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The celebrated Lefschetz fixed point theorem gives a sufficient condition, namely that
the Lefschetz number L(f) is nonzero, for the existence of a fixed point of a selfmap
f : X → X on a compact connected polyhedron X. It is well known that if X is a simply
connected manifold then L(f) 6= 0 is also necessary. In other words, the converse of the
Lefschetz theorem holds in this case or equivalently, L(f) = 0 implies that f is deformable
to be fixed point free. For the non-simply connected case, one needs to replace L(f) = 0
with N(f) = 0 where N(f) denotes the Nielsen number of f . It follows from a classical
result of Wecken that N(f) = 0 is sufficient to deform f to a fixed point free map when
X is a manifold of dimension dimX ≥ 3.

In the category of G-spaces and G-maps where G is a compact Lie group, the problem
of equivariantly deforming a G-map to be fixed point free is more complicated. Since
every G-space is made up of subspaces of various isotropy types (G/H) (or simply (H)),
the fixed points of a G-map f is a disjoint union of orbits of fixed points of different types.
For each closed subgroup H ≤ G, the Weyl group WH = NH/H acts on XH = {x ∈
X|σx = x,∀σ ∈ H} and fH := f |XH is a selfmap of XH . Moreover, if h is G-homotopic
to f then hH and fH are homotopic in XH . Therefore, the vanishing of all N(fH) is
necessary for deforming f equivariantly to be fixed point free. Fadell and Wong [FW]
showed that {N(fH) = 0} is also sufficient under some codimension hypotheses. This
result was also proven independently by Borsari and Gonçalves [BoG] using Bredon’s
equivariant obstruction. We should point out that this result in the simply connected
case (XH is simply connected) was proven by Wilczyński [Wi] and independently by Vidal
[V] using equivariant obstruction. The main idea in [FW] is to organize the fixed points
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of a G-map f into orbits and to partition Fixf = {x ∈ X|f(x) = x} into equivariant
fixed point classes each of which is a disjoint union of orbits. A stepwise induction on the
isotropy types (H) and the vanishing of N(fH) allow us to deform f equivariantly to be
fixed point free.

Nielsen fixed point theory for equivariant maps was studied in [W4] and further devel-
oped in [W5] in which techniques from relative Nielsen fixed point theory were employed.
Moreover, its relationship with the Nielsen theory for periodic points was established in
[W5]. (See also the survey article [W1].) On the other hand, Nielsen fixed point the-
ory has been generalized to coincidence theory by Schirmer [S] and to root theory by
Brooks [B]. Recently, equivariant Nielsen fixed point theory of [W4] has been extended
to coincidences of G-maps by Fagundes in [Fa].

One of the central problems in Nielsen fixed point theory is to find useful computa-
tional means for calculating the Nielsen numberN(f). Under the so-called Jiang condition
(see [J]) on a space X, every selfmap f : X → X satisfies one of the following

(C1) L(f) = 0⇒ N(f) = 0;

(C2) L(f) 6= 0⇒ N(f) = R(f)

where R(f) denotes the Reidemeister number of f which is defined algebraically at the
fundamental group level. Thus, (C2) reduces the calculation of N(f) to that of R(f).
(See also section II of [Br].)

The purpose of this paper is to give a brief summary of some results in [W2] and
[W3]. We illustrate how equivariant Nielsen theory can be used to obtain results in non-
equivariant Nielsen fixed point theory. More precisely, we use an equivariant analog of
the Nielsen root theory to show the following which is a special case of a more general
result in [W2].

Theorem A. Let G be a compact connected Lie group, K a finite subgroup and M =
G/K the homogeneous space of left cosets. For any f : M →M , either

(1) L(f) = 0⇒ N(f) = 0; or
(2) L(f) 6= 0⇒ N(f) = R(f).

Furthermore, L(f) = 0 implies that f is homotopic to a fixed point free map.

I would like to thank Daciberg Gonçalves for many stimulating conversations and
for his kind invitation, during the summer of 1996, to the Instituto de Matemática e
Estat́ıstica of the Universidade de São Paulo at which the present work was completed.
I would also like to thank the Banach Center for its hospitality.

1. Equivariant Nielsen root theory. We first review the Nielsen root theory in-
troduced by Brooks in [B] (see also [K]). Given a map ϕ : X → Y between two compact
connected topological spaces and a point a ∈ Y . The solutions of the equation ϕ(x) = a

are called the roots of ϕ and the set of roots is denoted by Γ(ϕ). Given x1, x2 ∈ Γ(ϕ),
we say that x1 and x2 are Nielsen equivalent as roots with respect to ϕ if there exists
a path C : [0, 1] → X with C(0) = x1, C(1) = x2 such that ϕ ◦ C is homotopic to the
constant map ā at a rel the endpoints. Let Γ̃ϕ be the set of equivalence (root) classes.
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Given α ∈ Γ̃ϕ, α is said to be inessential if there exists a neighborhood U and a homotopy
f ∼Ht

ϕ relative to X × [0, 1]− U such that U ∩ Γ(ϕ) = α,H−1(a) ∩ U is compact in U

and Γ(H1) ∩U = ∅. Otherwise, α is essential. We define the Nielsen (root) number of ϕ
to be

N(ϕ; a) := #{essential root classes of ϕ}.

In [B], Brooks showed the following

Theorem 1. If Y is a manifold then either N(ϕ; a) = 0 or N(ϕ; a) = R(ϕ; a) :=
#[π1(Y )/Im(ϕ])] where ϕ] : π1(X) → π1(Y ) is the induced homomorphism on funda-
mental groups.

If X and Y are closed orientable n-manifolds, then a numerical (root) index ω(ϕ;α)
can be defined. Moreover, we have ([B])

Theorem 2. (1) All root classes of ϕ have the same index.
(2)

∑
α∈Γ̃ϕ

ω(ϕ; a) = degϕ.

(3) N(ϕ; a) > 0⇒ N(ϕ; a) = R(ϕ; a).
(4) If n ≥ 3, then N(ϕ; a) = 0⇒ ϕ ∼ f such that Γ(f) = ∅.

Suppose that G is a compact Lie group, X and Y are both compact G-ENRs. Let
F = {(H) ∈ Iso(X)∪Iso(Y )||WH| <∞} where Iso(Z) denotes the set of isotropy types
of a G-space Z. We assume that Y G 6= ∅, XH and Y H are connected (if not empty) for
each (H)∈F . Choose a point a∈Y G. Let ϕ : X→Y be a G-map. For any (H)∈ F , ϕH :
XH → Y H is a WH-map. Given x1, x2 ∈ ΓWH(ϕH) := {x ∈ XH |ϕH(x) = a}, we say
that x1 and x2 are WH-Nielsen equivalent if either x2 = γx1 for some γ ∈WH or there
exists a path C : [0, 1] → XH such that C(0) = x1, C(1) = σx2 for some σ ∈ WH and
ϕH ◦C ∼ ā (in Y H) rel the endpoints. Denote by Γ̃ϕH the set of WH-(root) equivalence
classes. Given α ∈ Γ̃ϕH , we say that α is inessential if there exists a WH-invariant
neighborhood U in XH × [0, 1] and a WH-homotopy F : XH × [0, 1] → Y H such that
F0 = ϕH , U ∩ Γ(ϕH) = α, F−1(a) ∩ U is compact in U and U ∩ Γ(F1) = ∅. Otherwise, α
is said to be essential. Define the WH-Nielsen root number to be

NWH(ϕH ; a) := #{essential WH-essential root classes of ϕH}.

Similarly, one can define a WH-Reidemeister number as follows.
For any (H) ∈ F , let ηXH : X̃H → XH and ηY H : ˜Y H → Y H be the universal

coverings of XH and Y H , respectively. Let

Ĝ(XH) := {σ ∈ Homeo(X̃H)|ηXH ◦ σ = σ̄ ◦ ηXH , σ̄ ∈WH};

Ĝ(Y H) := {σ ∈ Homeo( ˜Y H)|ηY H ◦ σ = σ̄ ◦ ηY H , σ̄ ∈WH}.
It follows that we have the following exact sequences of groups:

1→ π1(XH)→ Ĝ(XH)→WH → 1,

1→ π1(Y H)→ Ĝ(Y H)→WH → 1.

The map ϕH : XH → Y H induces a homomorphism on fundamental groups and hence a
homomorphism ϕH : Ĝ(XH)→ Ĝ(Y H). Let ã ∈ η−1

Y H (a). Since σ̄a = a for all σ̄ ∈ WH,
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there is a unique homomorphism τH : WH → Ĝ(Y H) such that τH(σ̄)(ã) = (ã) and
τH(σ̄) covers σ̄. In particular, if σ̄ is the identity in WH, τH(σ̄) = 1 ˜Y H . Then, Ĝ(XH)
acts on π1(Y H) via

σ · β = τH(σ̄)βϕH(σ)−1

where σ ∈ Ĝ(XH), σ covers σ̄ and β ∈ π1(Y H).
We define the WH-Reidemeister (root) number of ϕH to be the number of orbits of

this action and denote it by RWH(ϕH ; a).
Under appropriate hypotheses ([W3]), equivariant analogs of Theorem 1 and of The-

orem 2 are proven. Furthermore, ϕ ∼G f with Γ(f) = ∅ if and only if degϕH = 0 for
each (H) ∈ F . For the purpose of our application in section 2, we need only the following
special case.

Theorem 3. Let X and Y be closed orientable smooth K-manifolds of dimension n

where K is a finite group. Suppose that K acts on X and on Y as orientation preserving
homeomorphisms and K acts freely on X. Let a ∈ Y K 6= ∅ and ϕ : X → Y be a K-map.
Then

(1) degϕ ≡ 0 mod |K|;
(2) degϕ = 0⇒ NK(ϕ; a) = 0;
(3) if degϕ 6= 0 then all K-root classes of ϕ are essential; their root indices have the

same sign and NK(ϕ; a) = RK(ϕ; a).

The basic idea in proving Theorem 3 is to use Theorem 2 together with the concept
of orbits as in equivariant Nielsen fixed point theory. Without loss of generality, we may
assume that #Γ(ϕ) < ∞. Then Γ(ϕ) is partitioned into K-root classes R1, . . . , Rm. It
follows from the definition of Ri that if α is an ordinary root class of ϕ (forget the
K-equivariance) then there exists a unique j, 1 ≤ j ≤ m such that α ⊂ Rj . In other
words, each Rj is a disjoint union of ordinary root classes. On the other hand, for each j,
Rj is a disjoint union tOjr of K-orbits of roots. Since K acts freely on X as orientation
preserving homeomorphisms, the root index of each point on a single K-orbit Ojr is the
same. Thus, by (2) of Theorem 2, |K| must divide degϕ and hence (1) is established.
It follows from (1) of Theorem 2 that degϕ = 0 implies that every ordinary root class
of ϕ has zero root index. Thus, each Rj has zero root index and hence is inessential.
This proves (2). In the case when degϕ 6= 0, every Rj has root index equal to a positive
integral multiple kj of ω where ω is the root index of a single ordinary root class of ϕ.
Since kj may vary with j, 1 ≤ j ≤ m, we conclude only that the root index of Rj have
the same sign. The assertion NK(ϕ; a) = RK(ϕ; a) is similar to (3) of Theorem 2.

2. Application to homogeneous spaces. Let G be a compact connected Lie group
and K a finite subgroup. The homogeneous space M = G/K of left cosets is an orientable
manifold. The subgroup K acts freely on G via k◦g = gk−1 and on M via k∗gK = kgK.
Fadell observed [F] that for every map f : M → M , there is an associated K-map
ϕ : G → M given by ϕ(g) = g−1f(gK). Conversely, given a K-map ϕ : G → M , we
associate to it a map f : M → M given by f(gK) = gϕ(g). Thus, f(gK) = gK if and
only if ϕ(g) = eK where e ∈ G is the identity element in G. In fact, we have
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Theorem 4 ([W2]). There is a 1-1 correspondence between the fixed point classes of
f and the K-root classes of ϕ. Furthermore, R(f) = RK(ϕ; eK) where R(f) denotes the
Reidemeister number of f .

We now give a sketch of proof of Theorem A.

Case I. Suppose dimM≥3. Without loss of generality, we may assume that #Fixf =
N(f). Let Fixf = {g1K, . . . , gmK} where gi ∈ G and m = N(f). By Theorem 4, the
K-map ϕ, which corresponds to f , has O1, . . . ,Om as K-root classes where Oi is the
K-orbit of gi, i = 1, . . . ,m. A straightforward calculation shows that the fixed point
index i(f, gjK) coincides with the numerical root index ω(ϕ; gj). Since the K-action on
G is orientation preserving, it follows that ω(ϕ; gj) = ω(ϕ; k ◦ gj) for all k ∈ K. By (2)
of Theorem 2, we conclude that

(∗) degϕ =
m∑
j=1

|K| · ω(ϕ; gj).

By (3) of Theorem 3, degϕ 6= 0 if and only if all ω(ϕ; gj) are nonzero and have the same
sign. That is, degϕ 6= 0 if and only if all i(f, gjK) are nonzero and have the same sign.
This is equivalent to L(f) 6= 0. Therefore, Oj is essential as a K-root class of ϕ if and only
if gjK is essential as a fixed point class of f . In other words, NK(ϕ; a) = N(f) = m. It
follows from (3) of Theorem 3 that L(f) = 0⇒ N(f) = 0 and L(f) 6= 0⇒ N(f) = R(f).
In the case when L(f) = 0, N(f) = 0 implies that f is deformable to be fixed point free.

Case II. Suppose dimM = 2. Then M is the torus and the results are well-known.

Corollary B. For any selfmap f : M →M ,

|K| · L(f) = degϕ

where ϕ : G→M is the corresponding K-map.

Proof. This follows directly from (∗) since
m∑
j=1

ω(ϕ, gj) =
m∑
j=1

i(f, gjK) = L(f).

Corollary B generalizes a result of Duan [Du] in which the formula L(f) = degϕf was
proven, where f : G→ G,ϕf (g) = g−1f(g) and G is a compact connected Lie group.

Remark 1. In [W2], we show that Theorem A holds in general for any closed
subgroup K with M = G/K orientable and p∗ : Hn(G) → Hn(M) nonzero where
n = dimM . The technique used in Theorem A cannot be readily extended to coincidences
of two selfmaps on M . A different approach using C-nilpotent actions has been devised
in [GW] so that Theorem A is extended to coincidences of a pair of maps f1, f2 : M →M

and hence an alternative proof of Theorem A is given.
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[BoG] L. Borsari and D. Gonçalves, G-deformation to fixed point free maps via obstruction
theory , unpublished (1989).



258 P. WONG

[B] R. Brooks, Certain subgroups of the fundamental group and the number of roots of
f(x) = a, Amer. J. Math. 95 (1973), 720–728.

[Br] R. F. Brown, Nielsen fixed point theory on manifolds, these proceedings.
[Du] H. Duan, The Lefschetz number of selfmaps of Lie groups, Proc. Amer. Math. Soc.

104 (1988), 1284–1286.
[F] E. Fadell, Two vignettes in fixed point theory , in: Topological Fixed Point Theory and

Applications (Tianjin, 1988), B. Jiang (ed.), Lecture Notes in Math. 1411, Springer,
Berlin, 1989, 46–51.

[FW] E. Fadell and P. Wong, On deforming G-maps to be fixed point free, Pacific J. Math.
132 (1988), 277–281.

[Fa] P. Fagundes, Equivariant Nielsen coincidence theory , in: 10th Brazilian Topology
Meeting (São Carlos, 1996), P. Schweitzer (ed.), Matemática Contempor̂anea 13, So-
ciedade Brasileira de Matemática, Rio de Janeiro, 1997, 117–142.
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