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Introduction. The general trend of the geometric function theory in Rn is to gen-

eralize certain topological aspects of the analytic functions of one complex variable. The

category of mappings that one usually considers in higher dimensions are the mappings

with finite distortion, thus, in particular, quasiconformal and quasiregular mappings.

This program, whose origin can be traced back to the works of M. A. Lavrentiev (1938),

L. V. Ahlfors (1954), F. W. Gehring (1961), J. Väisälä (1961) and Y. Reshetnyak (1966),

was held by an important school of Finnish geometers in the 1970’s, led by O. Martio,

S. Rickman and J. Väisälä. For a recent account see [Ri] and [Vu].

But in this drive towards generalizations of analytic functions, one aspect has been

quite neglected. This is the fact that the mappings in question solve important first

order systems of PDEs analogous in many respects to the Cauchy-Riemann equations.
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The solutions of these systems can be viewed as “absolute” minimizers of certain energy

functionals. It is striking how tight the connection is between quasiregular mappings and

the development of the nonlinear elasticity theory whose mathematical principles were

already formulated by S. S. Antman [A] and J. Ball [B] in 1976–77. Roughly speaking, the

theory of elasticity studies mappings, referred to as deformations of elastic bodies, which

minimize the so-called stored energy functionals. These functionals are not always convex

and the deformations need not be quasiconformal but the governing PDEs are much the

same. The Jacobian determinant, in particular, has been subjected to a great deal of in-

vestigation. We shall give a brief account of this study together with some generalizations

concerning wedge products of closed differential forms. The latter arise naturally in the

theory of compensated compactness by F. Murat [Mu1] and L. Tartar [Ta].

A fruitful idea when studying quasiconformal mappings is to view them as conformal

with respect to certain measurable Riemannian metric structures. This is a view which

we shall largely adopt and extend to manifolds suitably. It is a deep result of D. Sullivan

that all topological n-manifolds, n 6= 4, admit quasiconformal structures. As instances,

following S. Donaldson and D. Sullivan [DS] one can develop a measurable Yang-Mills

theory and analogues of the Atiyah-Singer index theory. A clear need has emerged to

consolidate these approaches. This program stays beyond the confines of the present

lectures, though we hope to call on it in the nearest future.

One key for the understanding and creation of new types of PDEs for mappings of

finite distortion lies in the constant development and refinement of the de Rham cohomol-

ogy theory which includes nonlinear boundary value problems on manifolds. We dignify

these equations by calling them the Hodge systems. In this way all the equations relevant

to quasiconformal mappings can be represented in a concise and elegant manner by using

differential forms. In a way, this is a statement of my recent approach to quasiconformal

analysis and nonlinear PDEs. It is important to realize that this task required a supreme

effort on the part of my recent students and scholars. I would like to give special thanks

to Chad Scott, Len Budney, Ray DeCampo, Luigi Greco and Bianca Stroffolini. I hope

that my enthusiasm for certain ideas will infiltrate the minds of a few new students. That

is the best we could get in return.

Our lecture will begin with a brief overview of the theory pointing out some of the

highlights and new terminology. It is intended to spark subsequent questions; many of

them are new and appear here for the first time.

1.Quasiregular mappings. It is advantageous to discuss the quasiregular mappings

in the context of the Riemannian manifolds. This more general setting provides a suitable

framework for better understanding the forthcoming PDEs in the Euclidean domains

as well.

Let X and Y be C∞-smooth oriented Riemannian manifolds of dimension n ≥ 2. We

do not reserve any particular notation for the metric tensors on X and Y as these tensors

are fixed for the duration of our discussion. They appear implicitly when we speak of

norms and inner products of vectors in the tangent spaces TxX and TyY . The volume

forms on X and Y , denoted by dx and dy, will be the ones induced by the orientation
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and the metric tensors. We shall consider mappings f : X → Y in the Sobolev space

W 1,p(X,Y ). Be aware of nuances concerning this space; C∞(X,Y ) need not be dense

in W 1,p(X,Y ) when 1 ≤ p < n. This case was settled by F. Bethuel only eight years

ago [Be], confront it with Question 11 here. The differential Df(x) : TxX → TyY ,

y = f(x), is defined almost everywhere. Most of the time we shall assume that the

Jacobian determinant J(x, f) = detDf(x) is nonnegative and refer to such mappings

as orientation preserving. The linear distortion function K( , f) : X → [1,∞] is then

defined by

(1) K(x, f) =
max{|Df(x)ξ|; ξ ∈ TxX, |ξ| = 1}
min{|Df(x)ξ|; ξ ∈ TxX, |ξ| = 1}

.

Here at some points the differential Df(x) may not be defined or the indefinite quo-

tient 0
0 may occur and, as a convention, we understand K(x, f) to be equal to 1 in such

cases.

Definition 1. An orientation preserving mapping f ∈ W 1,p(X,Y ) is said to have

finite distortion if K(x, f) < ∞ a.e. It is K-quasiregular (1 ≤ K < ∞) if its maximal

dilatation K(f) = esssup{K(x, f); x ∈ X} does not exceed K. A homeomorphism which

is K-quasiregular is called K-quasiconformal.

Needless to say the natural Sobolev exponent here is the dimension of the manifolds;

mappings of finite distortion in W 1,n(X,Y ) are continuous [VG]. The case 1 ≤ p < n,

having a great effect on the removability of singularities [I 1], [IM 1], has to be treated

seriously as well. The removability questions were the subject of my prior survey articles

and we will not go into it here [I 2,3], see also [IMNS]. Strangely, the case below the

natural exponent takes great cleverness to deal with; it leads to the so-called very weak

solutions of PDEs [IS2], [L]. It is in this context that the Lp-theory comes into its own

and gives rise to a number of problems. The classical references to the general theory of

quasiregular mappings are: [V], [Re2], [BI], [HKM] and [Ri].

2.The Beltrami equation. Since tangent spaces are furnished with an inner product

it makes sense to speak of the transposed differential Dtf(x) : TyY → TxX. In nonlinear

elasticity, the bundle endomorphism C = Dtf Df : TX → TX is referred to as the

right Cauchy-Green strain tensor. In many instances this parallels the distortion tensor

G : TX → TX in quasiconformal theory defined by: G(x) = J(x, f)−
2
nC(x) if Df(x)

exists and is nonsingular and G(x) = I otherwise. The fundamental interplay between

mappings of finite distortion and nonlinear PDEs is established via the Beltrami equation

(2) Dtf(x)Df(x) = J(x, f)
2
nG(x).

That f solves this equation is, of course, a tautology. Nevertheless, we are hoping to

investigate mappings of finite distortion by viewing them as solutions of this PDE and

by respecting the ellipticity condition

(3) K2−2n|ξ|2n ≤ 〈G(x)ξ, ξ〉n ≤ K2n−2|ξ|2n

with K = K(x, f) ≥ 1, and ξ ∈ TxX.
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We shall regard G as a new measurable conformal structure on X, so we can legit-

imately quote f as conformal with respect to this structure. The complexities of the

measurable conformal structures are formidable indeed, due mainly to the difficulty in

defining the curvature tensor. On the other hand, topologically interesting mappings

(branch sets) occur only in the presence of measurable structures. And here is the vital

point: certain ideas of conformal geometry can be carried over to the measurable Rie-

mannian structures without the necessity of differentiating the metric tensor. This simple

observation is at the heart of our method. In order to gain some benefit from the Beltrami

equation we would have to derive new equations from it.

3.The Beltrami-Dirac equation. We shall take a little time to trace our earlier

investigations [IM1], [I], [Ma] that led us to the governing PDEs. Let ∧lX, l = 0, 1, . . . , n,

denote the lth-exterior power of the cotangent bundle overX. Sections of ∧lX, denoted by

Γ(∧lX), are the l-forms on X. Continuing in this fashion the symbols C∞(∧lX), Lp(∧lX)

W 1,p(∧lX), etc. for corresponding subspaces of Γ(∧lX) become self-explanatory.

The exterior derivative d : C∞(∧l−1X) → C∞(∧lX) and its formal adjoint d? =

(−1)nl+1 ? d? : C∞(∧lX) → C∞(∧l−1X) are the fundamental differential operators on

forms. Here ? : ∧lX → ∧n−lX stands for the Hodge star duality operator. More natural

domains for d and d? will become perfectly clear in the sequel. One more space of concern

to us consists of harmonic fields on the target manifold Y , denoted by Hl(Y ) = {θ ∈
C∞(∧lY ), dθ = d?θ = 0}.

We can now recall a K-quasiregular mapping f ∈ W 1,n(X,Y ). Its distortion tensor

G : TX → TX induces a symmetric positive definite bundle automorphism G# : ∧lX →
∧lX, that is: K−a|ξ|2n ≤ 〈G#ξ, ξ〉n ≤ Ka|ξ|2n, a = 2l(n − l), for all ξ ∈ Γ(∧lX). This

is just another way of saying that f is K-quasiregular. In local coordinates, G#(x) is

represented by a matrix of size
(
n
l

)
×
(
n
l

)
whose entries are the l × l-minors of G(x).

Associated with a quasiregular mapping f ∈ W 1,n(X,Y ) is the pullback of l-forms

f# : C∞(∧lY )→ Lp(∧lX) with p = n
l . Worth noting is the commutation rule d ◦ f# =

f# ◦ d. An interplay between the Hodge star operator and the pullback is essential for

the derivation of the governing PDEs. To this end, let us fix an arbitrary harmonic field

θ∈Hl(Y ). By virtue of the commutation rule, the pullbacks f#(θ) and f#(?θ) are closed

forms on X. With the aid of the Hodge–de Rham theory we can express them (locally)

as:

(4) f#(θ) = du, d?u = 0 and ? f#(?θ) = d?v, dv = 0.

Now, the differential forms u ∈ W 1,p(∧l−1X) and v ∈ W 1,q(∧l+1X), 1
p + 1

q = 1, will be

the unknowns of our equations. One can look at them as multi-dimensional analogues

of the real and imaginary part of a holomorphic function. First we take up the case of

a conformal mapping f ∈W 1,l(X,Y ) in even dimension n = 2l. The equations obtained

for u and v are extremely simple:

(5) du = d?v and d?u = dv = 0.

In particular, both u and v are harmonic forms, consequently C∞-smooth.
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It hardly matters how we choose the underlying field θ ∈ Hl(Y ); our equations depend

purely upon the differential. We indulge ourselves by putting on stage some simple ones.

Fix orthonormal bases in TxX and TyY , y = f(x), then represent Df(x) : TxX → TyY

as a square 2l × 2l-matrix. We infer from (5) the following relations:

(6) Df(x) =

[
A(x) B(x)
C(x) D(x)

]
,

{
detA = detD
detB = (−1)l detC

where A,B,C and D are the l × l-submatrices. Notice the resemblance to the Cauchy-

Riemann system in R2. When the rows and columns are permuted in Df(x), more linear

relations between the l×l-minors are obtained. In much the same way the general Beltrami

equation (2) in dimension n = 2l when lifted to the exterior bundle ∧lX involves linear

equations with measurable coefficients for the l× l-minors of the matrix Df . On the level

of the differential forms these equations are:

(7) du = G# d?v, d?u = dv = 0.

In the light of these examples a search for linear PDEs in odd dimensions becomes quite

appealing.

Question 1. Do there exist nonlinear forms with respect to Df which solve linear

partial differential equations?

Of particular interest would be to find such forms which are homogeneous of degree n
2

with respect to Df . The search for them is strongly motivated by the regularity problems

(Liouville’s Theorem, etc.) in quasiconformal analysis. Until very recently, every attempt

had met with failure. Well, certain newly discovered conformations of the first order

partials of the Möbius mappings in Rn turn out to satisfy the Laplace equation. In case

n = 2l these conformations are exactly the l × l-minors of Df . It appears likely that

within the next few years there will be much progress in elucidating what such quantities

really are. Successively more refined attempts along these lines might eventually lead to

a full set of the governing PDEs.

There is always further to go. Without getting into details we regard u and v as

sections of the whole Grassmann algebra bundle ∧X = ⊕ ∧l X. Then there are elliptic

Dirac operators ∂ = d − d? and ∂ = d + d?, defined on W 1,p(∧X). Equations (7)

consolidate into a single one:

∂(u+ v) = Q ∂(u+ v), with Q =
I −G#

I +G#
: ∧lX → ∧lX, ‖Q‖L∞ < 1.

This simple observation finds its generalization in the so-called Beltrami-Dirac equation:

(8) ∂w = Q ∂w for w ∈W 1,p(∧X),

where Q : ∧X → ∧X is now an arbitrary linear bundle map such that ‖Q‖L∞ < 1.

In many respects this seems to be an excellent extension of the familiar complex

Beltrami equation to all dimensions, though there is still room for variations of it [DS],

[IM 1], [I 3]. The whole program is similar in spirit to Bojarski’s work in the complex

plane [Bo]. Continuing this analogy we must first establish a firm foundation for the

regularity theory of the Beltrami-Dirac equation.
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A principal feature of this new setting, unlike the nonlinear ones, is that the existence

questions are fairly easy to deal with by the methods of elliptic PDEs. There seem to

be, just as in [As] and [EH], certain fundamental patterns which in the end will yield

qualitative Lp-estimates. It is quite relevant here to bring up the signature operator

S : Lp(∧lX) → Lp(∧lX) which permutes ∂ and ∂; in symbols S ◦ ∂ = ∂, see [IM1]

and [LM]. This operator, also known as Beurling-Ahlfors transform, has been a source

of new studies for many analysts, and much creative effort has gone into trying to com-

pute the p-norms of S [IM 2], [BL], [BW], [Li]. We will encounter related questions in

Section 5.

To conclude this topic, let us take a look at some relations between the l-forms du and

d?v when l is not half of the dimension. In this case du and d?v are coupled nonlinearly:

(9) d?v = H (du),

where H : ∧lX → ∧lX is a given bundle map. Following the lead of the classical p-

harmonic operator we notice that H is homogeneous of degree p− 1:

H(tξ) = tp−1H(ξ), with p =
n

l
.

Here are more conditions:

|H(ξ)−H(ζ)| ≤M |ξ − ζ|(|ξ|+ |ζ|)p−2,

〈ξ − ζ,H(ξ)−H(ζ)〉 ≥ m|ξ − ζ|2(|ξ|+ |ζ|)p−2,

for all ξ, ζ ∈ Γ(∧lX) and t ≥ 0, where 0 < m ≤ M are constants. We refer to (9) as a

Hodge system and to the pair (du, d?v) ∈ Lp(∧lX)×Lq(∧lX), p+q = pq, as H-conjugate

fields. Questing for further evidence of H-conjugate fields leads to a nonlinear Hodge–

de Rham theory on manifolds with boundary [ISS], but it would take us a bit afield to

present this theory here.

H-conjugate fields can be uncoupled by applying the operators d and d? to the Hodge

system. It results in the second order elliptic equations

d?H(du) = 0 and dH−1(d?v) = 0.

They are certainly interesting from the PDEs and nonlinear potential theory perspective.

However, such research no longer has as its goal to provide a solid underpinning for the

quasiconformal theory. Regularity questions remain perfectly valid for the second order

equations, in that they always lead to new estimates for quasiconformal mappings. But

this seems to be a far less geometric route than the suggestions via the Beltrami-Dirac

equation.

4. A quest for compactness. Many constructions in analysis and topology rely

on limiting processes and the quasiconformal theory is no exception. At this point of

development we do not yet have a well-defined list of compactness results for families

of mappings with finite distortion. As an extreme example, it has been widely believed

that the class of K-quasiconformal mappings in Rn is closed with respect to uniform

convergence. This is not unexpected; it parallels precisely what happens in the complex

plane. Unfortunately, most recent examples refuted this belief [I 4].
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Theorem 1. For each dimension n ≥ 3 and dilatation K > 1, there exists a sequence

of quasiconformal mappings fj : Rn → Rn, K(x, fj) ≡ K for j = 1, 2, . . ., converging

uniformly to a linear map f : Rn → Rn whose dilatation is greater than K.

A cause of this anomaly is the failure of the rank-one-convexity of the linear distortion

function in dimensions greater than 2. Let Rn×n denote the vector space of real n × n-

matrices endowed with the norm |A| = max{|Ax|; |x| = 1}. A function K : U → R,

defined on an open set U ⊂ Rn×n, is said to be rank-one-convex at A ∈ U if for every

rank-one matrix T ∈ Rn×n the real function t 7→ K(A + tT ) is convex near zero. In

conformity with (1) the linear distortion function is defined on matrices with positive

determinant by

K(A) = |A||A−1| = max{|Aξ|; |ξ| = 1}
min{|Aξ|; |ξ| = 1}

.

What Theorem 1 tells us, in particular, is that the standard Teichmüller metric approach

to topology on the spaces of deformations for hyperbolic surfaces may have no counterpart

in dimensions greater than two. One might ask:

Question 2. What is the best possible estimate of the dilatation of the limit map?

At present [GI] the best known result is that

(10) K(f) ≤ lim
j→∞

[
K(fj) +Kn−1(fj)

2

] 2
n

and we conjecture that this estimate is best possible. Thus, in particular, we see that

the dilatation of the limit map does not depend on the dimension, precisely we have

K(f) ≤ [ lim
j→∞

K(fj)]
2,

see also [V2] and [Ri]. This latter result might be central in the development of the

infinite dimensional geometric function theory. There are alternatives galore:

Theorem 2. Let fj : X → Y be mappings of finite distortion, precisely it means that

there are distortion functions Kj : X → [0,∞) such that

|Dfj(x)|n ≤ [Kj(x)]n−1 J(x, fj) a.e. for j = 1, 2, . . .

Assume that Kj are integrable and converge weakly to K in L1(X), while fj → f weakly

in W 1,n(X,Y ). Then the above inequality remains valid for the limit map.

This result is new even in the classical case when the distortion functions are uniformly

bounded, say Kj(x) = K(x) ≤M for all j=1, 2, . . . and x ∈ X. Critical for the proof was

the observation that the matrix function, A 7→ (|A|n/detA)
1

n−1 , detA > 0, is polyconvex,

that is, convex with respect to the variables (detA,A) ∈ R+×Rn×n. There are, of course,

many more distortion functions of interest. The general question which we are facing is:

Question 3. Which distortion functions are lower semicontinuous with respect to the

weak convergence in W 1,n(X,Y )?

5. Sharp Lp-estimates versus variational integrals. As we said earlier, with

reference to the Beurling-Ahlfors transform S : Lp(∧lRn) → Lp(∧lRn) the regularity
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theory [IM 1], [I 1], removable singularities [IMNS], distortion of Hausdorff dimension

under quasiconformal mappings and so on, depend strongly on the p-norms of S. In

dimension n = 2 the utility of such estimates was already well understood due to the

inequality

(11)

∫
C
|fz̄|p ≤ App

∫
C
|fz|p, 1 < p <∞,

for complex functions f ∈ W 1,p(C). A longstanding conjecture asserts that the smallest

constant here is: Ap = max{p − 1, 1
p−1}. It occurred to us that Ap might very well be

the norm of S in all dimensions. In our attempt to answer this question, we have devel-

oped an effective method to secure dimension free estimates for some vector-valued Riesz

transforms such as the signature operator S : Lp(∧1Rn) → Lp(∧1Rn) and many others

[IM 2]. As a side benefit, we have identified the p-norms of the scalar Riesz transforms

in Rn. Other estimates, combined with the Fredholm index theory, have led us to new

results for the linear elliptic PDEs with VMO-coefficients [IS 3]. But we cannot enter this

topic here. In this section we shall take advantage of a new framework for the inequality

(11) and similar ones in higher dimensions.

In a remarkable piece of work on sharp inequalities for martingales D. Burkholder

[Bu] came up with a mysterious-looking inequality:

(12) (p− 1)p−1[(p− 1)|fz| − |fz̄|](|fz|+ |fz̄|)p−1 ≤ pp−2[App|fz|p − |fz̄|p], p ≥ 2.

What can one make of this? Well, the sharp constant in inequality (11) would follow

from an affirmative answer to the following:

Question 4. For f ∈W 1,p(C) with p ≥ 2, does the following inequality hold

(13)

∫
C

[(p− 1)|fz| − |fz̄| ](|fz|+ |fz̄|)p−1 ≥ 0 ?

Equality occurs here when for instance f(z) = zρ(|z|2), where ρ is a decreasing func-

tion of class Lp(0,∞) for which t 7→ tρ(t) is increasing [BM-S]. As a matter of fact, these

functions are among the stationary points for the corresponding Euler-Lagrange equation.

The reason for preferring (13) to (11) is simply that the integrand, regarded as a func-

tion of the differential matrix Df , is rank-one-convex, which makes the Euler-Lagrage

equation elliptic. We now recall an outstanding conjecture in the Calculus of Variations;

for n = 2 rank-one-convexity implies quasiconvexity (not true in higher dimensions [Š]).

Follow Question 6 for a definition of quasiconvexity. This more general conjecture is likely

to be easier to deal with, though it may seem very strange because, after all, it implies

(13). It is fair to say, then, that Burkholder’s approach to stochastic integrals is a per-

fectly valid procedure, in that it leads to probabilistically and geometrically significant

problems.

There may be some elegant—and perhaps even simple—ways of characterizing the

essence of inequality (13) in higher dimensions. To this end we begin with Hadamard’s

inequality detA ≤ |A|n. Hence we see at once that J(x, f)|Df(x)|p−n ≤ |Df(x)|p. On

the average, however, we can do slightly better due to some internal cancellations. The



NONLINEAR ANALYSIS AND QUASICONFORMAL MAPPINGS 127

cornerstone is the following estimate:

(14)

∫
Rn

J(x, f)|Df(x)|p−n dx ≤ λp(n)

∫
Rn

|Df(x)|p dx

for all f ∈W 1,p(Rn,Rn) with p ≥ n, where λp(n) is a positive constant less than 1. This

inequality is in all respects similar to (11) but its proof is not a straightforward conse-

quence of the Calderón-Zygmund theory of singular integrals—far from it [IL1]. Another

useful consequence of inequality (14) is a Caccioppoli type estimate for quasiregular

mappings with exponents p < n. How far we can go below the dimension is of crucial

importance for the size of removable singularities. That λp(n) ≥ 1 for p smaller than half

of the dimension is clear from an example in [IM 1].

Question 5. Does inequality (14) hold with λp(n) < 1 for all exponents p > n
2 ?

As yet, we have only handled the case p > n − ε with some positive ε = ε(n), by

methods of nonlinear interpolation. The heart of our arguments is inequality (22); we

put off discussing these methods to Section 7. Now, the natural direction to go would be

to find the smallest constant λp(n) for p > n/2. We conjecture that λp(n) = |1− n
p |. This

would give us a powerful base to work with sharp estimates for quasiregular mappings.

Once again, we are faced with the question of rank-one-convexity of the integrand. The

following result [I 6] will take us to an even larger context:

Theorem 3. The matrix function F : Rn×n → R, defined by

F(A) =

∣∣∣∣1− n

p

∣∣∣∣|A|p − |A|p−n detA,

is rank-one-convex for all p ≥ n/2. Furthermore, the factor |1− n
p | is the smallest possible

for this theorem to be true.

It is crucial to observe that F is homogeneous and rotationally invariant. If—and this

is probably the case—it happens that under certain symmetries the rank-one-convexity

implies quasiconvexity then (14) would hold with λp(n) = |1− n
p |, as desired. Could one

devise a much fancier method?

Question 6. Is the function F : Rn×n → R quasiconvex?

Recall that F is quasiconvex if∫
[F(A+Dh)−F(A)] ≥ 0

for every constant matrix A ∈ Rn×n and all smooth mappings h : Rn → Rn with compact

support. As in (13), equality occurs in a number of interesting cases [I 6].

Entering into variational problems, I would like to mention my work with A. Lu-

toborski [IL 1,2] in which some specific nonconvex variational integrals have been ana-

lyzed in great detail, see also [AD]. These efforts resulted in proving the existence of the

minima of certain energy functionals of the form E [f ] =
∫

Ω
E(Df). Here the integrand

E : Rn×n → R+ vanishes exactly on the matrices of conformal transformations (potential

wells). In that sense the energy E [f ] measures how far a given deformation f : Ω→ Rn is

from a conformal one. The minimizers are called nearly conformal mappings. Variational
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integrals, whose potential wells consist of conformal deformations, might be of some in-

terest in both quasiconformal theory and nonlinear elasticity as they provide effective

means of extending a given boundary map to a nearly conformal one. Perhaps the most

instructive example of all is:

(16) Ep[f ] =

∫
Ω

[ |Df(x)|n − J(x, f)]p dx, 1 ≤ p <∞.

The integrand E(A) = (|A|n−detA)p, being a convex function of the variables (detA,A)

∈ R × Rn×n is polyconvex. It fails to be coercive, however. The lack of coercivity is

compensated by a rather nontrivial estimate, referred to as mean coercivity:

(17) δ

∫
Ω

|Df |np ≤ Ep[f ] +

∫
Ω

|Dg|np, δ = δ(n, p) > 0.

Here g ∈W 1,np(Ω,Rn) represents the given Dirichlet data while f is the unknown defor-

mation subject to the boundary condition f−g ∈W 1,np
0 (Ω,Rn). Having this estimate we

implemented the direct method of the calculus of variations [Da] to show that the func-

tional Ep indeed attains its minimum. A puzzling thing about this variational problem

is the question of uniqueness; there are enough arguments to safely conjecture that Ep
admits only one minimizer. However, the failure of monotonicity of the derivative map

E′ : Rn×n → Rn×n stands in the way. The following weaker problem having a good

chance of being solved, would come to the rescue.

Question 7. Is the mapping E′ monotone in the average sense?

Precisely we expect that

(18)

∫
Ω

〈E′(Df)− E′(Dg)|Df −Dg〉 ≥ δ
∫

Ω

|Df −Dg|2(|Df |+ |Dg|)np−2

whenever f − g ∈W 1,np
0 (Ω,Rn), where δ = δ(n, p) > 0.

While it has not been possible to provide definite answers to the uniqueness problem

for general polyconvex functionals the recent a priori estimates for null Lagrangians [IL

1] and nonlinear commutators [I 2] seem to work in specific cases.

6. Very weak solutions. Related and perhaps most intriguing is the question of

uniqueness for the so-called H-harmonic equation d?H(du) = d?f . Recall conditions (10)

for the bundle map H : ∧lX → ∧lX. For a given l-form f ∈ Lq(∧lX), 1
p + 1

q = 1, we seek

solution u ∈ W 1,p(∧l−1X) with vanishing tangential component on ∂X. This is what

we call the natural setting of the H-harmonic problem. Browder’s theory of monotone

operators ensures the existence and uniqueness of such solutions [ISS], [Sc]. This in turn

gives rise to a nonlinear operator H : Lq(∧lX) → Lp(∧lX) which carries given element

f ∈ Lq(∧lX) into du ∈ Lp(∧lX). Of course, the space Lq(∧lX) is a natural domain of

H. But it is also of great interest to know whether H extends as a continuous operator

to other Lebesgue spaces. The following exact request sounds plausible

Question 8. What is the range of the parameter λ for which we have the inequality

(19) ‖Hf −Hg‖p−1
λp ≤ Cp‖f − g‖

α
λq

(
‖f‖λq + ‖g‖λq

)1−α
with f, g ∈ Lλq(∧lX) and some exponent 0 < α = α(p, λ) ≤ 1 ?
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This is undoubtedly true if λ = 1, but the estimate beyond the natural exponents

(λ 6= 1) is likely to be far harder; it remains unsolved even for the p-harmonic equation

div|∇u|p−2∇u = divf . What is known, however, is that λ can be any number in some

closed interval [a, b], where max{ 1
p ,

1
q} ≤ a < 1 < b. We should also mention that the

case g ≡ 0 has been settled and developed much further [I 1], [IS 2], but our lectures are

too short to contain it. Note that this latter case handles inequality (19) when H is a

linear map. For compact manifolds and λ > 1 we do not even need inequality (19); the

uniqueness follows from the embedding Lλp(∧lX) ⊂ Lp(∧lX). It is the case of the very

weak solutions (λ < 1) that drives us into truly new investigations concerning nonlinear

commutators. We will discuss this a little further on. Although it strays somewhat from

the focus of our lectures, let me mention two relevant results only recently established.

But first, we need a definition:

Definition 2. The “grand” Lebesgue space Ls)(∧lX), 1 < s <∞, consists of l-forms

ϕ ∈
⋂

1≤r<s

Lr(∧lX)

such that the expression (s − r)‖ϕ‖rr stays bounded as r increases to s. This space is

furnished with the norm

‖ϕ‖s) = sup{ s
√
ε‖ϕ‖s−ε; 0 < ε ≤ s− 1}.

It then follows that the closure of Ls(∧lX), denoted by Ls(∧lX), is made up of forms

such that limε↓0 ε
∫
|ϕ|s−ε = 0. In a manner consistent with the above, we introduce the

”grand” Sobolev spaces W 1,s)(∧lX) and W1,s)(∧lX).

In [GIS] we succeeded in proving inequality (19) for f, g ∈ Lq)(∧lX), where obviously

the subscripts λp and λq must be replaced by p) and q), respectively. These peculiar

spaces occur in various contexts [IS1], [G], [GISS]. Further, our new results in [GIS] put

more life into them, for example:

Theorem 4. For each finite signed measure µ on Ω ⊂ Rn the n-harmonic equation

div|∇u|n−2∇u = µ

has a unique solution u ∈W 1,n)
0 (Ω).

As far as we are aware this is the first time a uniqueness question for the very weak

solutions has been solved for nonlinear PDEs. In addition, uniform estimates reveal that:

Theorem 5. If |µ| � dx, then u ∈ W1,n)
0 (Ω). This simply means that u ∈ W 1,p

0 (Ω)

for every 1 ≤ p < n and

lim
ε↓0

ε

∫
|∇u|n−ε = 0.

For related questions concerning PDEs with measure in the right hand side see [BG],

[DHM 1,2], [Mu2] and [KM].

7. Nonlinear commutators. There is one recurring idea in our methods which we

have not yet mentioned, and that is the phenomenon of cancellation observed in vari-
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ous nonlinear differential and integral expressions. Before embarking on that discussion,

however, we need to recall some nonlinear commutators [I 2].

Let (X,µ) be a measure space and let T : Lp(X,C)→ Lp(X,C) be a bounded linear

operator with p ∈ [p1, p2] and 1 ≤ p1 < p2 ≤ ∞. The object of our discussion here is the

commutator of T and the power function f 7→ |f |zf , that is:

T zf = T (|f |zf)− |Tf |zf, where
p1

p
− 1 ≤ Re z ≤ p2

p
− 1.

In order to get quickly to the substance of the problems we formulate, as a starting point,

the most general and precise estimate:

(20) ‖T zf − T zh‖ p
a
≤ Cp

|z|
r
‖f − h‖a−rap

(
‖f‖arp + ‖h‖arp

)
for |z| ≤ r. Here a = 1 + Re z and r is sufficiently small.

The proof makes use of the complex method of interpolation. Note that the function

z 7→ T zf is analytic in z. Taking the derivative at zero we obtain what is known as the

Rochberg-Weiss commutator

T logf = T (f log |f |)− (Tf) log |Tf |.

Next, passing to the limit in (20) yields

(21) ‖T logf − T logh‖p ≤ Cp‖f − h‖p log

(
e+
‖f‖p + ‖h‖p
‖f − h‖p

)
In particular,

‖T (f log |f |)− (Tf) log |Tf |‖p ≤ Cp‖f‖p.

We emphasize that the individual terms here need not belong to Lp(X,C), but the

difference does. This cancellation effect was first observed by R. Rochberg and G. Weiss

in their study of analytic families of Banach spaces [RW]. There has since been more

systematic work done by N. J. Kalton [K1, 2], R. Rochberg [Ro] and M. Milman [Mi],

[MR], and many others [CJMR], [MS], [RW]. As a matter of fact, in our first attempt

to understand the very weak solutions of PDEs [I 1], we have already established the

following inequality:

(22) ‖T (f |f |−ε)‖ p
1−ε
≤ Cp|ε| ‖f‖1−εp , for f ∈ Lp(Rn) ∩ kerT.

The proof did not depend on the commutators but worked only for a certain type of

singular integral operators T , sufficient for applications. Of course, the significance of this

inequality is due to the factor |ε| in the right hand side. Seemingly obvious improvement

in (20) over (22) turns out to be extremely powerful in new applications to PDEs and

the theory of the Jacobians. Take, for instance, Theorem 7 in the last section.

An elementary device of averaging inequality (20) with respect to the complex pa-

rameter z leads to new commutators whose natural domains are Orlicz spaces. Without

getting into technicalities, for a given function A one might consider the commutator

TA = TA − AT : LN (X) → LM (X), where N,M : R+ → R+ are the Young func-

tions defining the norms ‖ ‖N and ‖ ‖M in the corresponding Orlicz spaces. The natural

generalization of the Rochberg-Weiss inequality reads as follows:

(23) ‖TAf‖M = ‖TA(f)−A(Tf)‖M ≤ C
(
‖f‖N

)
for f ∈ LN (X).
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For this inequality to be true, we must assume certain relations between the Young

functions and the given function A. Because of lack of homogeneity, C is no longer

a constant here but a function on R+. Only in the case of A(t) = t log |t|, it stands

for the multiplication by a constant. Let us introduce the so-called indicator I(t) =

A(t)/M−1
(
N(t)

)
, which tells us how much degree of integrability we gain due to the

(well hidden) cancellation in (23). It appears that we gain nothing if A is too far from the

linear function, say A(t) ≈ ta with a 6= 1; I(t) is simply bounded at infinity. Nevertheless,

in this case an internal cancellation effect still takes place, as we gain the presence of ε

on the right hand side of inequality (22).

Here are two partial results: For Aα(t) = t logα(e + t) and α ∈ (0, 1] inequality

(23) holds with Nα(t) = tp logα−1(e + t) and Mα(t) = tp log(1−α)(p−1)(e + t), where the

indicator equals I(t)=log(e+ t), for each α∈(0, 1] and 1 < p <∞. In order to gain more

cancellation we must take A closer to the identity function. We choose as an illustration:

A(t) = d
dαAα(t) = t log log(e + t) at α = 0. Then (23) remains valid with the pair of

Young functions N0 and M0, in which case we have I(t) = log(e + t) log log(e + t). All

the above results are qualitatively optimal and amount to the principle:

The further A is from the identity the less cancellation occurs in the commutator.

8. Jacobians and wedge products. The effect of cancellation in the nonlinear

commutators plays an important role in the study of the Jacobians and compensated

compactness. We shall report on it briefly; the interested reader may wish to consult my

notes of Lipschitz Lectures [I 2]. The primary goal of these numerous lectures was to

bridge a gap between the nonlinear interpolation and the actual use and interpretation

of the results in a variety of disciplines in classical analysis, see also [I 5] for an extended

survey.

Let f = (f1, . . . , fn) : X → Rn be a mapping in Sobolev space W 1,n(X,Rn), thus its

Jacobian determinant induces an n-form on X. Precisely we have

J(x, f) dx = df1 ∧ . . . ∧ dfn,

the pullback of dy = dy1 ∧ . . . ∧ dyn. Some special properties of the Jacobian have

already been appreciated in the late 1960’s when F. W. Gehring [Ge], J. Väisälä [V 1]

and Y. Reshetnyak [Re 1] laid down the foundation of quasiconformal mappings. It is

important to recognize, in this connection, the remarkable contribution of H. Wente [W] as

well. Modern language better suited for dealing with the Jacobians is that of the exterior

algebra. The Jacobian can be viewed as a wedge product J(x, f) dx = ϕ1 ∧ . . . ∧ ϕm,

where each factor ϕ takes the form ϕ = df i1 ∧ . . . ∧ df il . This is the view which we shall

adopt and extend suitably.

Let p = (p1, . . . , pm), 1 < p1, . . . , pm < ∞, be a Hölder conjugate sequence, that

is 1
p1

+ . . . + 1
pm

= 1, and let l = (l1, . . . , lm) be an m-tuple of positive integers with

l1 + . . . + lm = n. We let Lp(∧lX) denote the space of m-tuples Φ = (ϕ1, . . . , ϕm) of

differential forms ϕi ∈ Lpi(∧liX) and continue to write det Φ = ∗(ϕ1∧. . .∧ϕm) ∈ L1(X).

This more general setting unifies earlier work in many other types of nonlinear differential

situations. For example, as shown in [RRT] and [IL 1], the compensated compactness

of F. Murat [Mu1] and L. Tartar [Ta] is in fact a statement on weak continuity of the
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wedge products of differential forms under suitable integrability assumptions on dΦ =

(dϕ1, . . . , dϕn).

Let us begin with a simple estimate which is straightforward from Hölder’s inequality:

(24)

∣∣∣∣ ∫
X

η(det Φ− det Ψ)

∣∣∣∣ ≤ Cp ‖η‖∞
m∑
k=1

∥∥ϕk − ψk∥∥
pk

∏
i6=k

∥∥ |ϕi|+ |ψi|∥∥
pi

for each test function η ∈ C∞0 (X). Hence, in particular, det : Lp(∧lX) → L1(X) is a

continuous operator. In order to obtain something deeper than that we must confine

ourselves to closed forms and combine Lp-Hodge theory with commutator results. For

the sake of clarity, think of X as Rn.

First, one can replace the supremum norm of the test function by its BMO-norm.

Thus (24) holds for η ∈ VMO as well. By H1-BMO duality we then conclude that det Φ

actually belongs to the Hardy space H1
loc(X). This elegant result was first established

in Rn by R. Coifman, P. Lions, Y. Meyers and S. Semmes in 1989. We refer to [CLMS],

[CG], [EM], [IV 1] and [Se] for some generalizations. In addition, as a side benefit of

(24), we find that the operator det : Lp(∧lX) → H1
loc(X) is not only bounded but also

continuous [I 2].

A precise estimate for X = Rn reads as follows:

‖ det Φ− det Ψ‖H1 ≤ Cp

m∑
k=1

‖ϕk − ψk‖pk
∏
i6=k

‖|ϕi|+ |ψi‖pi

for Φ,Ψ ∈ Lp(∧lRn) ∩ ker d. This in case of mappings f, g ∈W 1,n(Rn,Rn) reduces to

‖J ( , f)− J ( , g)‖H1 ≤ C(n)‖Df −Dg‖n (‖Df‖n + ‖Dg‖n)
n−1

.

Integration by parts and Sobolev embedding theorem give improvements in other

directions. For instance, inequality (24) remains valid if we replace the norms ‖ ‖pi by

‖ ‖si and ‖η‖∞ by ‖∇η‖∞, where s = (s1, . . . , sm) is only assumed to be a Sobolev

conjugate sequence, that is 1
s1

+ . . . + 1
sm

= 1 + 1
n and 1 ≤ s1, . . . , sm ≤ ∞. Although

the p-norms of Φ and Ψ do not enter into the improved estimate it is still required that

the forms Φ and Ψ are in Lp(∧lX). Nevertheless, by an approximation, we can get rid

of this requirement and give meaning to det Φ as a Schwartz distribution of order one

for all forms Φ of class Ls(∧lX) ∩ ker d. This is what we call the weak wedge product or

weak Jacobian. The value of the distribution det Φ on a test function η ∈ C∞0 (X) can be

defined as

(η,det Φ) = lim
j→∞

∫
X

η det Φj

where Φj are in Lp(∧lX) ∩ ker d and converge to Φ in Ls(∧lX). That such an approxi-

mation of Φ exists requires some work.

More radical attempts lead to many other weakly defined nonlinear forms. To illus-

trate, we consider the operator (detD) log |D| which carries a given mapping f : Rn → Rn
into (detDf) log |Df |. This operator turns out to be a continuous map fromW 1,n(Rn,Rn)

into D′(Rn). A vehicle for defining (detDf) log |Df | as a Schwartz distribution is the

nonlinear commutator T ith = T (|h|ith)− |Th|itTh. Estimate (20) reads as

‖T itf − T ith‖p ≤ Cp|t| ‖f − h‖1−αp

(
‖f‖αp + ‖h‖αp

)
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with some 0 < α < 1. The latter inequality ensures the existence of the derivative

i ddt
(
|Df |it detDf

)
at t = 0, and this derivative is one of the possible interpretations of

(detDf) log |Df |. We emphasize that the difference quotients defining the derivative

converge only in D′(Rn). A slightly more general result, which highlights the role of the

H1-BMO duality, seems to be very elegant. Inspired by this, we [IV 2] were studying

the nonlinear map Z : H1(Rn)→ D′(Rn) which takes a given element h from the Hardy

space to the function Zh = h log(e + |h|
‖h‖1 ). Although this function need not be locally

integrable we were able to give a meaning to Zh as a Schwartz distribution of order 1.

Worth mentioning is that the statement Zh ∈ L1(Rn) amounts to saying that h belongs

to the Zygmund space L logL(Rn), and also ‖Zh‖1 defines a norm in this space. The

triangle inequality remains well short of clear.

For a distribution T ∈ D′(Rn) of order 1 we define seminorms [T ]R = sup{|Tϕ|;
ϕ ∈ C∞0 (B), ‖∇ϕ‖∞ = 1}, the supremum being taken over all balls B ⊂ Rn of radius R.

Our main estimate in [IV 1] reads as:

(25)
[
Zg −Zh

]
R
≤ CR(n)

∥∥g − h∥∥H1 log

(
e+
‖g‖H1 + ‖h‖H1

‖g − h‖H1

)
.

Recall a result of E. Stein [S]: if h ∈ H1(Rn) and h ≥ 0 in an open set Ω ⊂ Rn, then

h log h ∈ L1
loc(Ω) ⊂ D′(Ω). Ultimately, inequality (25) reveals an interesting fact that

deserves a statement of its own:

Theorem 6. If hk → h in H1(Rn) and hk ≥ 0 on an open region Ω ⊂ Rn, then

hk → h in L logL(E) on every compact E ⊂ Ω.

The point is that hk − h may change sign in Ω. But this is another subject, and we

will not go into it here. Instead, we conclude with one corollary which complements the

familiar result of S. Müller [Mü]:

Corollary 1. Suppose that the orientation preserving mappings fk : Ω→Rn converge

to f in W 1,n(Ω,Rn). Then detDfk → detDf in L logL(E) for each compact E ⊂ Ω.

Continuing in this fashion, one can try a setting of greater generality. In [GIM], we have

identified those pairs N,L of Orlicz functions for which the expression L(|Df |) detDf

is locally integrable on Ω ⊂ Rn, whenever f : Ω → Rn is orientation preserving and

belongs to the Orlicz-Sobolev space W 1,N (Ω,Rn). Now, given an arbitrary mapping

f ∈ W 1,N (Ω,Rn) (not necessarily orientation preserving) it is natural to interpret the

expression L(|Df |) detDf as a Schwartz distribution.

Question 9. Is the operator L(|D|) detD : W 1,N (Ω,Rn)→ D′(Ω) continuous?

For orientation preserving mappings in W 1,N (Ω,Rn), one might try to generalize

Corollary 1 accordingly.

In drawing this section to a close, we shall address one more question about the

Jacobian operator J : W 1,np(Rn,Rn) → Hp(Rn), J f = detDf , where Hp(Rn) stands

for the usual Lebesgue space Lp(Rn) if p > 1. A continuous map

E : Hp(Rn)→W 1,np(Rn,Rn)

is said to be a fundamental solution for J if J ◦ E = Id : Hp(Rn)→ Hp(Rn).
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Question 10. Does there exist a fundamental solution for the Jacobian operator?

If so, we could solve in a canonical way the Jacobian equation:

(26) detDf(x) = λ(x) so that ‖Df‖nnp ≤ C(n, p)‖λ‖Hp(Rn)

for f ∈ W 1,np(Rn,Rn) with any given λ ∈ Hp(Rn). Solving (26) is an invitation to

absolutely new studies in the theory of genuine nonlinear PDEs. Implications to the

theory of the Monge–Ampère equation would be undoubtedly new and valuable. Following

[DM] we can show that the Jacobian equation admits solutions for λ ∈ C∞0 (Rn) with

integral zero. However, these solutions do not necessarily satisfy the uniform bound in

(26). In this way we are naturally led to a minimization problem for the convex variational

integral I[f ] =
∫
Rn |Df |np subject to the volume constraint detDf(x) = λ(x), a.e. It is

not difficult to see that the minimum is actually attained. It may very well be that the

minimizer is unique (up to rotations) and, as such, can be used to define the fundamental

solution for the Jacobian equation. For the related questions see [Ba], [BK], [M], [McM],

[R], [RY] and [Ye].

9. Degree formulas. In a very pragmatic sense, the integral
∫
X
J (x, f) dx encodes

some topological invariants of the mapping f : X → Y , including its degree; the number

of times Y is covered by f(X). A clear trend has emerged in nonlinear elasticity and

geometric PDEs such as Ginzburg-Landau equation, harmonic maps, and so on [BBH],

[EsM], [GMS]: the trend to figure out if and how it is possible to define the degree of

maps with nonintegrable Jacobian. A fundamental character of our estimates can now

be attested by applications to this problem. Before we jump to the conclusions, though,

let us acquaint ourselves with the estimates concerning power type perturbations of the

determinant, say ϕ1 ∧ . . . ∧ ϕm
(
|ϕ1| . . . |ϕm|

)−ε
. Here we assume that the form Φ =

(ϕ1, . . . , ϕm) is closed and belongs to the grand space Lp)(∧lX), see Definition 2. Using

inequality (22) and the Hodge–de Rham decomposition we can approximate |ϕi|−εϕi by

closed forms with enough accuracy to conclude that

(27) lim
ε↓0

∫
X

η det Φ
∣∣det Φ

∣∣−ε <∞

for every η ∈ C∞0 (X). Not only that, but the limit actually exists if Φ ∈ Lp(∧lX)∩ker d,

see Definition 2. In general, the determinant need not be integrable and we cannot pass

to the limit in the integrand. What interests us most is the case when X is a compact

n-manifold without boundary so we can take η = 1 and quote the limit in (27) as ”weak

integral” of the determinant. This suggests the possibility of extending the notion of

the degree to mappings with weakly integrable Jacobians. For a recent account of the

degree theory along more classical lines we refer to H. Brezis and L. Nirenberg [BN1]. In

that paper the authors define and establish basic properties of the degree of VMO-maps

f : X → Y between n-dimensional compact (without boundary) Riemannian manifolds

X and Y . Notice that VMO(X,Y ) contains the Sobolev space W 1,n(X,Y ); the latter

presents no difficulty because C∞(X,Y ) is dense in W 1,n(X,Y ) and Jacobians are L1-

integrable. We soon realized [GISS] that (27) opens a new route to the degree of mappings

in some Orlicz-Sobolev classes weaker than W 1,n(X,Y ).



NONLINEAR ANALYSIS AND QUASICONFORMAL MAPPINGS 135

In our method the l-th cohomology group Hl(Y ) of the target manifold is required

to be nontrivial for at least one integer 1 < l < n, which unfortunately excludes the

spheres. The trouble is that if Hl(Y ) = 0 there do not exist closed forms α ∈ C∞(∧lY )

and β ∈ C∞(∧n−lY ) such that
∫
Y
α ∧ β = 1. Indeed, α as a closed l-form is exact, so is

the n-form ω = α ∧ β and thus
∫
Y
ω = 0. On the other hand, if we can find a harmonic

field θ ∈ Hl(Y ) with
∫
Y
|θ|2 = 1, then ω = θ ∧ ∗θ does the job. This is just another way

of seeing that Hl(Y ) must be nontrivial.

Now, with the assumptions above, we define the Jacobian of f : X → Y by simply

pulling back the n-form ω via f . Precisely, we have: J (x, f) dx = f#ω = f#α ∧ f#β =

ϕ1 ∧ ϕ2. It is very crucial to understand that ϕ1 and ϕ2 are closed forms only when f

is sufficiently regular. Later on, we dispense with this requirement by an approximation.

By virtue of (27) it is tempting to introduce the degree of f by

(28) deg(f ;X,Y ) = lim
ε↓0

∫
X

J (x, f) dx

|J (x, f)|ε
.

Certainly this makes sense for mappings in the class W 1,n(X,Y ).

Now, we have the equipment to do a fair amount of generalizations. If f belongs to

the grand Sobolev space W 1,n)(X,Y ), confront with Definition 2, then

ϕ1 = f#α ∈ Ln
l )(∧lX) ∩ ker d and ϕ2 = f#β ∈ L

n
n−l )(∧n−lX) ∩ ker d,

as is easy to check. Consequently, the integrals in (28) stay bounded as ε approaches zero.

Note that W 1,n)(X,Y ) contains the weak-W 1,n(X,Y ), that is the mappings f : X → Y

whose generalized differential satisfies the inequality mes
{
x; |Df(x)|>t

}
≤Ct−n for all

positive t. Unfortunately, we do not know if the limit in (28) actually exists for mappings

in the Marcinkiewicz-Sobolev space weak-W 1,n(X,Y ). In order to get around this delicate

question, we denote by W1,n)(X,Y ) the closure of C∞(X,Y ) in the metric of the grand

Sobolev space W 1,n)(X,Y ).

Theorem 7. Formula (28) is valid for f ∈ W1,n)(X,Y ). The degree of f is an integer

which is invariant under homotopy within the class W1,n)(X,Y ).

As a matter of fact, the degree function deg : W1,n)(X,Y ) → Z is uniformly con-

tinuous. This answers one of the questions in [BN1]. Note too that W1,n)(X,Y ) 6⊂
VMO(X,Y ). It is not difficult to check that mappings in W1,n)(X,Y ) satisfy

(29) lim
ε↓0

ε

∫
X

∣∣Df(x)
∣∣n−ε dx = 0,

though we do not know if this is precisely the condition which characterizes the space

W1,n)(X,Y ).

One more subclass of W 1,n)(X,Y ) merits mentioning here, and that is the Zygmund-

Sobolev space of mappings f : X → Y such that
∫
X
|Df |n log−1(e + |Df |) < ∞. We

denote it briefly by Z(X,Y ) in remembrance of Antoni Zygmund. That condition (29)

holds in this space is undeniable. But the following question remains open.

Question 11. Is the space C∞(X,Y ) dense in Z(X,Y )?

Some evidence for it can be found in the recent work of F. Bethuel [Be]. As a rather

interesting inference from Theorem 7, let us assume that f preserves the orientation, that
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is J(x, f) ≥ 0 a.e. Passing to the limit under the integral sign in (28) is legitimate and

yields: deg(f ;X,Y ) =
∫
X
J(x, f) dx, though |Df |n may not be integrable. There are also

the nagging questions of spheres and manifolds with boundary.

Question 12. How can we get rid of the unwelcome condition Hl(Y ) 6= 0?

Question 13. How to extend formula (28) to noncompact manifolds?

To this latter question the answer can possibly be reached from [BN2].

Coming to an end, there are a few results and problems along the lines of these lectures

which we shall have to postpone. For instance those concerning quasiregular semigroups

[IM 4], [T1], [H] or Stoilow’s type theorem for mappings with finite distortion [D], [IŠ],

[MV], [T2], [HK]. Quasiconformal mappings and the governing PDEs, as evidenced by

current literature, attain the status of an important branch of classical analysis. Many fas-

cinating and useful connections with non-linear elasticity, calculus of variations, singular

integrals, etc. remain yet to be discovered.
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