A,B) →
∂1

Gn−1(B)→
i2∗
Gn−1(X,A) = Gn−1(X,B)

consisting of these four sequences arranged in the form of overlapping sine curves. If we
chase the diagram as in the analogous situation in homology theory, we can easily prove
that the G-sequence of (X,A,B) is exact (see p. 163 or p. 208 of [20]).

Corollary 4.7. Let (X,A,B) be a CW -triple. If A is contractible, then (X,A,B)
has exact G-sequence.

Example 4.3. For 0 < l < k < n and k = 3 or 7, the triple (Sn, Sk, Sl) has exact
G-sequence.
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