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Introduction. This paper should be considered as a companion report to F.W.

Gehring’s survey lectures ”Characterizations of quasidisks” given at this Summer School

[7]. Notation, definitions and background results are given in that paper. In particular, D

is a simply connected proper subdomain of R2 unless otherwise stated and D∗ denotes

the exterior of D in R
2
.

Many of the characterizations of quasidisks have been motivated by looking at prop-

erties of euclidean disks. It is therefore natural to go back and ask if any of the original

properties in fact characterize euclidean disks. We follow the procedure in Gehring’s

lectures and look at four different categories of properties:

1. Geometric properties,

2. Conformal invariants,

3. Injectivity criteria,

4. Extension properties.

As we shall see, the answers are not equally easy to obtain and not always positive. There

are, in fact, still many interesting open questions.

1. Geometric properties

Reflection property

Characterization 1.1. D is a half plane if and only if there exists a euclidean

isometry f of R
2

which maps D onto its exterior D∗ and is the identity on ∂D.
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Proof (sufficiency). Fix z1 ∈ D and let ζ ∈ ∂D, z1, ζ 6=∞. Then

|f(z1)− ζ| = |f(z1)− f(ζ)| = |z1 − ζ|.

Thus ∂D ⊂ L∪{∞} where L is the perpendicular bisector of the segment [z1, f(z1)]. On

the other hand let z ∈ L and consider the broken line γ = [z1, z]∪ [z, f(z1)]. Then γ must

meet ∂D and also γ ∩ ∂D ⊂ γ ∩ L which implies that z ∈ ∂D.

Reversed triangle inequality property. If D is a disk or half plane, then

min
j=1,2

dia(γj) ≤ |z1 − z2|

for any two points z1, z2 ∈ ∂D where γ1, γ2 are the components of ∂D \ {z1, z2}. In

particular, D satisfies Ahlfors’s well known two point inequality [3] with constant 1. But

this inequality also holds if D is a Reuleaux triangle, [6] and [15], and hence cannot be

used to characterize a disk or half plane. However for the reversed triangle inequality [7]

we have the following characterization.

Characterization 1.2. A Jordan domain D ⊂ R2 is a disk or half plane if and only

if

|z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1| ≤ |z1 − z3||z2 − z4|
for each ordered quadruple of points z1, z2, z3, z4 ∈ ∂D \ {∞}.

Proof. For the sufficiency, choose three points on ∂D \ {∞} and let C be the line or

circle through these points. To complete the proof we shall show that each z ∈ ∂D \ {∞}
lies on C.

Fix a point z ∈ ∂D \ {∞} different from the three points given above and label these

four points z1, z2, z3, z4 so that they constitute an ordered quadruple in ∂D with z2 = z.

Next choose a Möbius transformation f such that

f(z1) = 0, f(z3) = 1, f(z4) =∞.

Then f(C) is the real axis R and it suffices to show that

f(z2) ∈ (0, 1) ⊂ R.

By our hypothesis, the reversed triangle inequality yields

1 ≥ |(z1, z4, z2, z3)|+ |(z2, z1, z3, z4)| = |(0,∞, f(z2), 1)|+ |(f(z2), 0, 1,∞)|
= |f(z2)|+ |1− f(z2)| ≥ 1.

This means that we have equality throughout and hence that f(z2) ∈ (0, 1).

To show that the condition is necessary, we reverse the last part of the above argu-

ment.

Remark. The task of proving that the condition with equality is a necessary one is

given as an exercise on p. 82 in [1].

Local connectivity property. Langmeyer has established the characterization given be-

low in her thesis [15]. Our proof is a modification of hers.

Characterization 1.3. D is a disk or half plane if and only if it is 1-linearly locally

connected, i.e., for each z0 ∈ R2 and each r > 0
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a. points in D ∩B(z0, r) can be joined by an arc in the same set,

b. points in D \B(z0, r) can be joined by an arc in the same set.

Proof (sufficiency). The hypotheses imply that D is a quasidisk and hence a Jordan

domain [8]. In addition we may assume that D is bounded since the property of being

1-linearly locally connected is preserved under Möbius transformations [24].

Property a. implies that D is convex. To prove this fix z1, z2 ∈ D and let α be an

arc joining these points in D. It follows that every point in a bounded component of

R2\{[z1, z2] ∪ α} is in D. For consider a point ζ in such a domain, i.e., bounded by a

segment [z′1, , z
′
2] of [z1, z2] and a subarc α′ of α. Let U be a disk with z′1, z

′
2 ∈ ∂U and

with radius so large that ζ 6∈ U . Since D has property a. there is an arc α′′ in D ∩ U
joining z′1 and z′2. Then ζ is in a component of R2 \ {α′ ∪α′′} which lies in D and ζ ∈ D
since D is simply connected. Thus [z1, z2] ⊂ D and this implies that D is convex. Hence

D = Int(D) is also convex.

Next we claim that

(∗) min {|z1 − z0|, |z3 − z0|} ≤ max {|z2 − z0|, |z4 − z0|}

for all z0 ∈ R2 and all ordered quadruples of points z1, z2, z3, z4 ∈ ∂D. For suppose there

exist five points for which (1) does not hold, and let r be a number such that

max{|z2 − z0|, |z4 − z0|} < r < min{|z1 − z0|, |z3 − z0|}.

Since D is convex, β = [z2, z4] is a crosscut in D. Hence any arc in D joining points close

to z1 and z3 must intersect β ⊂ B(z0, r) and cannot be in D\B(z0, r), in contradiction

to property b.

To finish up the proof choose z1, z3 ∈ ∂D such that

|z1 − z3| = dia(D) = d

and let z0 denote the midpoint of [z1, z3]. The perpendicular bisector of [z1, z3] intersects

∂D in two points z2 and z4 lying in different components of ∂D \ {z1, z3}. Let z′0 be the

midpoint of [z2, z4]. Then

d

2
≤ |z1 − z′0| = |z3 − z′0| ≤ |z2 − z′0| = |z4 − z′0| ≤

d

2

where the middle inequality follows from (1) above. We must have equality throughout,

and z2, z4 are diametrically opposite points on the circle through z0 with radius d/2. By

(∗) at most one of the four arcs
_
z1z2,

_
z2z3,

_
z3z4,

_
z4z1 of ∂D can have a point closer to z0

than d/2. Hence we have two opposite arcs where this is not the case. They must both

be on the circle |z − z0| = d/2 since otherwise dia(D) > d. For any two diametrically

opposite points on these arcs we can repeat the above argument with the perpendicular

bisector. Therefore all the points on the two remaining arcs are also on the circle.

Decomposition property

Characterization 1.4. D is a disk or half plane if and only if for each z1, z2 ∈ D
there exists a disk D′ with

z1, z2 ∈ D′ ⊂ D
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Proof (sufficiency). The hypotheses imply that D is a quasidisk and hence a Jordan

domain [11]. Next we may assume that D is bounded. (If not we apply a suitable Möbius

transformation.) We choose zj , z
′
j ∈ D such that

|zj − z′j | → dia(D) <∞.

By hypothesis we get wj , rj such that

zj , z
′
j ⊂ B(wj , rj) ⊂ D

and by passing to subsequences we may assume

zj → z0, z
′
j → z′0, wj → w0, rj → r0.

Then B(w0, r0) ⊂ D and since D has no inner boundary B(w0, r0) ⊂ D. In particular

2r0 ≤ dia(D) but by construction 2r0 ≥ dia(D). We conclude that B(w0, r0) = D.

2. Conformal invariants. There are three different cases when a Jordan domain

D together with some distinguished interior and/or boundary points has one conformal

invariant. See [2] or [7].

(i) Two interior points z1, z2. The conformal invariant is the hyperbolic distance

hD(z1, z2) between z1 and z2.

(ii) One interior point z0 and the boundary points z1, z2. The conformal invariant is

ω(z0, α;D), the harmonic measure of the positively oriented boundary arc α =
_
z1z2

evaluated at z0.

(iii) Four positively oriented boundary points z1, z2, z3, z4. The conformal invariant is

the modulus of the quadrilateral Q = D(z1, z2, z3.z4).

We will describe how each of these invariants can be used to characterize disks.

Hyperbolic bound property

Conjecture 2.1. D is a disk if and only if

hD(z1, z2) ≤ jD(z1, z2)

for z1, z2 ∈ D where jD is the metric given by

jD(z1, z2) = log

(
|z1 − z2|

dist(z1, ∂D)
+ 1

)(
|z1 − z2|

dist(z2, ∂D)
+ 1

)
.

Theorem 2.2 [10]. The above conjecture is true if in addition, for one pair of points

w1, w2 ∈ ∂D with |w1 − w2| = dia(D) there exist disks D1, D2 ⊂ D with w1 ∈ ∂D1 and

w2 ∈ ∂D2.

Harmonic symmetry property

Characterization 2.3. A Jordan domain D is a disk or a half plane if and only if

there exist points z0 ∈ D and z∗0 ∈ D∗ such that if α and β are adjacent open arcs in ∂D

with

ω(z0, α;D) = ω(z0, β;D),

then

ω(z∗0 , α;D∗) = ω(z∗0 , β;D∗).
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Proof (sufficiency). We consider conformal mappings f : B → D, g : B∗ → D∗ such

that f(0) = z0, g(∞) = z∗0 . Then f, g have homeomorphic extensions to B,B
∗

and by a

preliminary rotation we may assume that f(1) = g(1). Then

h = g−1 ◦ f : ∂B → ∂B

is a sense preserving homeomorphism such that h(1) = 1. We want to show that h(z) = z.

For this let α, β be upper and lower halves of ∂B labeled so that i ∈ α. By conformal

invariance of harmonic measure

ω(z0, f(α), D) = ω(0, α,B) = 1/2 = ω(0, β, B) = ω(z0, f(β), D)

and by hypothesis

ω(0, h(α), B) = ω(∞, h(α), B∗) = ω(z∗0 , g(h(α)), D∗)

= ω(z∗0 , f(α), D∗) = ω(z∗0 , f(β), D∗)

= ω(z∗0 , g(h(β)), D∗) = ω(∞, h(β), B∗) = ω(0, h(β), B).

In particular, this implies h(−1) = −1 and, since h is sense preserving, we have h(α) = α.

Next let α, β be left and right halves of the upper half of ∂D labeled so that eiπ/4 ∈ α.

Then as above

ω(z0, f(α), D) = ω(0, α,B) = 1/4 = ω(0, β, B) = ω(z0, f(β), D)

and

ω(0, h(α), B) = ω(z∗0 , f(α), D∗) = ω(z∗0 , f(β), D∗) = ω(0, h(β), B).

In particular we get that h(i) = i, and h(α) = α. Proceeding this way we see that

h(e2πit) = e2πit

for all t ∈ [0, 1) of the form t = 2−n p, p ∈ Z, and by continuity h(z) = z. This implies

that the conformal mappings f and g together define a homeomorphism ϕ of R
2

which

is conformal in B ∪B∗ and hence in R
2
. In particular ϕ is a Möbius transformation and

D = ϕ(B) is a disk or half plane.

Conjugate quadrilateral property. We recall that a quadrilateral Q = D(z1, z2, z3, z4)

consists of a Jordan domain D ⊂ R
2

together with four positively oriented points

z1, z2, z3, z4 ∈ ∂D. Moreover Q∗ = D∗(z4, z3, z2, z1) is called the conjugate quadrilateral.

Any quadrilateral Q can be mapped conformally onto a rectangle R = R(0,m,m+ i, i),

and we call m the modulus of Q, mod(Q) = m.

Characterization 2.4. A Jordan domain D is a disk or half plane if and only if for

each pair of conjugate quadrilaterals Q and Q∗ in D and D∗,

mod(Q∗) ≤ 1

whenever mod(Q) = 1.

Proof (sufficiency). Since

mod(D∗(z4, z3, z2, z1)) =
1

mod(D∗(z3, z2, z1, z4))
,

the hypotheses actually imply that mod(Q∗) = 1 whenever mod(Q) = 1.
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Let f and f∗ be homeomorphic maps of D and D
∗

to the closed upper and lower half

plane, respectively, which are conformal in D and D∗ and normalized so that w(0) = 0,

w(1) = 1, w(∞) = ∞ where w = f∗ ◦ f−1. If zj = f−1(xj) where x1 < x2 < x3 and

x4 =∞, then

mod(D(z1, z2, z3, z4)) = 1 if and only if x2 =
x1 + x3

2
while

mod(D∗(z4, z3, z2, z1)) = 1 if and only if w(x2) =
w(x1) + w(x3)

2
and thus

w

(
x1 + x3

2

)
=
w(x1) + w(x3)

2
.

Since w(1) = 1, w(0) = 0 we see that w(x) = x for all x ∈ R of the form x = 2−n p,

p ∈ Z, and by continuity w(x) = x for all x ∈ R. This implies that the maps f−1

and f∗−1 coincide on R and together define a conformal mapping in R
2
, i.e., a Möbius

transformation. It follows that D is a disk or half plane.

Extremal distance. The modulus of a quadrilateral can also be defined using families

of curves. We shall now consider the more general situation where we have defined for

any family Γ of curves in R
2

a modulus, mod(Γ), which is conformally invariant.

Characterization 2.5 [25]. D is a disk or half plane if and only if

mod(Γ) ≤ 2 mod(ΓD)

whenever E, F are continua in D and ΓD, Γ denote the families of all curves which join

E and F in D and in R
2
, respectively.

3. Injectivity criteria

Injectivity of analytic functions. Two different criteria for global injectivity of func-

tions f analytic in a domain D are considered in [7]. The first involves the Schwarzian

derivative Sf and the second the pre-Schwarzian derivative Tf = f ′′/f ′. For each domain

D we define two constants σ(D) and τ(D) as follows:

σ(D) is the supremum of the constants a ≥ 0 such that f is injective whenever f

is meromorphic and locally injective with |Sf | ≤ a ρ2D in D.

τ(D) is the supremum of the constants b ≥ 0 such that f is injective whenever f is

analytic and locally injective with |Tf | ≤ b ρD in D.

Here ρD denotes the hyperbolic density with curvature -1 in D. Then

0 ≤ σ(D) ≤ 1/2 and 0 ≤ τ(D) ≤ 1/2

for all D; [16] and [23]. Moreover both constants are positive if and only if D is a quasidisk.

See [3], [8] and [4]

Characterization 3.1 [16], [19]. D is a disk or half plane if and only if

σ(D) = 1/2.

The situation for the pre-Schwarzian derivative is somewhat different.
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Theorem 3.2 [5]. If D is a disk or half plane, then

τ(D) = 1/2.

But the converse of this result is not true.

Theorem 3.3 [23]. If f is conformal with |z Tf (z)| ≤ 1/2 in B, then τ(f(B)) = 1/2.

The following is an immediate consequence of Theorem 3.3.

Example 3.4. If D = f(B) where f(z) = ez/2, then τ(D) = 1/2.

Injectivity of local quasi-isometries. We recall that f is a local L-quasi-isometry in D

if each point in D has a neighborhood such that

1

L
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ L |z1 − z2|

for points z1, z2 in this neighborhood. Furthermore we denote by L(D) the supremum of

the numbers L such that f is injective whenever f is a local L-quasi-isometry in D.

L(D) > 1 if and only if D is a quasidisk ([9] and [18]). L(D) is not known when D

is a disk or half plane, much less that it can be used to characterize such domains. We

have, however, the following results.

Theorem 3.5 [13]. If D is a disk or half plane, then L(D) ≥ 21/4.

Lemma 3.6. If D is convex, then L(D) ≤ 21/2.

Proof. Let z0 ∈ D, choose z1 ∈ ∂D so that |z1 − z0| = dist(z0, ∂D), and let T be

the corresponding support plane for D at z1. Without loss of generality we may assume

that z1 = 0 and T = {z : <(z) > 0}. Then for each L > 21/2,

f(z) =
|z|
L

exp(i L2 arg(z))

is a local L-quasi-isometry in D which is not injective.

4. Extensions

Comparable Dirichlet integral property

Characterization 4.1. Let D be a Jordan domain in R2. Then D is a disk or half

plane if and only if ∫
D∗
|gradu∗|2 dm =

∫
D

|gradu|2 dm

for each pair of functions u and u∗ which are harmonic in D and D∗, respectively, with

continuous and equal boundary values.

Proof (sufficiency). By the conjugate quadrilateral characterization we are done if

we can prove that

mod(D(z1, z2, z3, z4)) = mod(D∗(z4, z3, z2, z1))

for all positively oriented quadruples z1, z2, z3, z4 ∈ ∂D.

For this choose u harmonic in D and continuous in D with boundary values 0 and 1,

respectively, on the Jordan arcs
_
z2z3 and

_
z4z1. Next let f be the canonical mapping of
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Q onto the rectangle R = R(0,m,m+ i, i) and set v = u ◦ f−1. Then∫ m

0

|grad v| dx ≥ 1

for 0 < y < 1, and with equality if v = x/m. Thus

1 ≤
∫ 1

0

(∫ m

0

|grad v| dx
)
dy ≤

(∫
R

|grad v|2 dm
)1/2

mod(Q)1/2

and

1

mod(Q)
= inf

v

∫
R

|grad v|2 dm = inf
v

∫
D

|grad v|2|f ′|2 dm = inf
u

∫
D

|gradu|2 dm.

Similarly

1

mod(Q∗)
= inf

u∗

∫
D∗
|gradu∗|2 dm.

Hence our assumption implies that

mod(Q∗) = mod(Q),

and the result follows as remarked above.

Remark. Since

mod(D(z2, z3, z4, z1)) =
1

mod(D(z1, z2, z3, z4))
,

the result is implied by ∫
D∗
|gradu∗|2 dm ≤

∫
D

|gradu|2 dm.

Extension of functions with bounded Dirichlet integral

Characterization 4.2. D is a disk or half plane if and only if each locally integrable

function u with bounded Dirichlet integral in D has an extension to a locally integrable

function v with bounded Dirichlet integral in R2 such that∫
R2

|grad v|2 dm ≤ 2

∫
D

|gradu|2 dm.

Proof (sufficiency). The hypotheses imply that D is a quasidisk and hence a Jordan

domain. See [12] or [14].

Now consider a pair of functions u and u∗ harmonic in D and D∗, respectively, with

continuous and equal boundary values and suppose that∫
D

|gradu|2 dm <∞.

By the assumption, u has an extension to a function v such that∫
D∗
|grad v|2 dm+

∫
D

|gradu|2 dm ≤ 2

∫
D

|gradu|2 dm

whence ∫
D∗
|grad v|2 dm ≤

∫
D

|gradu|2 dm.
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Next by the Dirichlet Principle,∫
D∗
|gradu∗|2 dm ≤

∫
D∗
|grad v|2 dm.

Thus ∫
D∗
|gradu∗|2 dm ≤

∫
D

|gradu|2 dm

and the result follows from the Remark above.

Extension of conformal mappings

Characterization 4.3. D is a disk or half plane if and only if every conformal self

mapping of D has a conformal extension to R
2
.

Our proof depends on the following characterization for Jordan domains.

Lemma 4.4. D is a Jordan domain if and only if every conformal self mapping of D

has a homeomorphic extension to D.

Proof (sufficiency). By hypothesis, each conformal self mapping of D has a homeo-

morphic extension to D. We shall show that D is a Jordan domain, or equivalently, by

Theorem 2.6 of [21], that ∂D is locally connected and has no cut points.

To prove that ∂D is locally connected, we consider a conformal map g : B → D. By

Theorem 1.7 of [21] there exists z0 ∈ ∂B such that

lim
r→1

g(rz0) = w0.

Next let z1 ∈ ∂B and set

h(z) =
z1
z0
z.

Then by our hypothesis,

f = g ◦ h ◦ g−1 : D → D

has a homeomorphic extension f∗ : D → D. In particular,

lim
r→1

g(rz1) = lim
r→1

g ◦ h(rz0) = lim
r→1

f∗ ◦ g(rz0) = f∗(w0) = w1.

Since z1 was an arbitrary point in ∂B, we conclude that g has a radial limit at each

point z ∈ ∂B. Then Proposition 2.23 of [21] implies that there exists a point z0 ∈ ∂B
at which g has in fact a limit and, arguing as above, we see that g has a limit at each

point z ∈ ∂B. Thus g has a continuous extension to D and ∂D is locally connected by

Theorem 2.1 of [21].

Finally by Theorem IV.11.1 of [20], there exists w0 ∈ ∂D which is not a cut point

of ∂D. But then ∂D is cut point free. For let w1 be any point in ∂D \ {w0} and choose

z0, z1 ∈ ∂B such that g(z0) = w0 and g(z1) = w1. As before, w1 = f∗(w0),

∂D \ {w1} = f∗(∂D) \ {f∗(w0)} = f∗(∂D \ {w0})

is connected and hence w1 is not a cut point of ∂D.

Proof of Characterization 4.3. For the sufficiency it is enough to prove that D is a

disk when D is bounded since D is a Jordan domain by Lemma 4.4.
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Now pick any disk U ⊂ D with two boundary points z1, z2 ∈ ∂D and choose w1, w2 ∈
∂D such that |w1 − w2| = dia(D). Then because D is a Jordan domain, there exists

a conformal self mapping f of D such that f∗(zj) = wj for j = 1, 2 where f∗ is the

homeomorphic extension of f of D. By our hypothesis, f∗ is the restriction of a Möbius

transformation to D and f(U) must be a disk in D with diameter equal to dia(D). It

follows that f(U) = D.

To be in accordance with the characterization of quasidisks as quasiconformal exten-

sion domains [22] we can reformulate the above result as follows.

Characterization 4.5.D is a disk or half plane if and only if each K-quasiconformal

self mapping of D has a K-quasiconformal extension to R
2
.
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