ON THE EXISTENCE OF PRIME IDEALS IN BOOLEAN ALGEBRAS

JÖRG FLUM
Mathematisches Institut, Universität Freiburg
Eckerstr. 1
79104 Freiburg, Germany
E-mail: flum@ruf.uni-freiburg.de

Abstract. Rasiowa and Sikorski [5] showed that in any Boolean algebra there is an ultrafilter preserving countably many given infima. In [3] we proved an extension of this fact and gave some applications. Here, besides further remarks, we present some of these results in a more general setting.

1. Introduction. Let E be a subset and a an element of a Boolean algebra B, $E \subseteq B$ and $a \in B$. Assume that a is the infimum of E, $a = \bigwedge E$. An ultrafilter U preserves $a = \bigwedge E$, if

$$a \not\in U \text{ implies } e \not\in U \text{ for some } e \in E.$$

In the section entitled “A theorem on the existence of prime ideals in Boolean algebras” of their paper “A proof of the completeness theorem of Gödel” (cf. [5]), Rasiowa and Sikorski prove the following theorem which is sometimes (cf. [4]) called the Lemma of Rasiowa and Sikorski.

Theorem 1.1. Given infima $a_1 = \bigwedge E_1$, $a_2 = \bigwedge E_2$,... in a non-trivial (i.e., $0 \neq 1$) Boolean algebra there is an ultrafilter preserving all these infima. Since

$$a = \bigwedge E \quad \text{implies} \quad 0 = \bigwedge \{e \cap \sim a \mid e \in E\},$$

this result can be rephrased as:

Corollary 1.2. Let $E_1, E_2, ...$ be subsets of a non-trivial Boolean algebra with $0 = \bigwedge E_1 = \bigwedge E_2 = ...$. Then

$$(*) \quad \text{there is an ultrafilter } U \text{ s.t. for all } n \text{ there is } e \in E_n \text{ with } \sim e \in U.$$

1991 Mathematics Subject Classification: 03G05, 03E50, 06E10, 54D80.

The paper is in final form and no version of it will be published elsewhere.

[119]
In [3] we gave necessary and sufficient “absolute” conditions for the existence of an ultrafilter as in this corollary in case we omit the hypothesis $0 = \bigwedge E_1 = \bigwedge E_2 = \ldots$ (As shown by $E_1 = \{a\}$ and $E_2 = \{\sim a\}$ with an arbitrary element a the hypothesis cannot simply be omitted.)

Our result and proof method were inspired by a corresponding characterization of the omissible types of (incomplete) first-order theories contained in [1], rediscovered and applied in [2]. It is well-known that one of the first important applications of the Lemma of Rasiowa and Sikorski is its use by Ryll-Nardzewski to characterize ω_0-categorical theories (cf. [6]). Implicitly, this characterization contains the so-called omitting types theorem.

In this paper we present our results extending the Lemma of Rasiowa and Sikorski in a more general setting.

2. Inflationary and monotone operations. Let B be a set and J an operation on the power set of B,

$$J : \text{Pow}(B) \to \text{Pow}(B),$$

that is inflationary and monotone; here inflationary means that

$$X \subseteq J(X),$$

and monotone that

$$X \subseteq Y \text{ implies } J(X) \subseteq J(Y).$$

By transfinite induction one defines the subsets J_α of B by

$$J_0 := \emptyset; \quad J_{\alpha+1} := J(J_\alpha); \quad J_\alpha := \bigcup_{\beta < \alpha} J_\beta.$$

Then,

$$J_\infty := \bigcup_{\alpha} J_\alpha$$

is the least fixed-point of J, i.e.,

$$J(J_\infty) = J_\infty \quad \text{and} \quad J(X) = X \text{ implies } J_\infty \subseteq X.$$

If κ is an infinite cardinal, we say that J is κ-ary, if

$$J(X) = \bigcup \{J(X_0) \mid X_0 \subseteq X \text{ and } |X_0| < \kappa\}$$

(Here $|Y|$ denotes the cardinality of Y).

Now let I be a set and for $i \in I$ let J^i be an inflationary and monotone operation on the power set of B. Define the union of J^I of the J^i’s,

$$J^I : \text{Pow}(B) \to \text{Pow}(B),$$

by

$$J^I(X) := \bigcup \{J^i(X) \mid i \in I\}.$$

Clearly, J^I is inflationary and monotone. Moreover,

1. Every fixed-point of J^I is a fixed-point of each J^i; in particular, J^I_∞ is a fixed-point of each J^i.

As a corollary we get:

\[B \]

Hence,

\[I \]

(2) If each \(J^i \) is \(\kappa \)-ary, then so is \(J^I \) and, for any \(\alpha \),

\[
J^I_\alpha = \bigcup \{ J^I_\beta \mid I_0 \subseteq I \text{ and } |I_0| < \kappa \}
\]

(here, \(J^I_\beta \) is the union of the \(J^i \)'s with \(i \in I_0 \)).

\textbf{Proof.} Clearly, the equality holds for \(\alpha = 0 \). For \(\alpha = \beta + 1 \) we have

\[
J^I_{\beta+1} := J^I(J^I_\beta) = \bigcup_{i \in I} J^I(J^I_\beta)
\]

\[
= \bigcup_{i \in I} \bigcup_{I_0 \subseteq I, |I_0| < \kappa} J^I(J^I_\beta)
\]

\[
= \bigcup_{I_0 \subseteq I, |I_0| < \kappa} J^I_\beta = \bigcup_{I_0 \subseteq I, |I_0| < \kappa} J^I_\alpha + 1
\]

(in deriving the first equality in the last line note that \(I_1 \subseteq I_2 \) implies \(J^I_1(X) \subseteq J^I_2(X) \)). If \(\alpha \) a limit ordinal then

\[
J^I_\alpha = \bigcup_{\beta < \alpha} J^I_\beta = \bigcup_{I_0 \subseteq I, |I_0| < \kappa} J^I_\beta = \bigcup_{I_0 \subseteq I, |I_0| < \kappa} J^I_\alpha.
\]

As a corollary we get:

(3) If each \(J^i \) is \(\kappa \)-ary, then \(J^I_\infty = \bigcup \{ J^I_\beta \mid I_0 \subseteq I \text{ and } |I_0| < \kappa \} \).

Hence,

(4) If each \(J^i \) is \(\kappa \)-ary, then for \(a \in B \),

\[
a \in J^I_\infty \quad \text{iff} \quad a \in J^I_\alpha \quad \text{for some } I_0 \subseteq I \text{ with } |I_0| < \kappa.
\]

3. The generalization of the Lemma of Rasiowa and Sikorski. Fix a Boolean algebra \(B \). For a subset \(X \) of \(B \) denote by \(F(X) \) the filter generated by \(X \),

\[
F(X) := \{ b \mid \text{there are } n \geq 0, b_0, \ldots, b_n \in X \text{ with } a_0 \cap \ldots \cap a_n \leq b \}.
\]

A filter \(F \) is proper, if \(0 \notin F \). Henceforth, we shall use the letter \(U \) to denote ultrafilters, i.e., proper filters such that \(a \in U \) or \(\sim a \in U \) for all \(a \in B \).

An ultrafilter \(U \) omits \(E \), if there is \(e \in E \) such that \(\sim e \in U \) (cf. 1.2). Then, we say that \(E \) is omissible. Define \(J := J^E \), \(J : \text{Pow}(B) \to \text{Pow}(B) \), by

\[
J(X) := \{ \sim a \mid E \subseteq F(X \cup \{ a \}) \}.
\]

Clearly,

(5) \(J \) is inflationary and monotone; if \(|E| < \kappa \) then \(J \) is \(\kappa \)-ary.

(6) If \(X \subseteq U \) and \(U \) omits \(E \), then \(J(X) \subseteq U \).

\textbf{Proof.} Assume \(X \subseteq U \), \(U \) omits \(E \), and let \(\sim a \in J(X) \). Then, \(E \subseteq F(X \cup \{ a \}) \subseteq F(U \cup \{ a \}) \). Therefore, \(\sim a \in U \).

A simple transfinite induction using (6) shows

(7) if \(U \) omits \(E \) then \(J_\infty \subseteq U \).
Moreover,

(8) $J(X) = X \iff X$ is a filter and in the quotient Boolean algebra B/X

we have $\bigwedge \overline{E} = 0$

(here $\overline{E} = \{ \bar{e} \mid e \in E \}$, where \bar{e} denotes the equivalence class of e).

Proof. First, assume the right side of the equivalence. We only must show that $J(X) \subseteq X$. So assume $b \in J(X)$. Then $E \subseteq F(X \cup \{ \sim b \})$. Since $\bigwedge \overline{E} = 0$ in B/X, we have $\sim \bar{b} = 0$ in B/X, thus $b \in X$.

Now assume $J(X) = X$. Let $x \in X$. Then, $E \subseteq F(X \cup \{ \sim x \})$. If $y \in X$ then $F(X \cup \{ \sim x \}) = F(X \cup \{ \sim x \} \cup \sim y)$, hence, $E \subseteq F(X \cup \{ \sim x \} \cup \sim y)$, thus $x \cap y \in J(X) = X$. If $x \leq y$ then $F(X \cup \{ \sim y \}) \supseteq F(X \cup \{ \sim x \}) \supseteq E$ and therefore, $y \in J(X) = X$. Finally, let $a \in B$, and assume that in B/X,

$$\bar{a} \leq \bar{e} \text{ for all } e \in E.$$

Then $E \subseteq F(X \cup \{ a \})$, thus, $\sim a \in J(X) = X$, hence, $\bar{a} = 0$. □

Now let E be a non-empty class of subsets of B. We say that E is onissible, if there is an ultrafilter U that omits E, i.e., that omits each E in E. Let J_E be the union of the J^E is for $E \in E$, i.e.,

$$J^E(X) = \bigcup_{E \in E} J^E(X) = \{ \sim a \mid E \subseteq F(X \cup \{ a \}) \} \text{ for some } E \in E \}.$$

A transfinite induction, using (7), shows:

(9) If U omits E then $J^E_\infty \subseteq U$.

By (1) and (8) we get

(10) J^E_∞ is a filter and in the quotient Boolean algebra B/J^E_∞ we have $\bigwedge \overline{E} = 0$ for every $E \in E$.

Let C be a class of Boolean algebras and λ a cardinal. We say that C is R(asiowa) S(ikorski)(\lambda)-good, if for any non-trivial Boolean algebra B in C and any set E, $|E| < \lambda$, of non-empty subsets E of B with $\bigwedge E = 0$, there is an ultrafilter U that omits E. The classical Lemma of Rasiowa and Sikorski (cf. 1.2) tells us that the class of all Boolean algebras is RS(ω_1)-good. Martin’s axiom is (equivalent to) the statement that the class of all Boolean algebras with the countable chain condition is RS(2^{ω_1})-good (a Boolean algebra satisfies the countable chain condition, if every subset of pairwise disjoint elements is countable). The class of all Boolean algebras is not RS(ω_1^+)-good; a counterexample is obtained by choosing an appropriate set E in the Boolean algebra of regular open subsets of the partial order given by the set of partial functions from ω to ω_1 with finite support (cf. [4]).

Theorem 3.1. Let C be a RS(λ)-good class of Boolean algebras closed under quotients. Then, for any Boolean algebra B in C and any family E, $|E| < \lambda$, of subsets of B,

E is onissible $\iff 0 \notin J^E_\infty$.

Proof. If U omits E, then $J^E_\infty \subseteq U$ by (9); hence, $0 \notin J^E_\infty$. Otherwise, if $0 \notin J^E_\infty$ then, by (8), J^E_∞ is a proper filter, B/J^E_∞ is a non-trivial Boolean algebra, and, in B/J^E_∞,
we have $\bigwedge E = 0$ for all $E \in \mathcal{E}$. Hence, by the assumption of RS(λ)-goodness there is an ultrafilter U in B/J^E_∞ that omits $\{E \mid E \in \mathcal{E}\}$. Therefore, $U^{-1} := \{b \in B \mid b \in U\}$ is an ultrafilter omitting \mathcal{E}.

Recall that a Boolean algebra B is retractive, if for every proper filter F in B there is a homomorphism f from B/F to B such that $\pi \circ f$ is the identity on B/F (here, π denotes the canonical homomorphism from B onto B/F). Clearly,

if B is retractive and has the ccc, then every quotient of B has the ccc.

Every interval algebra and every tree algebra is retractive (see [4]). Hence, we obtain from the preceding theorem (taking as C the class of interval algebras (or, the class of tree algebras) with ccc):

Corollary 3.2. Assume Martin’s axiom and let B be an interval algebra or a tree algebra with the countable chain condition. Furthermore, let $\mathcal{E}, |\mathcal{E}| < 2^\omega$, be a family of subsets of B. Then \mathcal{E} is omissible iff $0 \notin J^E_\infty$.

Theorem 3.3. Let C be a RS(λ)-good class of Boolean algebras closed under quotients. For B in C and any family $\mathcal{E}, |\mathcal{E}| < \lambda$, of subsets E of B with $|E| < \kappa$ the following holds: if every subfamily of \mathcal{E} of cardinality less than κ is omissible, then \mathcal{E} is omissible.

Proof. Let \mathcal{E}_0 be an arbitrary subfamily of \mathcal{E} of cardinality less than κ. Since \mathcal{E}_0 is omissible, $0 \notin J^E_\infty$ by (9). As J^E is κ-ary (cf. (5) and (2)), we have by (3), $0 \notin J^E_\infty$. Hence, by the previous theorem, \mathcal{E} is omissible.

An instance of this theorem is:

Corollary 3.4. Assume Martin’s axiom and let $\mathcal{E}, |\mathcal{E}| < 2^\omega$, be a family of countable subsets of an interval algebra or of a tree algebra with the countable chain condition. If every countable subfamily of \mathcal{E} is omissible, then \mathcal{E} is omissible.

References