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Abstract. This paper is an introduction to connection and transition matrices in the Conley

index theory for flows. Basic definitions and simple examples are discussed.

1. Introduction. A fundamental theorem of Conley says that in a flow there are

two possible types of behavior for orbits in an isolated invariant set. A point can either

be chain recurrent, or it can be on a connecting orbit from one chain recurrent piece

to another chain recurrent piece. In the classical case of a gradient flow on a compact

manifold, the chain recurrent pieces are the rest points, and Morse theory gives a relation

between the Morse indices of the rest points and the topology of the manifold. Another

way to look at this is to note that the Morse inequalities force connections between certain

pairs of rest points in the gradient flow. Morse inequalities also apply to certain compact

invariant subsets of the flow (which are denoted M(I) below), so the topology of these

subsets also forces the existence of connecting orbits.

In the more general case of a flow which is not necessarily gradient-like, instead of

connections between rest points, the global topology forces connections between chain

recurrent pieces of the flow. These pieces are called Morse sets, and the Morse index of

the rest point is replaced by the homology Conley index in this more general setting.

The Morse theoretic information can be encoded in a single matrix, called the connection

matrix.
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For this algebraic encoding to be useful, it must be computable, and once computed, it

must return new dynamical information. We will address both of these issues. In particu-

lar, we will consider how connection matrices can be applied to parameterized families of

flows. This can be done in two different ways, each giving different types of information.

By considering the stability of connection matrices under perturbation, we can detect

stable connecting orbit structures. By studying the changes in connection matrices un-

der perturbation, we can detect bifurcations in the connecting orbit structures. This last

approach leads naturally to the introduction of transition matrices.

Most of the ideas discussed in this paper are originally due to Charles Conley, who

was an inspiration to both of us, and to many others. The singular transition matrices

introduced below were developed in the second author’s thesis, which was done under

Conley’s direction.

In this note we consider only connection matrices for flows. Recently, Richeson has

developed the ideas for continuous maps. See [13].

We assume that the reader is familiar with the notions of isolated invariant set, index

pair, and Conley index. For references, see [2], [14], and [1]. If S is an isolated invariant

set, CH(S) will denote its homology index, and we will use field coefficients for homology.

2. Morse decompositions

Definition 2.1. Let S be an isolated invariant set. A subset A ⊂ S is called an

attractor in S if there is an S-neighborhood U of A such that ω(U) = A. A repeller is an

attractor in the backward flow. If A is an attractor in S, let A∗ = {x ∈ S | ω(x)∩A = ∅}.

It is not hard to see that A∗ is a repeller. It is called the repeller dual to A, and

the pair (A,A∗) is called an attractor-repeller pair. Let C(A∗, A) = {x ∈ S | ω(x) ⊂

A,α(x) ⊂ A∗} be the connecting orbits from A∗ to A. It can be shown that S =

A ∪ A∗ ∪ C(A∗, A).

The generalization of an attractor-repeller pair is a Morse decomposition. To define

it, let (P,<) be a finite partially ordered set, i.e. p 6< p for all p ∈ P and < is transitive.

Definition 2.2. A Morse decomposition of an isolated invariant set S is a collection

{M(p) | p ∈ P} of compact invariant subsets of S such that if x ∈ S \
⋃

p∈P M(p), then

there are p, q ∈ P , p < q such that ω(x) ⊂ M(p) and α(x) ⊂ M(q). The order < on P is

called an admissible order.

The motivating example of a Morse decomposition is the rest points in a gradient

flow. The actual definition of Morse decomposition generalizes this notion to flows which

are not gradient-like. The chain recurrent behavior is contained in the Mp. The rest of S

lies on connecting orbits between the recurrent pieces.

Of all the admissible orders for a Morse decomposition, there is a minimal order (in the

sense that it has the fewest relations among admissible orders),<F , called the flow-defined

partial order on P . This order is obtained by starting with p <F q if C(Mq,Mp) 6= ∅,

then taking the transitive closure. All other admissible orders are obtained by adding

relations to <F . Of course, dynamically, one is interested in <F , but other orders are

important when one looks at perturbations of the flow, i.e. continuation.
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A Morse decomposition of S gives rise to many attractor-repeller pairs. Recall that

a set I ⊂ P is an interval if p, r ∈ I, q ∈ P , and p < q < r imply that q ∈ I. If I is an

interval, let

M(I) =
⋃

i∈I

M(i) ∪
⋃

i,j∈I

C(M(j),M(i)).

One can show that M(I) is an isolated invariant subset of S.

Definition 2.3. We say that (I, J) is an adjacent pair of intervals if

1. I ∪ J is an interval, and

2. i ∈ I, j ∈ J implies j 6< i.

Similarly, (I, J,K) is an adjacent triple of intervals if

1. I ∪ J ∪K is an interval, and

2. i ∈ I, j ∈ J , and k ∈ K implies k 6< i, j, and j 6< i.

We write IJ instead of I ∪ J , and IJK instead of I ∪ J ∪K. It can be shown that if

(I, J) is an adjacent pair of intervals, then (M(I),M(J)) is an attractor-repeller pair in

M(IJ).

3. The flow-defined boundary map. In this section we introduce the flow-defined

boundary map for an attractor-repeller pair. In classical Morse theory, when a critical

level is passed, a λ-cell is attached where λ is the Morse index of the critical point.

To obtain the attaching map, one looks at the negative gradient flow on the unstable

manifold of the critical point. The following construction generalizes this notion. Given

an attractor-repeller pair, an isolating neighborhood of the repeller is attached, by flowing

from the exit set, to a neighborhood of the attractor.

Definition 3.1. Let S be an isolated invariant set, and let (A,A∗) be an attractor-

repeller pair in S. Then a triple N0 ⊂ N1 ⊂ N2 of compact sets is called an index triple

for S if

1. (N1, N0) is an index pair for A;

2. (N2, N0) is an index pair for S;

3. (N2, N1) is an index pair for A∗.

Now given an index triple (N2, N1, N0) for (A,A
∗), there is a short exact sequence of

chain complexes

0 → C∗(N1, N0) → C∗(N2, N0) → C∗(N2, N1) → 0

which gives a long exact homology sequence

· · · → Hq(N1, N0) → Hq(N2, N0) → Hq(N2, N1)
∂(A,A∗)
→ Hq−1(N1, N0) → · · · .

With an extra assumption on the homology, or an extra condition (regularity) on the

index triple, which can always be satisfied, we have

· · · → CHq(A) → CHq(S) → CHq(A
∗)

∂(A,A∗)
→ CHq−1(A) → · · · . (1)
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Definition 3.2. We call sequence (1) the long exact sequence of the attractor-repeller

pair, and call the degree −1 map ∂(A,A∗) : CH∗(A
∗) → CH∗(A) the flow-defined bound-

ary map.

The flow-defined boundary map is independent of the index triple in the following

sense: if (N2, N1, N0) is an index triple which gives the map ∂ : H∗(N2, N1) → H∗(N1, N0)

and (N ′
2, N

′
1, N

′
0) is another triple with ∂′ : H∗(N

′
2, N

′
1) → H∗(N

′
1, N

′
0), then there are

flow-defined isomorphisms hA∗ : H∗(N2, N1) → H∗(N
′
2, N

′
1) and hA : H∗(N1, N0) →

H∗(N
′
1, N

′
0) such that

H∗(N2, N1)
∂

−→ H∗(N1, N0)




yhA∗





yhA

H∗(N
′
2, N

′
1)

∂′

−→ H∗(N
′
1, N

′
0)

commutes.

The importance of the flow-defined boundary map is given by the following.

Proposition 3.3. If ∂(A,A∗) 6= 0, then C(A∗, A) 6= ∅.

The idea of the proof is straightforward: if C(A∗, A) 6= ∅, then S = A ∪ A∗, so

CH(S) ∼= CH(A)⊕ CH(A∗). One then verifies that the long exact sequence (1) implies

∂(A,A∗) = 0.

In the case of hyperbolic rest points and transverse connections, ∂ counts the number

of connecting orbits “with orientation”. In our examples, we will use Z2 coefficients for

homology, so we state the following Theorem of McCord ([7]). W s and Wu denote stable

and unstable manifolds.

Theorem 3.4. If A is a hyperbolic rest point of index k, A∗ is a hyperbolic rest point

of index k + 1, and Wu(A∗) intersects W s(A) transversely, then using Z2 coefficients,

∂(A,A∗) counts the number of connecting orbits from A∗ to A, mod 2.

4. Connection matrices. Let {M(p) | p ∈ (P,<)} be a Morse decomposition of an

isolated invariant set S. If p < q and p and q are adjacent, then there is a flow-defined

boundary map ∂(p, q) : CH∗(q) → CH∗(p) (where CH∗(p) denotes CH∗(M(p))) of

degree −1 which contains connection information by Proposition 3.3 and Theorem 3.4.

Similarly, if (I, J) is an adjacent pair of intervals, then there is a flow-defined boundary

map ∂(I, J) : CH∗(J) → CH∗(I). The maps ∂(p, q) for p, q ∈ P are determined by the

global indices CH(I). We will now see what restrictions the global dynamics places on

the ∂(p, q). In [4], Franzosa showed that it is possible to construct a filtration which

simultaneously gives index pairs for all M(I) where I is an interval, and index triples for

all attractor-repeller pairs (M(I),M(J)) in M(IJ) for adjacent pairs of intervals (I, J).

We assume that such a filtration has been chosen.

For I ⊂ P , let C∆(I) =
⊕

i∈I CH(i). This is a graded vector space. A linear map

∆(P ) : C∆(P ) → C∆(P ) is represented by a matrix

[∆(p, q) : CH(q) → CH(p) | p, q ∈ P ].

Definition 4.1. ∆(P ) is upper triangular if ∆(p, q) = 0 if p 6< q. ∆(P ) is a boundary

map if each ∆(p, q) has degree −1 and ∆ ◦∆ = 0.
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Proposition 4.2. If ∆(P ) is an upper triangular boundary map, then ∆(I) is an

upper triangular boundary map for any interval I ⊂ P .

Proof. For any interval I ⊂ P , it is not difficult to see that there are intervals J,K

such that J ∪ I ∪ K = P and (J, I,K) is an adjacent triple of intervals. We can then

decompose ∆ as

∆(P ) =





∆(J) ∆(J, I) ∆(J,K)

0 ∆(I) ∆(I,K)

0 0 ∆(K)



 .

Taking the composition of the middle row and middle column gives ∆(I)2 = 0. Clearly

∆(I) inherits upper triangularity the degree−1 conditions, so ∆(I) is an upper triangular

boundary map.

If ∆ is an upper triangular boundary map, let H∆(I) denote the homology of the

chain complex (C∆(I),∆(I)). If (I, J) is an adjacent pair of intervals, then with the

obvious inclusion and projection maps there is a short exact sequence of chain complexes

0 → C∆(I) → C∆(IJ) → C∆(J) → 0

which gives a long exact homology sequence

· · · → H∆q(A) → H∆q(S) → H∆q(A
∗) → H∆q−1(A) → · · · . (2)

Notice that in the case I = {p}, ∆({p}) = 0 by upper triangularity, so H∆({p}) =

C∆({p}) = CH({p}). We can now define the connection matrix.

Definition 4.3. An upper triangular boundary map ∆(P ) is called a connection

matrix for {M(p) | p ∈ (P,<)} if for all intervals I ⊂ P , there are linear maps Φ(I) :

H∆(I) → CH(I) satisfying

1. If I = {p}, then Φ({p}) : H∆({p}) = CH({p}) → CH({p}) is the identity.

2. For all adjacent pairs of intervals, the following diagram commutes

· · · → H∆q(I) → H∆q(IJ) → H∆q(J) → H∆q−1(I) → · · ·




yΦ(I)




yΦ(IJ)




yΦ(J)




yΦ(I)

· · · → CHq(I) → CHq(IJ) → CHq(J) → CHq−1(I) → · · ·

where the top row is (2), and the bottom row is (1).

There are a couple of important facts which are immediate consequences of Defini-

tion 4.3.

Proposition 4.4. Φ(I) is an isomorphism for all intervals I.

Proof. Induction and the 5-lemma.

Proposition 4.5. If ∆ is a connection matrix and p, q ∈ P are adjacent then ∆(p, q)

= ∂(p, q), the flow-defined boundary map.

The algebraic properties of ∆ put restrictions on the ∂(p, q). In applications, one often

proceeds as follows. Some of the ∂(p, q) are computed directly (by symmetry, or in an

invariant subspace), and the algebraic conditions on ∆ are used to determine the other

maps. In this way, one proves the existence of connecting orbits.
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Let CM(<) denote the set of connection matrices with a given partial order <. Of

course, one is most interested in the flow-defined order <F . Other orders will be important

in the continuation theory of connection matrices.

Franzosa ([5]) proved that connection matrices exist.

Theorem 4.6. Let {M(p) | p ∈ (P,<)} be a Morse decomposition of an isolated

invariant set S. Then CM(<) 6= ∅.

The relation between partial orders and connection matrices is straightforward. If <1

and <2 are admissible orders with <1⊂<2, (i.e. p <1 q implies p <2 q), an interval I ⊂ P

in <1 is also an interval in <2, but the converse does not necessarily hold. Thus <2 has

more maps Φ(I), and hence more restrictions on ∆. So we have the following.

Proposition 4.7. If <1 and <2 are admissible orders with <1⊂<2, then CM(<2) ⊂

CM(<1).

Corollary 4.8. If < is an admissible order, then CM (<) ⊂ CM (<F ).

5. Examples. In the examples we will use Z2 coefficients. Consider the flow in Fig-

ure 1. Here S consists of the the four rest points plus the connecting orbits between

M1

M4

M2 M3

Fig. 1. S is the box whose corners are the rest points

them. Using a rectangle which isolates S it is not hard to see that CH(S) = 0. The

four rest points form a Morse decomposition with flow order 1 <F 2, 3 <F 4. We have

CHq(M1) ∼= Z2 if q = 0, CHq(M2) ∼= CHq(M3) ∼= Z2 if q = 1, CHq(M2) ∼= Z2 if q = 2,

and all other homologies are 0. Since ∆ has degree −1, the only possible nontrivial maps

are ∂(1, 2), ∂(1, 3), ∂(2, 4), and ∂(3, 4). Since the corresponding sets are adjacent, all maps

in ∆ are flow-defined and by Theorem 3.4, the maps are all isomorphisms. Thus

∆ =









1 2 3 4

1 0 1 1 0

2 0 0 0 1

3 0 0 0 1

4 0 0 0 0









.
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M1

M4

M2 M3

Fig. 2. Some missing information

This example is rather simple, but the power of the connection matrix is that one can

deduce some of the entries if others are known. For example, suppose we had the informa-

tion pictured in Figure 2, where the orbits in the shaded box are unknown. In particular,

we know that that the four rest points are a Morse decomposition, that CH(S) = 0, and

that there are single connections from M2 to M1, and M3 to M1. It follows that ∂(1, 2)

and ∂(1, 3) are isomorphisms, so ∆ has the form

∆ =









1 2 3 4

1 0 1 1 0

2 0 0 0 a

3 0 0 0 b

4 0 0 0 0









,

where a, b are to be determined. Since ∆2 = 0, it follows that a + b = 0 in Z2,

i.e. a = b. Furthermore, since CH(S) = 0, it follows that dim(ker∆) − rank∆ = 0.

Since dim(ker∆) + rank∆ = 4, we have rank∆ = 2. This implies a = b = 1.

In the two previous example all of the maps in ∆ were flow-defined boundary maps, so

the connection matrix was unique. Nonuniqueness can arise when there are maps which

are not flow defined. Consider the flow in Figure 3. There are two saddles with homology

M1M2

M3

Fig. 3. A nontransverse connection
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in dimension one, and an attracting rest point with homology in dimension zero. CH(S)

is one-dimensional, and the flow-defined order is 1 < 2 < 3. There is a single connection

from M2 to M1, so by Theorem 3.4 ∆(1, 2) = ∂(1, 2) = 1. The map ∆(1, 3) is not flow

defined. We have

∆ =





1 2 3

1 0 1 a

2 0 0 0

3 0 0 0



.

It is easy to check that dimCH(S) = 1 implies rank∆ = 1. In this example ∆2 = 0 and

rank∆ = 1 do not help determine a. In fact, one can construct isomorphisms Φ(I) for

all intervals I with either a = 0 or a = 1, so in this example there are two connection

matrices. In the next section we shall see that the nonuniqueness is also a consequence

of the continuation of connection matrices.

One can show that in the case that the Morse decomposition consists of hyperbolic

rest points, and if Wu(Mp) intersects W s(Mq) transversely for all p, q ∈ P , then every

nonzero map in the connection matrix is flow-defined, so ∆ is unique. In the case of a

Morse-Smale flow, i.e. the Morse decomposition consists of hyperbolic rest points and

periodic orbits, with transverse intersections, then nonuniqueness can occur. See [11].

6. Continuation. Suppose ϕλ is a parameterized family of flows on X with param-

eter space Λ. This gives a flow Φ on X × Λ via Φt(x, λ) = (ϕλ
t x, λ). Recall that Sλ,

an isolated invariant set in X for ϕλ, and Sµ, an isolated invariant set in X for ϕµ,

are related by continuation if there is an isolated invariant set S ⊂ X × Λ such that

Sλ = S∩ (X×{λ}) and Sµ = S∩ (X×{µ}). Sets which are related by continuation have

the same index. Indeed, there is a flow-defined isomorphism Fµλ : CH(Sλ) → CH(Sµ).

Recall that if N is an isolating neighborhood for ϕλ and Sλ = Inv(N,ϕλ), then for µ

sufficiently close to λ, N is an isolating neighborhood for ϕµ and Sµ = Inv(N,ϕµ) is

related to Sλ by continuation. Similarly if {Mλ
p | p ∈ P} is a Morse decomposition of Sλ,

then for µ sufficiently close to λ, there will be a Morse decomposition {Mµ
p | p ∈ P} such

that for each p, Mµ
p and Mλ

p are related by continuation. Thus there is a continuation

isomorphism between homology indices, so we may regard a connection matrix for the

Mλ
p as acting on the homology indices of the Mµ

p . So it makes sense to ask if there is

containment of the set of connection matrices for Mµ
p in the set of connection matrices

for Mλ
p . We shall see that this is the case.

It is important to consider how the flow order changes under perturbation. One can

show that a small perturbation can break existing connections between sets in a Morse

decomposition, e.g. the saddle-saddle connection in Figure 3 can be broken, but new

connections cannot be created by small perturbations. If <λ denotes the flow-defined

order on {Mλ
p | p ∈ P}, then for µ sufficiently close to λ, <λ will be an admissible order

for the Morse decomposition {Mµ
p | p ∈ P}. However, <λ may not necessarily be the flow

order for the Mµ
p . To see this, consider the following example. Here we have perturbed

the flow from Figure 3 in two ways. The original flow order in Figure 3 was 1 <λ 2 <λ 3.

In the perturbation on the left of Figure 4 the flow order is 1 < 2, and in the perturbation
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M1M2

M3

M1M2

M3

Fig. 4. Two perturbations of the saddle-saddle connection of Figure 3

on the right, the flow order is 1 < 2, 1 < 3. Notice that 1 < 2 < 3 is an admissible order

for both perturbations.

Now fix a λ and suppose Sλ is an isolated invariant set with Morse decomposition

{Mλ
p | p ∈ P}. Let CM(<λ) denote the set of connection matrices with the flow order on

P . Assume µ is sufficiently close to λ so that there is a Morse decomposition {Mµ
p | p ∈ P}

such that for each p, Mµ
p and Mλ

p are related by continuation. For each µ, let CM(<µ)

denote the set of connection matrices for the Mµ
p with the flow order.

Theorem 6.1. If µ is sufficiently close to λ, then CM(<µ) ⊂ CM(<λ).

The proof of this result is straightforward. If µ is close to λ, then <λ is an admissible

order for {Mµ
p | p ∈ P}. So by Corollary 4.8, CM(<µ) ⊂ CM(<λ).

We can apply Theorem 6.1 to show that there is not a unique connection matrix for

the flow in Figure 3. An arbitrarily small perturbation of the flow can give either of the

phase portraits in Figure 4. In the portrait on the left, 1 < 2 is the only relation, ∆(1, 2) =

∂(1, 2) = 1, all other entries are 0, so ∆ =





0 0 1

0 0 0

0 0 0



. In the portrait on the right

both ∆(1, 2) and ∆(1, 3) are flow-defined isomorphisms, so ∆ =





0 1 1

0 0 0

0 0 0



. Since

both of these connection matrices can be realized by an arbitraryily small perturbation

of Figure 4, Theorem 6.1 says that both of these matrices are connection matrices for

the original flow with the saddle-saddle connection.

7. Transition matrices. Connection matrices give information about the connect-

ing orbit structure in a single flow. For a parameterized family of flows, the continuation

of connection matrices described in the previous section reveals two things:

• Connection matrices detect connecting orbit structures which persist under pertur-

bation (codimension 0 connections).
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• Changes in the connection matrices detect changes in the connecting orbit structure

(codimension 1 connections).

But the mere fact that the collection of connection matrices changes does not reveal what

changes have taken place in the connecting orbits. To obtain finer information, we must

study the changes in the connection matrices more systematically. The devices introduced

to do so are known as transition matrices. Actually, there are two different constructions

of transition matrices: topological transition matrices and singular transition matrices.

We will consider each in turn.

The setting for both is the same. Fix a parameterized family of flows ϕλ on X with

parameter space Λ. Suppose that S is an isolated invariant set in X which continues

across Λ, and {Mp | p ∈ P} is a Morse decomposition that also continues across Λ. That

is, for every λ ∈ Λ, {Mλ
p | p ∈ P} is a Morse decomposition of Sλ.

7.1. Topological transition matrices. We begin with the simplest situation. Within Λ,

let Λ′ =
{

λ ∈ Λ|Sλ = ⊔p∈PM
λ
p

}

. That is, Λ0 is the set of parameter values for which

no connecting orbits occur. Clearly, the only possible connection matrix for {Mλ
p | p ∈

P, λ ∈ Λ′} is the zero matrix, so the continuation of connection matrices cannot detect

any codimension 0 connecting orbits. But it is possible to detect codimension 1 connecting

orbit structures.

Suppose λ, µ ∈ Λ′. Since Sλ = ⊔p∈PM
λ
p , there is a canonical isomorphism Φλ(P ) :

C∆(P ) → CH(Sλ). Further, since each Sλ
p is related by continuation to Sµ

p and Sλ is re-

lated by continuation to Sµ, there are isomorphisms F∆µλ(P ) =
⊕

p∈P Fµλ : C∆λ(P ) →

C∆µ(P ) and Fλµ : CH(Sλ) → CH(Sµ). These can be composed into a diagram

C∆λ(P )
F∆µ,λ(P )

−→ C∆µ(P )




yΦλ(P )




yΦµ(P )

CH(Sλ)
Fµ,λ
−→ CH∗(Sµ).

This diagram may not commute! Moreover, that failure of commutativity can be

quantified, and used to detect changes in the connecting orbit structure. To do so, it is

convenient to think of the continuation isomorphisms F∆µ,λ(P ) as fixing a set of coor-

dinates on C∆(P ) that continues across Λ. Since F∆νµ(P )F∆µλ = F∆νλ, this process

is well-defined. Then, let Tµλ(P ) = Φ−1
µ (P )FµλΦl(P ). Tµλ is the topological transition

matrix from λ to µ.

Theorem 7.1. Topological transition matrices have the following properties:

• If λ, µ, ν ∈ Λ′, then TνµTµλ = Tνλ.

• If λ, µ lie in the same path component of Λ′, then Tµλ = id

• It follows from these that Tλµ = T−1
µλ .

• If p < q, then Tµλ(q, p) : CH(Sλ
p ) → CH(Sµ

q ) is trivial.

• If I is an interval in P , then Tµλ(I) is a submatrix of Tλµ(P ).

Thus Tµλ is upper triangular with respect to <, with id on the diagonal. In particular,

if Tµλ(p, q) 6= 0, then p < q in the flow-defined order along any path connecting λ and µ in

Λ. That is, along every path from λ to µ in Λ there must be a sequence of connecting orbits
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Fig. 5. A two-parameter family of flows

(possibly at different parameter values) between Mq and Mp. Moreover, since topological

transition matrices are degree 0 isomorphisms, Tµλ(p, q) can only be non-zero if there

is some k for which CHk(Sp) and CHk(Sq) are both non-zero. That is, the connecting

orbits changes detected by topological transition matrices must be codimension 1, degree

0 connections.

This form of transition matrix has the obvious disadvantage that it can only be

employed when there are parameter values with no connecting orbits; and even then

can only be used to detect changes between such parameter values. On the other hand,

the relatively straightforward way in which they are defined, and the ability to compute

transition matrices via compositions and inverses, make them easy to compute.

Topological transition matrices were introduced in [8] to analyse two-parameter fam-

ilies of flows. An archetypical situation is shown in Figure 5:

• For every parameter value, there are three Morse sets MA, MB, MC , each with

index Σn, the pointed n-sphere. The ordering A < B < C is admissible across the

parameter space.

• For an open dense set of parameters, there are no connections between the Morse

sets. However, there is a curve ΓBA, and a transverse curve ΓCB, along which

B → A and C → B connections occur.

Let Tij denote the topological transition matrix from λj to λi. If there are no con-

nections between MA, MB and MC except the B → A connections along ΓBA and the

C → B connections along ΓCB, then

T10 = T32 =





1 0 0

0 1 α

0 0 1




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and

T20 = T31 =





1 β 0

0 1 0

0 0 1





with α and β non-zero. The composition rule for transition matrices implies that T32 ◦

T20 = T30 = T31 ◦T10. But it is a simple matter to verify that T32 ◦T20 6= T31 ◦T10. Thus,

there must be some other connecting orbits. In particular, if there are no connecting

orbits from MC to MB or MA along ΓBA, and no connecting orbits from MC or MB

to MA along ΓCB, then there must be an arc ΓCA emanating from ΓCB ∩ ΓBA, with

connections C → A for all λ ∈ ΓCA.

7.2. Singular transition matrices. The other approach to transition matrices is the

singular transition matrix of Reineck. This is actually the older approach. The adjective

singular was attached afterwards by McCord and Mischaikow to contrast it to the topo-

logical transition matrices they introduced. Though a later addition, the term is apt, for

Reineck’s transition matrices are defined by a limiting process which involves an essential

loss of isolation in the limit.

Singular transition matrices require a C1 family of flows, and work most naturally for

a one parameter family of flows ẋ = g(x, λ) for λ ∈ [0, 1]. We will find it convenient to

extend the parameter range slightly, and assume that g(x, s) is defined for s ∈ [− 1
2 ,

3
2 ].

From this, we define a flow on X × [− 1
2 ,

3
2 ] by

ẋ = g(x, s)

ṡ = ǫs(s− 1)

If N isolates
⋃

− 1
2
≤λ≤ 3

2

Sλ in X× [− 1
2 ,

3
2 ] when ǫ = 0, then it also isolates some Sǫ for

ǫ > 0. Moreover, that Sǫ has a Morse decomposition consisting of {M0
p}p∈P ∪ {M1

p}p∈P .

Of course, that collection is not a Morse decomposition at ǫ = 0 (hence the term singular).

The index set for this Morse decomposition is P × {0, 1}.

This index set admits several different partial orders, and it will be crucial to our

interpretation of transition matrices to understand the relation between these orders.

First, if < is the flow-defined partial order on P across [0, 1] (i.e. p and q are adjacent if

and only if there is a connection from St
q to St

p for some t ∈ [0, 1]), then we can define

the product partial order <p on P × {0, 1} by (p, i) < (q, j) if either p = q, i < j, or

p < q, i ≤ j.

On the other hand, for each ǫ, the drift flow has a flow-defined order <ǫ. Let <d be

the inverse limit of these partial orders. Namely, (p, i) <d (q, j) if there exists a sequence

ǫn → 0 such that (p, i) <ǫn (q, j) for every n. In other words, (p, i) < (q, j) in the drift

partial order if there is a connection (or sequence of connections) from M j
q to M i

p in

every open family of slow drift flows. In particular, if (p, i) <ǫ (q, j) for all small ǫ, then

(p, i) <d (q, j).

Lemma 7.2. The flow-defined partial order < on P × {0, 1} refines the drift partial

order <d.

The upshot of this is that if (p, 0) <ǫ (q, 1) for all small ǫ, then there is some sequence

tn ∈ [0, 1] and pn ∈ P with p0 = p, pN = q and M ti
pi

and M ti
pi+1

adjacent in the ti-flow.
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The drift flow does more than just make {M0
p}p∈P ∪{M1

p}p∈P a Morse decomposition.

For every p ∈ P , (p, 0) and (p, 1) are adjacent. In the flow on the interval [− 1
2 ,

3
2 ], 0 is

an attracting fixed point, 1 is a repelling fixed point and [0, 1] is an isolated invariant set

with index 0̄. Thus the product formula for the index implies that

CHk(M(p, 0)) ∼= CHk(Mp)

CHk(M{(p, 0), (p, 1)}) = 0

CHk(M(p, 1)) ∼= CHk−1(Mp)

for all p ∈ P .

The point is, there are connection matrices for this Morse decomposition, just as

for any other. But the special nature of this Morse decomposition casts that connection

matrix in a particular form, and gives a particular interpretation to the connection infor-

mation it produces. First, the matrix is defined on Ck∆(P × {0, 1}) ∼= Ck∆(P × {0})⊕

Ck−1∆(P × {1}) The matrix then has the form

∆ =

(

∆0 T

0 ∆1

)

with ∆0 and ∆1 connection matrices on P ×{0} and P ×{1} respectively (actually, ∆1 is

the suspension of a connection matrix on C∆(P ×{1})). The matrix T can be interpreted

as a singular transition matrix T : Ck∆(P × {1}) → Ck∆(P × {0}).

Since connection matrices are not unique, transition matrices are not unique. Some

elements of T are uniquely defined, however. For every p ∈ P , the pair (p, 0), (p, 1) is

adjacent. The homology Conley indices of (p, 0), (p, 1) and the interval {(p, 0), (p, 1)}

imply that the connection homomorphism of this adjacent pair is the identity map. And,

if p 6< q, then (p, 0) 6< (q, 1), and Tqp = 0. That is, T has the form






id ∗ ∗

0
. . . ∗

0 0 id







That is, it is upper-triangular with respect to <, with id on the diagonal.

Corollary 7.3. A singular transition matrix T is an upper-triangular isomorphism

with respect to the drift partial order <d. The diagonal entries of T are given by T (p, p) =

Fα−1(p) ◦ Σ−1(p).

Consider the family of Figure 4, with the two parameter values shown taken as λ = 0

and λ = 1. The partial order 2 > 1 < 3 continues across the interval, but is not necessarily

the flow-defined order across the interval. Must there be a connection 2 < 3 for some

parameter value between 0 and 1? If so, is it detectable by a transition matrix? The

connection matrices ∆0 for λ0 and ∆1 for λ1 are unique, so any connection matrix for

the drift flow on the product must have the form

∆ =



















0 1 0 1 0 0

0 0 0 0 1 a

0 0 0 0 0 1

0 0 0 0 −1 −1

0 0 0 0 0 0

0 0 0 0 0 0



















.
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The condition ∆2 = 0 forces a = 1. Thus the unique transition matrix is

T =





1 0 0

0 1 1

0 0 1





for any one-parameter family of flows connecting the two flows shown.

If {Mp | p ∈ P} is a Morse decomposition that continues across Λ, let P(Λ) denote

the path space on Λ. For every α ∈ P(Λ), there is a product flow on X × [− 1
2 ,

3
2 ] defined

by

ẋ = g(x, α(s))

ṡ = ǫs(s− 1)

Let CM(<α) denote the set of connection matrices on P × {0, 1} for this path, and let

T (<α) denote the corresponding set of transition matrices. It is natural to ask about

the dependence of T (<α) on the path α. Some information comes from applying the

continuation results to CM(<α).

Theorem 7.4. If β is sufficiently close to α in P(Λ), then T (<β) ⊂ T (<α).

There are other, equally natural questions that are currently unanswered:

• What is the relationship between T (α) and T (α−1)?

• If α1 and α2 are paths with α1(1) = α2(0), what is the relationship between

T (<α1
), T (<α2

) and T (<α1∗α2
)?

These questions are open in general, but are resolved in one case. When the set

Λ′ defined in § 7.1 is non-empty, it is possible to define both topological and singular

transition matrices. In this setting, the two definitions agree [8]. That is, the topological

transition matrix is the unique singular transition matrix. The properties of topological

transition matrices stated in Theorem 7.1 then become properties of singular transition

matrices.

This property is exploited in [6] to prove the existence of infinitely many connecting

orbits in a one-parameter family of differential equations in R2 with slow parameter drift

u̇ = g(u, λ, ǫ) u ∈ R2

λ̇ = ǫg(λ) λ ∈ R

with g(λ) > 0 for |λ| < 1 and g(λ) < 0 for |λ| > 1. When ǫ < 0, the drift is from λ = 1

to λ = −1; the drift is reversed when ǫ = 0. As with any singular perturbation problem,

the approach is to make assumptions about the behavior of the system at ǫ = 0, then

determine what behavior will be observed when ǫ 6= 0.

The hypotheses guarantee that the ǫ = 0 system has exactly two rest points for each

λ: one a saddle for all λ; the other an attractor for λ < 0 and a repeller for λ > 0.

Further, λ = ±1, there is a unique transverse intersection of the stable and unstable

manifolds. These solutions form an invariant, normally hyperbolic curve. for ǫ near zero,

this curve persists and is further assumed to contain two hyperbolic equilibria. Under

these hypotheses, it is shown that for a perturbation ǫ < 0, the number of heteroclinic

orbits is at least two, but is bounded. On the other hand, for ǫ > 0, there are infinitely

many heteroclinic orbits.
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The existence of the finite number of connections for ǫ < 0 comes from directly

computing the singular transition matrix T−. At ǫ = 0, this is a topological transition

matrix, and for ǫ > 0, the unique singular transition matrix must be T+ = T−1
− . It is

from the structure of T+ that they deduce the existence of infinitely many connections.

For a straightforward application involving a family of flows arising from ecological

models, see [12]. In this paper families of flows in the plane are considered with Morse

decompositions consisting of hyperbolic rest points. Some connections can be deduced

using symmetry, and the algebraic conditions discussed in section 4 are used to produce

a list of connection matrices. These matrices correspond to flows without saddle-saddle

connections. Transition matrices are computed algebraically to give information about

saddle-saddle connections which can occur.
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