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An important and fundamental area of research in Mathematical Logic has been an

attempt to classify and understand those structures or collections of structures that have

decidable theories. A structure is said to be decidable if there is an algorithm to decide

precisely which sentences (taken from a language appropriate for the structure) are true

of the structure.

The study of the decision problem for various classes of structures began in the 1930’s

when Church gave the first undecidability result.

In Algebra one primarily studies collections of algebras known as varieties (that is

classes of algebras closed under subalgebras, products and homomorphic images, or equiv-

alently classes defined by a set of equations). Over past few decades there has been a

systematic attempt to classify decidable varieties.

Soon after the appearance of the undecidability result of A. Church and J. B. Rosser,

namely that Peano’s arithmetic is undecidable, A. Tarski took over and developed in

1938–39 a general framework for proving the undecidability of first-order theories. The

method was used by himself and many others to obtain a wide spectrum of undecidable

varieties, including

(u.1) multi-unary algebras,

(u.2) (non-Abelian) groups,

(u.3) Heyting algebras, monadic algebras,

(u.4) (distributive) lattices,

(u.5) semilattices, semigroups.
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Thus from the very beginning it was clear that a rich enough mathematical theory should

be undecidable. On the other hand A. Tarski [33] proved (in 1949) the decidability of the

class of Boolean algebras. Another important result of this kind is the one of W. Szmielew

([32], 1955), saying that any variety of Abelian groups is decidable. These, together with

the decidability of algebras with one unary operation (the decidability of which was

shown by A. Ehrenfeucht [5], 1959) form, as it turned out recently, the paradigms for

decidable varieties. Although the proofs of undecidability often can be performed without

any finiteness assumptions on a variety V one can hardly expect to get an effective (or,

according to Hilbert, a finitinistic) method without any such restriction. It should not be

surprising that we restrict ourselves to

• locally finite varieties, i.e. varieties in which every finitely generated algebra is

finite,

or sometimes even to

• finitely generated varieties, i.e. classes of the form HSP(K), where K is a finite

set of finite algebras.

Another important assumption we make is that

• varieties are of finite type, i.e. there are only finitely many fundamental opera-

tions.

Note that the above mentioned basic examples of decidable varieties, i.e.

(d.1) mono-unary algebras,

(d.2) Abelian groups,

(d.3) Boolean algebras,

are of finite type.

All of the results we had mentioned so far answer the question of whether a particular

variety is decidable. However there were no general theorems concerning the structure of

decidable varieties. The situation changed in the middle of 1970’s when H. Werner [38]

extended a sheaf technique, used earlier by S. D. Comer [4] for monadic algebras, to prove

that each finitely generated discriminator variety has a decidable first order theory.

The easiest way to see how a discriminator variety looks like is to imagine it as

consisting of Boolean algebras with extra operators. Instead of giving a precise definition

of a discriminator variety let us make the following digression.

We know that each variety V is generated by its subdirectly irreducible algebras, i.e.,

V = HSP(VSI) is the smallest class containing all subdirectly irreducibles from V and

closed under formation of homomorphic images, subalgebras and direct products. In fact

each algebra A can be embedded into a product of SI–algebras:

A ⊆
∏
t∈T

Bt,

in a way that each projection πt : A −→ Bt is surjective. (By a subdirectly irreducible

algebra we mean one that cannot be further ‘decomposed’ in this way, or equivalently an

algebra having a least non–trivial congruence.) In general such kind of embedding does
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not tell us much how the algebra A lies inside the product
∏

t∈T Bt. Therefore only a

few things can be said about a particular subdirect embedding. However, sometimes it

is possible to transfer a big deal of information from the stalks {Bt}t∈T to a subdirect

product A. This happens when the index set T is endowed with some extra structure –

usually including a topological one – and A is uniquely determined by this structure of

T and {Bt}t∈T .

This is the case when considering discriminator varieties. Each algebra from such a

variety can be represented by the so called Boolean product of the SI’s (which are actually

simple, i.e., have no proper congruences). In Boolean products the index set T is endowed

with Stone topology (i.e. T is a totally disconnected Hausdorff compact space). If V is

finitely generated then every algebra A ∈ V is determined uniquely by (and therefore

can be recovered from) its congruence lattice Con(A) labeled by the class VSI . The facts

that the last class is finite and Stone spaces are just duals of Boolean algebras allowed

H. Werner [38] effectively translate sentences about algebras from V into sentences about

Boolean algebras. Since the last class is decidable then we get

Theorem 1 (Werner [38]). Every finitely generated discriminator variety is decid-

able.

As we will see later discriminator varieties are the only congruence distributive ones

(i.e. such that the congruence lattice Con(A) is distributive whenever A ∈ V) that can

be decidable.

The class of congruence distributive varieties is broad enough to include Boolean al-

gebras, Heyting algebras or more generally most algebras with lattice operations. This

covers many varieties that arise as algebraic counterparts of (non–)classical logics. How-

ever the only varieties of classical algebraic structures that are congruence distributive

are those generated by finite fields.

In the 70’s A. P. Zamyatin [42, 43, 44, 45] gave a complete characterization of de-

cidable varieties of groups and rings. Excellent results of S. D. Comer, H. Werner and

A. P. Zamyatin were used by S. Burris and R. McKenzie ([1], 1981) to describe the struc-

ture of decidable locally finite congruence modular varieties. Among congruence modular

algebras there are all congruence distributive ones as well as almost all classical algebraic

structures like groups, rings, modules, quasi–groups and many others. An important role

is played here by affine varieties, i.e. varieties A for which there is a ring R such that

every algebra A ∈ A is polynomially equivalent to some R–module.

Theorem 2 (Burris, McKenzie [1]). A locally finite congruence modular variety V is

decidable if and only if there is a decidable affine variety A and a decidable discriminator

variety D such that V decomposes into V = A⊗D.

The decomposition in the last theorem means that every algebra V ∈ V can be

uniquely represented as a product V = A×D with A ∈ A and D ∈ D.

In the 80’s R. McKenzie and M. Valeriote [24] went further to drop even the modularity

assumption. In their decomposition, besides a discriminator variety and an affine one there

is a third factor: a combinatorial (or, strongly Abelian) variety, i.e. a variety S that
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satisfies the following term condition:

t(a, u1, . . . , uk) = t(b, v1, . . . , vk) implies t(a,w1, . . . , wk) = t(b, w1, . . . , wk)

whenever t is a term and a, b, u1, . . . , uk, v1 . . . , vk, w1, . . . , wk ∈ S ∈ S. For example

any variety in which all operations are unary (or depend only on a single variable) are

combinatorial.

Theorem 3 (McKenzie, Valeriote [24]). A locally finite variety V is decidable if and

only if there is a decidable combinatorial variety S, a decidable affine variety A and a

decidable discriminator variety D such that V decomposes into V = S ⊗A⊗D.

Theorem 3 does not actually answer the question which locally finite (or even finitely

generated) varieties are decidable. It reduces the problem to combinatorial, affine and

discriminator varieties.

The combinatorial case has been completely solved by M. Valeriote in [34], where it

is shown that decidable combinatorial varieties are those that are equivalent to multi–

sorted unary algebras satisfying certain linearity condition. Much less is known about

which affine or discriminator varieties are decidable.

Discriminator varieties have nice representation via sheaves not only when finitely

generated (cf. Theorem 1). Using sophisticated sheaf constructions S. Burris, R. McKen-

zie, M. Valeriote [3] along with R. Willard [37, 39, 40], have recently made significant

progress in the study of decidable discriminator varieties.

For results on decidable affine varieties the reader may consult the papers [25, 26, 27,

28, 29] of F. Point and M. Prest.

There are two big achievements in the join effort of Burris, McKenzie and Valeriote

(Theorems 2 and 3). First there is an algorithm that converts a finite algebra A (of finite

type) into a finite ring R such that the variety HSP(A) generated by A is decidable if

and only if the variety of modules over the ring R is decidable.

Second, the proofs of those results give a deep insight into the structure of decidable

varieties. This was made possible by two big developments of the late 70’s and early

80’s. One of them is modular commutator theory. The theory had been initiated

by J. D. H. Smith [31] for congruence permutable varieties. It was further developed by

J. Hagemann and Ch. Herrmann [8], H. P. Gumm [7] and R. Freese and R. McKenzie [6].

The last book contains several important results and techniques that are extremely useful

when studying congruence modular varieties. The binary operation on congruences that

simultaneously generalizes the concept of a commutator [H,K] of two normal subgroups

H,K of a group as well as the ideal multiplication in rings was defined. Then it was

shown how some information about algebras or varieties can be recovered from congruence

lattices endowed with this binary operation. Moreover the concept of commutator allows

us to speak about solvable, nilpotent or Abelian congruence (or algebra) as well as about

the center of an algebra or a centralizer of a congruence.

The second achievment of Universal Algebra was tame congruence theory created

and described in D. Hobby and R. McKenzie [9]. Tame congruence theory is a tool to

study the local structure of finite algebras. Instead of considering the whole algebra and

all its operations at once, tame congruence theory allows us to localize to small subsets
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on which the structure is much simpler to understand and handle. There are only five

possible ways a finite algebra can behave locally. It can be either one of the following:

1. a finite set with a group action on it,

2. a finite vector space over a finite field,

3. a two element Boolean algebra,

4. a two element lattice,

5. a two element semilattice.

Now, if a local behavior of an algebra is ‘bad’ then we can often show that the algebra itself

behaves ‘badly’. For example, since distributive lattices and semilattices are (finitely)

undecidable then one can argue that in a (finitely) decidable variety structures of type 4

or 5 cannot occur.

On the other hand it is not true that if the local behavior is ‘nice’ then the global

one is such. Several kinds of interactions between these small sets can produce a fairly

messy global behavior. Such interactions often contribute to (finite) undecidability. Also

relative ‘geographical layout’ of those small sets can result in unpredictable phenomena.

Theorem 3 was obtained by detecting almost 20 different ways in which a ‘bad’ local

behavior can occur. In every such situation the hereditarily undecidable class Gfin of finite

graphs (see [23]) was uniformly interpreted into V. The interpretation (or semantical

embedding) of an undecidable class is a standard technique for proving undecidability

(see [2] or [1]). And often this undecibable class is the class Gfin. Thus from the proof of

Theorem 3 we know that if a semantical embedding of Gfin into a locally finite variety V
is not possible then V has a nice structure. This leads to the following definitions.

A class V is said to be

• unstructured if the class Gfin can be semantically embedded into V,

• finitely unstructured if the class Gfin can be semantically embedded into Vfin.

The reader should be warned here that there are (finitely generated) undecidable

varieties that are not unstructured. Modules (over a finite ring) provide a natural example.

They have a stable theory and therefore cannot interpret graphs. Also R. Willard [41]

provides an example of a finitely undecidable locally finite discriminator variety that is

not known to be finitely unstructured.

From Theorem 3 we know that decidable varieties are really quite rare. Essentially

we have three kinds of them. Locally the structure of factors from S,A and D is of type

1, 2 and 3, respectively. And each of these three kinds of decidable varieties slightly

generalizes those listed in (d.1)–(d.3).

Decidable varieties were characterized in terms of the behavior of congruences of

their algebras. Birkhoff’s suggestion in the 1930’s that congruence lattices should be

considered as fundamental associated structures has proved to be remarkably farsighted.

In particular, the mentioned results of S. Burris, R. McKenzie and M. Valeriote justified

an old standing supposition that decidability of a variety and its nice structure theory go

hand in hand. In case a variety is finitely generated and decidable then all its algebras can

be recovered, up to isomorphism, from their (labeled) congruence lattices and a single

finite algebra.
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The connections between the structure of algebras and behavior of their congruences

is extremely strong if one restricts to the class of finite algebras. This leads to the question

of finite decidability of a given class of algebras — a class is said to be finitely decidable

if the first order theory of its finite members is recursive. Although many of undecidable

varieties are also finitely undecidable, these two notions are completely independent —

any of the four possible cases can occur. Boolean algebras are both decidable and finitely

decidable while distributive lattices are undecidable and finitely undecidable. From the

work of A. P. Zamyatin [45] it follows that the variety of rings generated by the ring of

integers modulo 4 is undecidable but finitely decidable. The most interesting example was

found by J. Jeong [19] who constructed a decidable discriminator variety that is finitely

undecidable.

For a better understanding how such differences can occur we will consider the fol-

lowing two examples:

• a finitely decidable theory of one equivalence relation, i.e. the theory of the class

E1 of all structures (X; ρ) with ρ being an equivalence relation on a finite set X,

• a finitely undecidable theory of two equivalence relations, i.e. the theory of the

class E2 of all structures (X; ρ1, ρ2) with ρ1, ρ2 being equivalence relations on a

finite set X,

One can show that the second class is finitely unstructured. Thus if E2 can be semanti-

cally embedded into finite algebras from a variety V then one can conclude that V itself

is finitely unstructured (and therefore finitely undecidable). An easy example of such sit-

uation occurs in the class of finite Boolean triples, i.e. structures of the form (B;B1, B2),

where B is a finite Boolean algebra and B1, B2 are two unary predicates distinguishing

subalgebras of B; simply take B to be the Boolean algebra on power–set 2X and Bi to

be the subalgebra of B consisting of unions of ρi–equivalence classes. Now we replace Bi

by a unary closure function ci, i.e. for Z ⊆ X we let ci(Z) to be the smallest subset in

Bi that contains Z. This allows us to pass to the finitely undecidable variety of cylindric

algebras (of dimension 2).

Actually it happens quite often that finite Boolean triples (or in other words two

equivalence relations) ‘live locally’ in finite algebras from a variety. Two such general

situations were detected while proving:

Theorem 4 (Idziak [12, 13]). Every finitely decidable locally finite congruence dis-

tributive variety is congruence permutable and congruence linear.

Here congruence permutability means that the relational product of congruences is

commutative. It is a strong condition. For example it implies that every subalgebra D of

A ×A that contains the diagonal {(a, a) : a ∈ A} is symmetric (as a binary relation on

A). This seriously restricts the global behavior of finite algebras in HSP(A).

Congruence linearity is the condition saying that congruences in subdirectly irre-

ducible algebras (from V) are linearly ordered. This gives that the set Cm(A) of meet–

irreducible congruences of a (finite) algebra from V is a dual tree under the inclusion, i.e.

for α, β, γ ∈ Cm(A)

α ⊆ β, γ gives β ⊆ γ or γ ⊆ β.
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For example, if we consider (finite) monadic algebras (i.e. cylindric algebras of dimension

1) that are obtained from E1 (in a way analogous to the dimension 2 case), then meet–

irreducible congruences of the algebra corresponding to (X; ρ) form a tree (or forest)

isomorphic to the disjoint union X∪X/ρ with the membership relation ∈ as the ordering.

Now given this tree Cm(A) one can expect that the very strong result of M. O. Rabin

[30] on decidability of the Monadic Second Order theory of finite trees can be applied

to get the decidability of Vfin. One can see how this can be done in case of the variety

LC of Heyting algebras generated by all chains (see [10] for details). For every Heyting

algebra A from LC the set of meet–irreducible elements form a tree TA. The universe of

a finite A ∈ LC can be recovered as the collection O(TA) of all subsets of TA that are

closed upwards. Moreover the operations of A, when applied to O(TA), are expressible

in terms of set–theoretic operations of subsets of TA, and therefore can be defined in

the Monadic Second Order language of trees. This together with Rabin’s result gives the

finite decidability of LC.
In general we cannot expect that (finite) algebras from V are recoverable just from

their trees of meet–irreducible congruences. Nevertheless P. M. Idziak [11] succeeded

in defining a special kind of sheaf construction and in representing finite algebras in an

appropriate way (see also [14, 15]) to prove the converse of Theorem 4 in finitely generated

setting:

Theorem 5 (Idziak). A finitely generated congruence distributive variety (of finite

type) is finitely decidable if and only if it is congruence permutable and congruence linear.

Soon after the above results had been published J. Jeong applied Tame Congruence

Theory to extend them to congruence modular varieties. After proving that

• every finitely decidable locally finite congruence modular variety is congruence per-

mutable (see [20]),

he analyzed subdirectly irreducible algebras in such varieties V. In particular he showed

(see [21]) that the monolith µ of a finite subdirectly irreducible algebra A ∈ V has the

following properties:

• the centralizer (0 : µ) of µ is an Abelian congruence,

• the congruences of A above (0 : µ) are linearly ordered,

• the algebra A/(0;µ) together with all its homomorphic images has no non–trivial

Abelian congruences.

The most important consequence of these facts is that

• any finitely decidable finitely generated congruence modular variety has only finitely

many subdirectly irreducible algebras and all of them are finite.

Another necessary condition of this kind was found by P. M. Idziak and M. Valeriote

[17]:

• the centralizer (0 : µ) of the monolith µ of a subdirectly irreducible algebra A ∈ V
is comparable to all congruences of A.
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All of the above conditions were obtained by interpreting Gfin into Vfin, so that actually

we have:

Theorem 6 (Jeong; Idziak, Valeriote). If a finitely generated congruence modular va-

riety V is not finitely unstructured then

(1) V is congruence permutable,

(2) V has only finitely many subdirectly irreducible algebras and all of them are finite

(3) if A is a subdirectly irreducible algebra in V and ν is the centralizer of the monolith

of A, then

(3.1) ν is an Abelian congruence,

(3.2) ν is comparable with all congruences of A,

(3.3) the congruences of A above ν are linearly ordered,

(3.4) A/ν has no homomorphic image with Abelian monolith.

1

(0 : µ)

�
�
�
�
�

S
S
S
S
S

S
S
S
S
S

�
�
�
�
� µ

0

Theorem 6 lists several situations in which a ‘bad’

local behavior in a (finite) subdirectly irreducible

algebra propagates into members of Vfin in a way

that allows a uniform embedding of Gfin.

In particular those conditions separate an Abelian

part (below the centralizer (0 : µ)) and a non–

Abelian part (above the centralizer (0 : µ)) in a

congruence lattice Con(A) of a subdirectly irre-

ducible algebra. Moreover they describe the nice

(linear) behavior of the non–Abelian part (see the

picture).

Since the Abelian (or affine) part does not allow interpretation of graphs we cannot

expect any further conditions on the behavior of the congruences below the centralizer

(0 : µ) in varieties that are not finitely unstructured. What is more interesting is that

the list from Theorem 6 is complete. If V satisfies all those conditions then Vfin has ‘nice’

structure.

To get an impression how this structure is obtained we start with noticing that in

every finite algebra B there is the largest solvable congruence ρ, called the solvable radical

of B. Our conditions from Theorem 6 guarantee that this radical is in fact Abelian. This

in turn allows to endow the product of ρ–cosets with the module structure. In particular

we get a finite family R = {RA : A ∈ VSI} of finite rings such that the product of

(0 : µA)–cosets of a subdirectly irreducible algebra A is an RA–module.

Another consequence of our theorem is that congruences of B that lie above the

radical ρ form a distributive lattice in which the set

TB = {ϕ ∈ Cm(B) : ϕ ⊇ ρ}
is a (dual) tree under inclusion. This dual tree is the main ‘frame’ from which we will
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recover B. Obviously to do that we need to know more than just the tree TB. This

knowledge is encoded by a double labeling of TB.

The first labeling associates with every ϕ ∈ TB a subdirectly irreducible algebra (from

a previously fixed list) that is isomorphic to B/ϕ. To do this in a uniform way we first

create a large ‘amalgam’ D of subdirectly irreducibles from V. Then we define a monotone

mapping

Θ : TB 3 ϕ 7→ Θϕ ∈ Cm(D)

that among other compatibility conditions satisfies B/ϕ ∼= D/Θϕ.

The second label for the node ϕ is a module Mϕ over the ring RD/Θϕ
.

In [16] a substantial extension of a construction from [11] was defined. This construc-

tion associates with arbitrary collection of the form (D, T,Θ,M) where

• D is an algebra,

• T is a partially ordered set,

• Θ : T −→ Cm(D) is a monotone mapping,

• M = {Mt}t∈T is a family of modules

that satisfies certain compatibility conditions, an algebra

D [T,Θ,M ]

in the variety HSP(D) generated by D. This construction was shown to be good enough

to represent every finite algebra B from the variety V as D [TB,Θ,M ], where Θϕ and

Mϕ are the two labelings of TB defined earlier. Thus we have:

Theorem 7 (Idziak [16]). Let V be a finitely generated congruence modular variety. If

V is not finitely unstructured then there is a finite algebra D and a finite collection RV of

finite modules such that finite algebras from V are exactly those of the form D [T,Θ,M ],

where T is a finite dual tree, Θ : T −→ Cm(D) is a monotone mapping and M is a

family of modules over rings from RV .

The construction and representation described in Theorem 7 allows us to apply a

Feferman–Vaught style analysis. This in turn effectively reduces the first order theory of

the class Vfin to the monadic second order theory of finite trees and the first order theory

of finite modules over a finite number of finite rings. Thus we get

Theorem 8 (Idziak [16]). For every finitely generated congruence modular variety V
(of finite type) there is a finite family of finite rings RV (effectively computable from any

finite generator of V) such that V is decidable if and only if V is not finitely unstructured,

and for every R ∈ RV the class of all R-modules is finitely decidable.

Much work has been done in a more general setting, i.e. without the congruence

modularity assumption. Results of Idziak, Jeong, Valeriote and Willard [17, 18, 22, 35, 36]

allow us to hope that analogues of Theorems 6, 7 and 8 may hold. It is natural to

expect that in this general setting we have to incorporate structures that are ‘locally

combinatorial’ or unary.

The research on (finite) decidability of varieties demonstrated the power and useful-

ness of the algebraic tools: the Commutator Theory and the Tame Congruence Theory.
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Those tools allow to talk about algebras or varieties that are completely unrestricted in

nature except that they satisfy certain finiteness conditions.
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