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Abstract. Some new techniques for finding periodic travelling waves are discussed.

1. Introduction. It is our belief that periodic travelling waves are a common phe-

nomena for a wide class of ecological models and situations with bistablility are of par-

ticular interest as the direction of the wave gives information as to the ‘winning’ species.

To be more precise, recall that for the classical models for pairs of interacting species,

either mutualist, competitive, or predator-prey, there are variety of proofs demonstrating

the existence of monotone bistable travelling waves [1, 2, 3, 5, 7, 8]. Suppose now that

another species, a competitor, predator or prey, is introduced and this new species can as

its numbers change reverse the ‘dominance’ of the existing species. Then, if the reaction

time of the new species is slow we expect a periodic travelling wave to exist. This paper

is concerned with the special case of mutualist species under the inclusion of a predator

which does not diffuse. The paper will be used to demonstrate the potential of a singular

perturbation theory based on the Conley index.

A general model for all these problems is

∂u1

∂t
= µ1

∂2u1

∂x2
+ u1f1(u1, u2, w)
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∂u2

∂t
= µ2

∂2u2

∂x2
+ u2f2(u1, u2, w) (1)

∂w

∂t
= δ

∂2u2

∂x2
+ εwg(u1, u2, w)

where it is assumed that 0 < δ << ε << 1 and fi, g ∈ C2(R3,R). In this system u1 and

u2 represent the mutualist, competitive, or predator-prey species. w is the third species

which interacts slowly with respect to u1 and u2. Since δ, ε ≈ 0, ∂w/∂t ≈ 0, and hence

on short time scales the behavior of the ecological system will be governed by

∂u1

∂t
= µ1

∂2u1

∂x2
+ u1f1(u1, u2, w)

∂u2

∂t
= µ2

∂2u2

∂x2
+ u2f2(u1, u2, w) (2)

where w is constant. The question that will be addressed here is the long term effects of

the additional species w under the assumption that (2) only admits monotone bistable

waves.

Travelling wave solutions to (1) take the form

(u1(x, t), u2(x, t), w(x, t)) = (u1(x+ θt), u2(x+ θt), w(x+ θt)).

This gives rise to the following system of ordinary differential equations:

u′1 = p1

µ1p
′
1 = θp1 − u1f1(u1, u2, w)

u′2 = p2

µ2p
′
2 = θp2 − u2f2(u1, u2, w)

w′ = q

δq′ = θq − εg(u1, u2, w). (3)

The assumption that 0 < δ << ε << 1 suggests considering the following formal

series of reductions. Setting δ = 0 and solving for q transforms (3) to

u′1 = p1

µ1p
′
1 = θp1 − u1f1(u1, u2, w)

u′2 = p2

µ2p
′
2 = θp2 − u2f2(u1, u2, w)

w′ =
ε

θ
g(u1, u2, w). (4)

Now setting ε = 0 leads to the further reduction that w′ = 0 and hence w can be treated

as a parameter:

u′1 = p1

µ1p
′
1 = θp1 − u1f1(u1, u2, w)

u′2 = p2

µ2p
′
2 = θp2 − u2f2(u1, u2, w). (5)
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Observe that (5) is the travelling wave system for (2). The assumptions concerning

the existence of the monotone bistable travelling waves can be presented in terms of the

reaction system

u′1 = u1f1(u1, u2, w)

u′2 = u2f2(u1, u2, w), (6)

and for this paper are as follows:

M1 The species ui are mutualistic, e.g. ∂fi/∂uj > 0 (i 6= j). Furthermore, intraspecific

competition holds, e.g. ∂fi/∂ui < 0.

M2 There exists wc > 0 such that for all w ∈ [0, wc] the system (6) has exactly three

equilibria A = (0, 0), B(w) = (b1(w), b2(w)) and C(w) = (c1(w), c2(w)) with 0 <

ci(w) < bi(w) ≤ 1. All three equilibria are hyperbolic; A and B(w) are stable and

C(w) has a one-dimensional unstable manifold.

M3 For all nonnegative values of w, A is a global attractor for the flow on the axis,

u1 = 0 or u2 = 0, that is, the mutualism is obligate.

Under these assumptions the existence of monotone travelling waves independent of

the diffusion coefficients has been established [7]. More precisely, for any w there exists

a wave speed θ for which there is a solution (uw(t), pw(t)) of (5) with the property that

lim
t→−∞

(uw(t), pw(t)) = (A, 0) and lim
t→∞

(uw(t), pw(t)) = (B(w), 0)

where 0 = (0, 0) in the p1 − p2 plane. Furthermore, it is known that these waves are

unique [5]. Therefore, it makes sense to let θ(w) denote the wave speed at which there

exists a bistable travelling wave solution to (5). Since the nonlinearities are smooth and

since the waves are unique, θ is smooth.

We shall now make the following assumption:

Θ θ(0) and θ(wc) are of opposite sign.

We shall define

K := min{|θ(0)|, |θ(wc)|}.
It should be pointed out that there are few techniques for determining precisely the

wave speed for bistable waves in systems. Therefore, one of the contributions of this paper

is to provide coarse estimates for the values of the wave speed. This will be described in

Section 4.

Before stating the general results we need to provide hypotheses on the reaction terms

of the third species w. The simplest model for w predating on the ui is

W1 uifi(u1, u2, w) = ui (Fi(u1, u2)− w) , i = 1, 2.

Under this assumption it will be shown in Section 3 that θ is a monotone decreasing

function of w.

The final assumption is that the predator population decreases or increases in the

absence or presence of sufficient prey.

W2 For all w ≥ 0, g(A,w) < 0 and for w ∈ [0, wc], g(B(w), w) > 0.

We are finally in a position to state one of the results of this paper.
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Theorem 1. Given M1 - M3, Θ, W1 - W2, and θ ∈ (0,K), for 0 ≤ ε << 1,

sufficiently small, there exists a periodic travelling wave.

As will become clear in the next section, this theorem follows directly from a much

more general result presented in [4]. In Section 4 we will discuss the more difficult question

of how to verify the hypothesis Θ. It should also be remarked that W1 is not essential

given Θ and some regularity on the function θ(w). However, we leave this argument to

another paper.

2. Existence of periodic orbits. In this section we shall present an extremely

simple version of [4, Corollary 1.8] which will be used to establish Theorem 1. Since we

believe it will be of use in other applications we present it in an abstract form.

Consider the system

ξ̇ = f(ξ, η), ξ ∈ Rn

η̇ = εg(ξ, η) η ∈ R (7)

Since 0 < ε << 1 it is natural to consider the one-parameter family of equations

ξ̇ = f(ξ, η), η ∈ [0, ā]. (8)

For fixed η, let ϕη : R×Rn → Rn denote the flow generated by (8).

We shall make the following assumptions.

B1 There are continuous functions α, β : [0, ā] → Rn such that α(η) and β(η) are

hyperbolic equilibria under ϕη, i.e. Df(α(η), η) and Df(β(η), η) have no purely

imaginary eigenvalues. Furthermore, the number of eigenvalues with positive real

part are the same for Df(α(η), η) and Df(β(η), η).

B2 There are constants 0 < a0 < a1 < ā and compact sets N0, N1 ⊂ Rn with the

following properties.

1. For η ∈ [0, a0]:

(a) N0 is an isolating neighborhood under ϕη.

(b) α(η), β(η) ∈ N0.

(c) If ξ ∈ Inv(N0, ϕη) and ξ 6= α(η)∪β(η), then the omega limit set of ξ under

ϕη is β(η) and the alpha limit set of ξ under ϕη is α(η).

2. For η ∈ [a1, ā]:

(a) N1 is an isolating neighborhood under ϕη.

(b) α(η), β(η) ∈ N1.

(c) If ξ ∈ Inv(N1, ϕη) and ξ 6= α(η)∪β(η), then the omega limit set of ξ under

ϕη is α(η) and the alpha limit set of ξ under ϕη is β(η).

3. For η ∈ {0, a0},
Inv(N0, ϕη) = {α(η), β(η)}.

4. For η ∈ {a1, ā},
Inv(N1, ϕη) = {α(η), β(η)}.

5. The topological transition matrices T0,a0 and Ta1,ā do not equal the identity.

B3 For η ∈ [0, ā], g(α(η), η) < 0 and g(β(η), η) > 0.
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Theorem 2 (4, [Corollary 1.8]). Under assumptions B1-B3, for ε > 0 but suffi-

ciently small there exists a periodic solution to (7).

Proof of Theorem 1. The assumption B1 is satisfied by choosing α(w) = (A, 0) and

β(w) = (B(w), 0).

B2.1 and B2.2 follow from the construction of an isolating neighborhood in [7] and

Θ. B2.3 and B2.4 follow from the monotonicity of θ(w) (this will be proven in the next

section). Finally, the proof of the existence of the monotone bistable wave for fixed values

of w given in [7] involved verifying B2.5.

3. Monotonicity of the wave speed. As was indicated above W1 implies the

monotonicity of the wave speed as a function of predator population. In biological terms

this is a rather natural observation: the larger the predation, the greater the tendency

for the mutualists to die out, and so the smaller θ is.

In what follows superscripts 1, 2 denote quantities corresponding to given constant

levels w(1) and w(2) of the predator.

Lemma 3. w(2) > w(1) implies that θ(2) < θ(1).

Proof. This is based on a standard comparison theorem for the quasi-monotone

reaction system (see [6] for example). Let (u
(i)
1 (x + θ(i)t), (u

(i)
2 (x + θ(i)t)) be traveling

wave solutions. For the equilibrium B(w) it is clear that bj(w
(2)) < bj(w

(1)) for j = 1, 2.

Note next that for j = 1, 2,

u
(1)
jt − u

(1)
j (F (u

(1)
1 , u

(1)
2 )− w(2))− µju(1)

jxx ≥ u
(1)
jt − u

(1)
j (F (u

(1)
1 , u

(1)
2 )− w(1))− µju(1)

jxx

= 0.

This shows that (u
(1)
1 , u

(1)
2 ) is a supersolution for the w(2) equation. A linearization

argument, for which the details are omitted, shows that as z → −∞, for j = 1, 2

u
(2)
j (z) < u

(1)
j (z).

We can thus arrange (by translating time if necessary) that

u
(2)
j (x) < u

(1)
j (x).

It follows from the comparison theorem that for t > 0

u
(2)
j (x+ θ(2)t) < u

(1)
j (x+ θ(2)t).

Therefore, the w(1) wave cannot overtake the w(2) wave and the result follows.

4. Estimating wave speeds. Of all the hypotheses required for Theorem 1, the

most difficult to verify is Θ since this requires obtaining bounds on θ(w). Here we outline

a simple method applicable to a limited class of equations, but we intend to consider

more general methods in a more complete account to be published elsewhere.

Suppose h ∈ C1 ([0, b1(w)]× [0, b2(w)],R). Then, differentiation and use of the gov-

erning ordinary differential equations yields the relation



114 V. HUTSON AND K. MISCHAIKOW

h(B)− h(0) = θ

(∫ b1(w)

0

p1(s)ds+

∫ b2(w)

0

p2(s)ds

)

+

∫ b1(w)

0

(
∂h

∂u1
− f1

)
du1 +

∫ b2(w)

0

(
∂h

∂u2
− f2

)
du2. (9)

Since the bistable wave is monotone increasing, pi ≥ 0. There are, also, upper bounds on

these quantities given in terms of the µi and fi (see [7]). It follows that if

∂h

∂ui
≤ fi

and h(B)− h(0) > 0, then θ > 0. Furthermore, θ < 0, if the appropriate inequalities are

reversed. The question is, of course, whether we can find a suitable function h.

This method works easily for the following particular example. Suppose that

f1(u1, u2, w) = f2(u2, u1, w)

with

f(u1, u2, w) = u1(−1− 10u3
1 + 10.5u2

2 + 0.5v − kw).

Take

h(u1, u2) := −γ
2

(u2
1 + u2

2)− 2(u5
1 + u5

2) + 5.25u2
1u

2
2

with γ = 1 if k = 0 and γ = 1 if k = 0.9. A simple check shows that this gives negative

and positive θ respectively.
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