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Abstract. This paper is a survey of results on finite variable logics in finite model theory.
It focusses on the common underlying techniques that unite many such results.

1. Introduction. Finite variable logics have come to occupy a very important place

in finite model theory. This survey examines a number of the results that have been

established and the techniques that have been used in this connection. Taking a broad

enough view allows a picture to emerge which shows that essentially the same techniques

have re-appeared in differing guises in entirely different contexts. The questions that

motivated Poizat’s work on classification seem unconnected with McColm’s conjectures,

which in turn bear only an incidental relationship with the question of Chandra and Harel

that motivated Abiteboul and Vianu’s theorem and related work on relational complexity.

The fact that finite variable logics play an important role in each case supports the view

that they are in some way central to the model theory of finite structures. By focussing on

the common techniques, this survey aims to expose the underlying connections between

a variety of investigations. It is hoped that this will help to explain the importance of

finite variable logics, as well as the breadth of applicability of the ideas that have been

developed. The paper does not, however, aim to be comprehensive in its coverage of the

work on finite variable logics in finite model theory as several strands of this work are

omitted for lack of space. Significant among these is the work on finite variable logics and

counting which has been covered in the excellent work by Otto [50], and the relation of

finite variable logics to modal and temporal logics for which a good starting point is the

survey by Hodkinson [34].

One of the central concerns of finite model theory is to study the limits of the expres-

sive power of logical languages on finite structures. It is in this context that questions

of a model theoretic nature arise naturally with respect to finite models. A large part
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of the motivation and the impetus for the study of finite model theory has come from

its connections with computational complexity. There is a close connection between the

descriptive complexity of a property of finite structures — i.e. the complexity of the log-

ical constructs required to define the property — and its computational complexity , the

resources required on a machine to decide the property. The paradigmatic result relating

these two kinds of complexity is the theorem of Fagin [24] which states that a property is

definable in existential second order logic if, and only if, it is decidable in NP. Much work

in the subject has been generated by the question first posed by Chandra and Harel [13]

asking whether one can give a similar logical characterisation for the complexity class P

(see Gurevich [31] for a detailed discussion and a precise formulation of this question).

1.1. From infinite to finite structures. Model theoretic questions in the context of

finite structures are rather different from those that arise in the classical setting. One

such difference that is immediately apparent on examining the literature on finite model

theory is that this branch of logic is not centrally concerned with first order predicate

logic. It must be said, however, that the model theory of infinite structures is no longer

concerned with first order logic to the extent that it used to be.

One reason why first order logic is not central to finite model theory is that the relation

of elementary equivalence between structures is trivial on finite structures. A large part of

classical model theory can arguably be described as the study of this equivalence relation

and the structure of its equivalence classes. Two structures A and B are elementarily

equivalent if, for every first order sentence ϕ,

A |= ϕ if, and only if, B |= ϕ.

This is crucial in establishing inexpressibility results. For instance, by proving that all

dense linear orders without endpoints are elementarily equivalent, we establish that other

properties that might distinguish such orders (such as Dedekind completeness) are not

definable.

On finite structures, the elementary equivalence relation is trivial, in that any two

elementarily equivalent structures are isomorphic. Indeed, any finite structure is described

up to isomorphism by a single sentence. Given a structure A = (A,R1, . . . , Rm), where

A is a set of n elements, we can construct a sentence

δA = ∃x1 . . . ∃xn(ψ ∧ ∀y
∨

1≤i≤n

y = xi)

where, ψ(x1, . . . , xn) is the conjunction of all atomic and negated atomic formulas that

hold in A. Now, for any structure B, B |= δA if, and only if, A ∼= B.

This means that first order logic can make all the distinctions that are to be made

between finite structures. Still, the expressive power of first order logic on finite structures

is weak: for any first order sentence ϕ, Mod(ϕ) can be decided by a deterministic Turing

machine with logarithmic work space, where Mod(ϕ) is the collection of finite models of

ϕ. What accounts for this disparity?

Essentially, in the model theory of infinite structures, as we classify structures by

elementary equivalence, we are looking at the expressive power of theories, i.e. possibly

infinite sets of sentences. Two structures that are elementarily equivalent cannot be dis-
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tinguished by any first order theory. In contrast, any isomorphism closed class S of finite

structures is defined by the set of negations of the sentences δA, as above, for finite struc-

tures A not in S. Certainly, this theory may have infinite models, but the collection of its

finite models is exactly S. To establish inexpressibility results for first order sentences,

we need to consider weaker equivalence relations than elementary equivalence.

There are two different weakenings of the elementary equivalence relation that have

been extensively studied in the context of finite model theory. One stratifies this relation

according to quantifier rank. Thus, we define for each positive integer p, the relation

≡p given by: A ≡p B if, and only if, A and B satisfy the same sentences of quantifier

rank p or less. These relations are very useful in characterising definability in first order

logic. Indeed, in a finite relational language, a class of structures is definable by a first

order sentence if, and only if, it is closed under the relation ≡p for some fixed p. This

stratification of elementary equivalence has also been used in analysing the expressive

power of fragments of second order logic (see [9, 26, 22] inter alia).

However, for many questions arising in finite model theory, a more interesting strati-

fication of the elementary equivalence relation is obtained by counting, not the quantifier

rank of a sentence, but the number of distinct variables that occur in it. So, we define

for each positive integer k, the relation ≡k given by: A ≡k B if, and only if, A and

B satisfy the same sentences with k variables or less. There is a corresponding notion

of definability with k variables. Axiomatisability with a finite number of variables is a

notion intermediate between finite axiomatisability and full axiomatisability.

Finite variable axiomatisability does not in itself capture any interesting complexity

class. On the one hand there are undecidable classes of finite structures that are axioma-

tisable with just two variables (see [41] for examples) while on the other hand, some

classes of very low complexity are not axiomatisable with a finite number of variables.

Nonetheless, the notion is still interesting from two points of view: 1) many complex-

ity theoretic questions can be reproduced here, as we shall see; and 2) many interesting

model theoretic questions arise here. It seems, therefore, to offer fertile ground for the

interaction between model theory and complexity theory.

1.2. Notation. In the following, A and B always denote relational structures of some

fixed finite vocabulary σ. The symbols A and B are used to denote the universes of the

structures A and B respectively. In general, these are also assumed to be finite. When we

deal with infinite structures, this will be stated explicitly. For any sentence ϕ, Mod(ϕ)

denotes the collection of finite models of ϕ.

We write Lk to denote the fragment of first order logic in which the only variables

allowed are x1, . . . , xk. Given two structures A and B and two tuples s ∈ Al and t ∈ Bl
(where l ≤ k), we write (A, s) ≡k (B, t) to denote that for every formula ϕ of Lk, A |= ϕ[s]

if, and only if, B |= ϕ[t]. Note that this is not the same as saying that the expanded

structures (A, s) and (B, t) agree on all sentences of Lk, since constants denoting the

elements of the tuples would be additional to the k variables. For any structure A and

tuple s, Typek(A, s) denotes the set {ϕ ∈ Lk | A |= ϕ[s]}.
The infinitary logic Lk∞ω is obtained by closing Lk under conjunction and disjunction

of arbitrary (possibly infinite) sets of formulas. We write ≡k∞ω for the corresponding
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equivalence relation. The logic Lω∞ω is given by Lω∞ω =
⋃
k∈ω L

k
∞ω. That is, it consists of

infinitary formulas in which each formula has only finitely many variables.

1.3. Fixed point logics. The interest in studying these infinitary logics, from the point

of view of finite model theory, arises from the fact that they have proved useful in

analysing the expressive power of fixed point logics. We next take a look at these.

Consider a formula ϕ(R, x1, . . . , xl), where R is a relational variable of arity l. Given

any (finite or infinite) structure A, this formula defines a map, which takes a relation

S ⊆ Al, to a new relation ϕ(A,S) = {s ∈ Al | A |= ϕ[S, s]}, i.e. the relation defined by ϕ

in the expanded structure (A, S). If all occurrences of the variable R in ϕ are positive, then

the map defined is monotone and is guaranteed to have a least fixed point. Moreover, by

well known properties of lattice maps, this least fixed point can be arrived at by iterating

the map. Specifically, we define the following transfinite sequence of relations.

ϕ0 = ∅
ϕα+1 = ϕ(A,ϕα)

ϕλ =
⋃
β<λ ϕβ for limit ordinals λ.

There is an ordinal γ such that ϕγ = ϕγ+1, and ϕγ is the least fixed point of the map

defined by ϕ. We call the least such ordinal the closure ordinal of ϕ on A. Since the

operator is monotone, the sequence of relations defined above is increasing, and therefore

the closure ordinal is bounded by κl, where κ = card(A). Of course, if A is infinite, the

exponent l is superfluous. On the other hand, if A is finite, the closure ordinal must be

finite, and the third clause in the definition above is unnecessary.

Rubin [54] (see also [10]) observed that for every formula ϕ (of first order logic), there

is a k such that for all ordinals α, there is a formula of Lk∞ω that defines the relation

ϕα on all structures. Without fear of confusion, we call this formula ϕα as well. One can

further note that when α is finite, then ϕα is given by a finitary formula, i.e. a formula

of Lk.

While inductive definitions were extensively studied by logicians in the 1960s and

70s (see [49, 6]), a fixed point logic, which is the closure of first order logic under such

definitions was first proposed in the context of finite models1 by Aho and Ullman [8].

To be precise, the logic LFP is obtained by closing first order logic under the following

formula formation rule:

If ϕ is a formula, R an l-ary relational variable occurring only positively in

ϕ, x̄ is an l-tuple of elementary variables, and t̄ an l-tuple of terms, then

lfpR,x̄ϕ(t̄)

is also a formula, with all occurrences of R and variables in x̄ in ϕ bound,

while all occurrences of variables in x̄ in t̄ remain free.

The intended meaning of the formula is that the tuple denoted by t̄ is in the relation that

is the least fixed point of the operator defined by ϕ(R, x̄).

1Or more accurately, database theory.
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It follows immediately from Rubin’s observation that on a fixed structure A, any

formula of LFP is equivalent to a formula of Lω∞ω. Indeed, the least fixed point of ϕ is

equivalent to
∨
α<β ϕα, where β is the closure ordinal of ϕ on A. By the same argument,

if C is a class of structures such that the closure ordinal of ϕ is bounded by some fixed

ordinal β on all structures in C, then ϕ is equivalent, over C, to a formula of Lω∞ω. Thus,

in particular when C is the class of all finite structures (or indeed any class of structures

with bounded cardinality), then every formula of LFP is equivalent over C to a formula

of Lω∞ω. This was pointed out by Kolaitis and Vardi in [41].

A variant of fixed point logic, known as PFP (for partial fixed point logic) was intro-

duced in [3]. Here, we allow the formation of formulas pfpR,x̄ϕ(t̄), even when ϕ is not

R-positive. Since ϕ may not be monotone, it may not have a least fixed point (or any

fixed point, for that matter). Still, the sequence of stages ϕα, α < ω is well-defined and

may or may not converge to a fixed point. The formula pfpR,x̄ϕ(t̄) is true in a structure

A if the sequence ϕα, α < ω converges to a fixed point and the tuple denoted by t̄ is in

that fixed point, and it is false otherwise.

The importance of the fixed point logics LFP and PFP in finite model theory is partly

accounted for by the results that relate definability in these logics to computational

complexity classes. In particular, consider structures where the vocabulary contains a

distinguished binary relation < which is interpreted in every structure as a linear order

of the universe. On such structures, the fixed point logics correspond exactly to natural

complexity classes:

Theorem 1 (Immerman, Vardi [36, 60]). On ordered structures LFP = P.

Theorem 2 (Abiteboul-Vianu [3]). On ordered structures PFP = PSPACE.

While these equivalences hold only on ordered structures, Abiteboul and Vianu also

proved [5] the remarkable result that the logics LFP and PFP have equal expressive power

on the class of all finite structures if, and only if, P=PSPACE. We return to this topic

in Section 4.

Kolaitis and Vardi [41] noted that as with LFP, on the class of finite structures, every

formula of PFP is equivalent to a formula of Lω∞ω.

2. Pebble games and their uses. The equivalence relation ≡k has an elegant

characterisation in terms of Ehrenfeucht-Fräıssé style two player games, essentially given

by Barwise [10]. The game board consists of two structures A and B and a supply of

k pairs of pebbles (ai, bi), 1 ≤ i ≤ k. The pebbles a1, . . . , al are initially placed on the

elements of an l-tuple s of elements in A, and the pebbles b1, . . . , bl on a tuple t in B.

There are two players, Spoiler and Duplicator2. At each move of the game, Spoiler picks

up a pebble (either an unused pebble or one that is already on the board) and places it

on an element of the corresponding structure. For instance he3 might take pebble bi and

place it on an element of B. Duplicator must respond by placing the other pebble of the

2Also variously called Player I and Player II, or ∀ and ∃, or even Abelard and Eloise (see

[34]).
3By convention, Spoiler is male and Duplicator female.
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pair in the other structure. In the above example, she must place ai on an element of A.

If at the end of the move the partial map f : A → B given by ai 7→ bi is not a partial

isomorphism, then Spoiler has won the game, otherwise it can continue for another move.

The result that links this game with the equivalence relation ≡k is the following:

If Duplicator has a strategy for playing the k-pebble game for p moves starting

with the position (A, s), (B, t), then (A, s) and (B, t) cannot be distinguished

by any formula of Lk with quantifier rank p or less.

This characterisation was formulated in [10] in terms of sequences of sets of partial

isomorphisms. These sequences can be transfinite, and they characterise equivalence in

Lk∞ω up to a transfinite quantifier rank. If A and B are finite, then we only need to

be concerned in the above with finite ordinals p. To see this suppose Duplicator has a

winning strategy for p moves with initial position (A, s), (B, t), for all finite p. Choosing

p large enough (greater than nk, where n is the larger of the cardinalities of A and B),

we see that in such a game, some position must be repeated. Thus, Duplicator, in fact,

has a strategy for playing the game indefinitely from this initial position, and therefore

(A, s) ≡k∞ω (B, t). We therefore have the following:

Theorem 3 (Kolaitis-Vardi [41]). For finite structures A and B, the following are

equivalent:

• (A, s) ≡k (B, t); and

• (A, s) ≡k∞ω (B, t).

It follows from this that a class of finite structures is closed under ≡k if, and only

if, it is definable by a sentence of Lk∞ω. Indeed, in the context of finite structures, we

rarely, if ever, need to consider infinitary logic as such. All the results can be formulated

equally well in terms of the finitary k-variable logics. To say of a class of structures (or

indeed, a global relation) that it is definable in Lk∞ω is the same as saying it is closed

under ≡k, and to say that it is definable in Lω∞ω is to say that it is closed under ≡k for

some k. We adopt this practice for the remainder of this paper. However, where the result

presented was originally formulated in terms of the infinitary logic, that formulation is

usually given.

The k-pebble game was also independently presented by Immerman [35] and Poizat

[51]. The former presented it explicitly in terms of a two-player game with pebbles, the

latter as what he calls “le va-et-vient de Fräıssé”. Both of them are concerned only with

finite structures, and do not explicitly consider infinitary logic or transfinite quantifier

rank.

A comparison of the pebble game with the Ehrenfeucht-Fräıssé game for first order

logic is instructive. When we apply a game to show that some property P is not expressible

in first order logic, we prove a statement of the form:

∀k ∀p ∃A,B (P (A) ∧ ¬P (B) ∧ A ≡kp B).

That is, for every k and p, we can find two structures, one of which has the property

P and the other does not, yet the two structures cannot be distinguished with only k

variables and quantifier rank p. Since any sentence of quantifier rank p can be written
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with no more than p distinct variables, we can drop the first quantifier, and focus solely

on quantifier rank. This is the usual Ehrenfeucht-Fräıssé game.

On the other hand, to show that P is not in Lω∞ω, we prove the following statement:

∀k ∃A,B ∀p (P (A) ∧ ¬P (B) ∧ A ≡kp B).

That is, we seek to find two structures, depending only on k which are k-equivalent for all

p. Since this simply means that the Duplicator can play an infinite game, the parameter

p plays no part, and we can focus solely on the number of variables. Thus, the number

of variables becomes a crucial measure when we are dealing with formulas of unbounded

quantifier rank, such as the formulas of fixed point logic.

Example 4. As a first example, consider two linear orders Lm and Ln where n > m.

Spoiler wins the two pebble game on these two structures by placing the first pebble on

the first element of Ln, the second on the second element, then moving the first pebble

to the third element, and so marching down the linear order. Duplicator will run out of

elements in Lm before Spoiler does.

In fact, using the strategy in the above example, one can show that on any class of

linearly ordered structures, the expressive power of Lω∞ω is complete, i.e. equivalent to

L∞ω (see [14]).

Example 5. Consider two structures over the empty signature, one of size k and one

of size k + 1. It is easily seen that Duplicator wins the k pebble infinite game on these

two structures. The strategy is simply to respond to any pebble placed on a currently

unpebbled element with a pebble on an unpebbled element of the other structure. Simi-

larly a pebble placed on an element already covered by a pebble a is matched by placing

a pebble on the element covered by the pebble matching a. As there are no relations on

the two structures, any map is a partial isomorphism as long as it preserves equality.

Furthermore, as there are at least k elements in both structures, and only k pairs of

pebbles, there is always an unpebbled element available.

Since one of these structures has an even number of elements and the other one has

an odd number of elements, we conclude that evenness is not closed under ≡k, for any k,

(and hence is not definable, even in Lω∞ω).

2.1. Extension axioms. In order to introduce the next application of the pebble game,

we first need some definitions.

An atomic type

τ(x1, . . . , xm)

is the conjunction of a maximally consistent set of atomic and negated atomic formulas.

In other words, τ is a complete description of an m-tuple with respect to the relations in

σ. Note, that for a fixed m and σ, there is some fixed number of atomic types.

Let τ(x1, . . . , xm) and τ ′(x1, . . . , xm+1) be two atomic types such that τ ′ is consistent

with τ . The τ, τ ′-extension axiom, ητ,τ ′ is the sentence:

∀x1 . . . ∀xm∃xm+1(τ → τ ′).

That is, ητ,τ ′ asserts that every tuple of type τ can be extended to a tuple of type τ ′.
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Fagin [25] proved that every extension axiom has asymptotic probability 1 on the

class of finite structures. The asymptotic probability of a sentence ϕ is defined as the

limit limn→∞
|Mod(ϕ)∩Sn|

|Sn| , where Sn is the collection of all σ-structures with universe

{0, . . . , n− 1}. Fagin used this to show that first order logic has a 0–1 law, i.e. every first

order sentence has an asymptotic probability, and it is 0 or 1 (this result was first proved

in [27]). Fagin’s proof relies on the fact that the collection of all extension axioms forms

a complete first order theory. As is shown in the following example, the collection of

extension axioms that contain at most k variables in fact forms a complete theory in Lk.

Example 6. Let θk be the set of all extension axioms ητ,τ ′ such that τ ′ has only

k variables. Since θk is a finite set, we also write θk for the sentence of Lk that is the

conjunction of the set. If A and B are such that A |= θk and B |= θk, then it is clear that

the extension axioms guarantee a winning strategy for Duplicator in the pebble game,

since they state that, whatever the current position, for any way of modifying it, an

appropriate element can be found witnessing that modification, in both A and B. Thus,

if A |= θk and B |= θk, then A ≡k B.

Moreover, since θk is the conjunction of finitely many extension axioms, and each one

of these has asymptotic probability 1, it follows that θk itself has asymptotic probability

1. Since, by Example 6, the models of θk form one ≡k equivalence class, it follows that for

any sentence ϕ of Lk∞ω, either all models of θk are models of ϕ, or none are. In the former

case, ϕ has asymptotic probability 1, and in the latter case it has asymptotic probability

0. We thus obtain:

Theorem 7 (Kolaitis-Vardi [41]). Lω∞ω has a 0–1 law.

This subsumes earlier results on 0–1 laws for first order logic [27, 25], LFP [11] and

PFP [39].

Theorem 7 is a 0–1 law under what is called the uniform probability measure. That

is, each structure of size n is assigned equal probability. A variety of other ways of

assigning probabilities to structures are obtained, particularly in the case of graphs, by

varying edge probability , usually as a function of n. The behaviour of Lω∞ω under such

variable probability measures has been extensively studied (see [45, 46, 44, 59]). A detailed

discussion of this study is omitted from the present survey, as it would take us too far

afield.

2.2. Graph properties. That the conjunction θk of all k-variable extension axioms

defines a unique ≡k equivalence class, as seen in Example 6, was shown by Immerman

[35] who used this construction to demonstrate that several natural properties of graphs

are not closed under ≡k for any k. In particular, he showed that the property of a graph

containing a k + 1-clique, and the property of a graph containing a Hamiltonian cycle

are both not closed under ≡k. As it turns out, we can give rather simpler proofs of both

these facts, as direct applications of the k-pebble game, without reference to the extension

axioms4.

4For another proof that Hamiltonicity is not definable with finitely many variables, also using

pebble games, see [21].
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Example 8. Consider the graph Kk, the complete graph on k vertices, and Kk+1,

the complete graph on k + 1 vertices. It is clear that Duplicator can play an infinite

game on these two structures (the situation is completely analogous to Example 5). Since

Kk+1 contains a k + 1 clique, and Kk doesn’t, it follows that the property of containing

a k + 1-clique is not closed under ≡k.

Example 9. Consider the graphs Kk,k, the complete bipartite graph on two sets of

k vertices, and Kk,k+1, the complete bipartite graph between a set of k vertices and a set

of k+ 1 vertices. That is, in each of these two structures the set of vertices is partitioned

into two parts (we call them left and right for ease of reference) such that there are no

edges between any two vertices in the same part, and there is an edge between any two

vertices in different parts.

It is again straightforward to show that Duplicator has a winning strategy in the

k-pebble game played on these two structures. Duplicator matches any move by Spoiler

on the left part of either structure with a move on the left of the other structure, and

similarly for the right parts, preserving equalities among pebbled points within the parts.

It can be verified that this is all that is required.

Finally, we note that, a complete bipartite graph has a Hamiltonian cycle if, and only

if, the two parts have equal cardinality. Thus, Kk,k is Hamiltonian, and Kk,k+1 is not.

Immerman also used the extension axioms to show that the problem of Graph Iso-

morphism is not axiomatisable with a finite number of variables. The problem of graph

isomorphism is defined as the class of structures that are disjoint unions of two isomorphic

graphs.

More formally, for any two σ structures A and B, we define the disjoint union A⊕B

as a structure in the vocabulary σ enriched with a new unary relation U , such that the σ

substructure induced by the elements in U is A, the σ substructure of A⊕B induced by

the elements not in U is B, and no relation contains a tuple containing both elements of

U and its complement.

A general argument using the k-pebble game can be formulated to show the following

fact:

Lemma 10. If A1 ≡k A2 and B1 ≡k B2, then A1 ⊕B1 ≡k A2 ⊕B2.

Proof (sketch). Duplicator’s strategy is simply to match every move by Spoiler in

A1 by a move in B1 using her strategy on that pair of structures and similarly for A2

and B2.

This observation was first recorded by Kolaitis [38].

Example 11. To see that the graph isomorphism problem is not axiomatisable with

k variables, we choose two non-isomorphic graphs G1 and G2 such that G1 ≡k G2. That

such pairs of graphs exist has been established in the foregoing examples. We now note,

by Lemma 10, that G1 ⊕G2 ≡k G1 ⊕G1.

Finally, as an example that does illustrate the kind of technique used by Immerman,

we present a proof from [14] that the class of rigid graphs (graphs that have no non-trivial

automorphisms) is not axiomatised with a finite number of variables.
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Example 12. It is known that the class of rigid graphs has asymptotic probability

1, (see [12]), as does the class of connected graphs5. Since the intersection of any two

classes of asymptotic probability 1 itself has probability 1, we know we can find two non-

isomorphic graphs G1 and G2 that are both rigid, connected and models of θk. Indeed,

almost all graphs satisfy these properties. Now, it is easily seen that G1⊕G2 is rigid but

G1 ⊕G1 is not. Still, G1 ⊕G2 ≡k G1 ⊕G1.

2.3. Classification. While the main concern of Immerman in [35] was the definability

of problems in NP with a finite number of variables, Poizat [51] was motivated by entirely

different concerns to study definability in Lk on finite structures. His concern was with

classification theory, and particularly the classification of theories that are complete (in

Lk) and that have small models. The classification of theories is usually given up to

interpretation. A structure A is said to be interpretable in a structure B, if the two

structures have the same universe, and every relation in A is definable (by a formula of

Lk) in B. Two theories T1 and T2 are equivalent up to interpretation if every model of

T1 is interpretable in a model of T2 and vice versa. A flavour of the kind of result that

Poizat proves is given by the following theorem, which we present without proof.

Theorem 13. Up to interpretation, there is exactly one complete theory T1(k) having

a model of size k and three complete theories T1(k), T2(k) and T3(k) having models of size

k + 1 which also have larger models.

Another notable result from [51] is the following, which has also been proved in [34].

Theorem 14. The Beth definability theorem fails for Lk.

In the conclusion of [51], Poizat poses three open questions:

1. If a complete Lk theory has two distinct finite models, does it have infinitely many?

2. If a complete Lk theory has sufficiently large finite models, does it have arbitrarily

large ones?

3. Do any two Lk-equivalent structures have a common Lk-elementary extension?

Simon Thomas provides a negative answer to the first of these questions in [56] where

he shows the following:

Theorem 15 (Thomas). For each k ≥ 3, there are complete theories in L2k−2 and

L2k−1 having exactly k + 1 models.

Moreover, since all models of the theories constructed in this proof are of the same

cardinality, this also provides a negative answer to the third question in the above list. In

[57], Thomas also constructs a complete theory in L3 which has models of distinct finite

cardinalities, and still has only finitely many models.

A refutation (or confirmation) of Poizat’s second question depends upon an appro-

priate interpretation of the phrase “sufficiently large”. A straightforward reading of the

question would be the following: Is there an n, depending only upon k, such that if a

complete Lk theory has models larger than n, it has infinitely many models? However, a

5This latter fact is easily deduced from the fact that all extension axioms have asymptotic

probability 1.
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negative answer to this question is already obtained from an example appearing in [51].

Any linear order is the unique, up to isomorphism, finite model of its L3 theory. We will

consider a somewhat subtler interpretation of this question in Section 5.

3. McColm’s conjectures. In [48, 47], McColm initiated a study of the relationship

between first order logic, LFP and Lω∞ω on classes of finite structures. The analysis was

in terms of a notion he termed proficiency . In the following definition, we write ||ϕ||A to

denote the closure ordinal of ϕ on A (see Section 1.3).

Definition 16. A class C of structures is proficient , if there is some positive first

order formula ϕ such that sup({||ϕ||A | A ∈ C}) ≥ ω.

That is, C is proficient if there is some formula whose closure ordinal is unbounded

among structures in C.
McColm in [48] formulated two conjectures, which taken together state that the fol-

lowing three conditions are equivalent for any class of structures C.

1. C is proficient;

2. There is a formula of LFP that is not equivalent to any formula of first order logic

on C.
3. There is a formula of Lω∞ω that is not equivalent to any formula of first order logic

on C.

It is clear that (2) implies (1). This is because if a first order formula ϕ is such that

there is a bound m on the closure ordinal of ϕ on structures in C, then the least fixed

point of ϕ is equivalent to the formula ϕm on C, and ϕm is itself equivalent to a first

order formula. McColm showed that (1) implies (3) and Kolaitis and Vardi [40] showed

that (3) implies (1), establishing the equivalence of (1) and (3), which was the second of

McColm’s two conjectures. A proof of this is outlined in Section 3.1 below. The first of

McColm’s conjectures, the equivalence of (1) and (2) above, was refuted by Gurevich et

al. [32]. Some questions arising from it are discussed in Section 3.2.

3.1. Compactness. The equivalence of (1) and (3) is perhaps best understood in terms

of the number of Lk-types that are realised among structures in C. The following definition

is from [14, 20].

Definition 17. We say that a class of structures C is k-compact if {Typek(A, s) |
A ∈ C, s ∈ Ak} is a finite set.

It turns out that a class C is k-compact (for all k) if, and only if, it is not proficient.

We will see why this is the case through a series of facts which in themselves provide

some insight into the behaviour of the equivalence relation ≡k on finite structures. The

first of these is a theorem proved in [19] (see also [51]):

Theorem 18. For every finite structure A and tuple s ∈ Ak, there is a formula

ϕ ∈ Typek(A, s) such that, if B |= ϕ[t], then (A, s) ≡k (B, t).

In other words each Lk-type that is realised in a finite structure is in fact determined

by one of its elements. What’s more, and this is the second significant fact, the quantifier
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rank of the formula ϕ in Theorem 18 can be bounded (up to an additive constant de-

pending only on k) by the number of distinct types that are realised in A. The number of

types realised in a structure is an invariant of the Lk theory of the structure of sufficient

importance that we now give it a name:

Definition 19. For any structure A, we write k-size(A) to denote the index of the

equivalence relation ≡k on Ak.

One consequence of Theorem 18 is that if A ≡k B, then A and B realise exactly the

same collection of Lk-types, and in particular they also have the same k-size, justifying

our earlier statement that this is an invariant of the Lk theory of a structure. We will

often refer to the k-size of a theory. Another consequence is that any complete Lk theory

which has finite models is finitely axiomatised in Lk.

Our next observation is that there are, up to logical equivalence, only finitely many

formulas of Lk of a fixed quantifier rank q. This is proved by an easy induction on q.

Combining this with the fact that every complete Lk theory is axiomatised by a sentence

whose quantifier rank is determined by its k-size, we see that for any fixed number n,

there are up to ≡k, only finitely many structures with k-size at most n.

We can thus see that the following two statements are equivalent for any class of

structures C:

• C is k-compact.

• There is a bound n such that for all A ∈ C, k-size(A) ≤ n.

To establish the connection with proficiency, we now need to note that if ϕ is a formula

such that all stages ϕm are equivalent to formulas of Lk, then the closure ordinal of ϕ on

A is bounded by k-size(A). It follows that if C is k-compact for all k it is not proficient.

The converse of this also holds. For this, we require the following additional result.

Theorem 20 ([19, 40]). There is an R-positive first order formula ζ(R, x̄, ȳ) such

that:

• A |= lfpR,x̄ȳζ[s, t] if, and only if, (A, s) 6≡k (A, t); and

• A |= ζm[s, t] if, and only if, s and t are distinguished in A by a formula of Lk of

quantifier rank m.

That is, there is a fixed point formula that defines uniformly the inequivalence 6≡k,

and therefore there is also an LFP formula defining ≡k. In fact, the formula ζ is nothing

more than a definition of the winning positions for Spoiler in the k-pebble game, which are

quite naturally described inductively. This is the reason why the stages of the induction

of ζ correspond to definitions of the inequivalence relations 6≡km.

Now, suppose C is a class that is not proficient. That means that for every formula,

and therefore ζ in particular, there is an m such that the least fixed point of ζ is equivalent

to ζm. By Theorem 20, this implies that the relation ≡k is the same as ≡km. Since the

latter equivalence relation is always of finite index as there are only finitely many Lk

formulas of quantifier rank m, this means that C is k-compact.

Finally, to see that proficiency is equivalent to condition (3), we first note that if

C is proficient, then by the above argument there are infinitely many distinct Lk types
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realised among structures in C. Each of these types is definable by a formula of Lk and

the uncountably many infinite disjunctions that can be formed are all definable in Lk∞ω.

Since there are only countably many first order formulas, not all formulas of Lk∞ω can

be equivalent to first order formulas. For the converse, if C is not proficient, then it is

k-compact, and therefore the equivalence relation ≡k is the same as ≡km for some m.

Thus, every formula of Lk∞ω is equivalent to a finite disjunction of formulas of quantifier

rank m.

3.2. LFP on proficient classes. As mentioned above, McColm’s first conjecture, the

equivalence of proficiency with the existence of formulas of LFP that are not equivalent

to any first order formula was refuted by Gurevich et al. [32]. They construct two distinct

classes of structures on which every LFP formula is equivalent to a first order formula

but which are nonetheless proficient.

The resolution of McColm’s conjectures, one positively and the other negatively still

leaves a number of questions open. In particular, Kolaitis and Vardi [43] asked whether

similar conjectures could be formulated for a fixed number of variables k. They show

that McColm’s second conjecture (whose proof is outlined above) can be refined to the

following statement: on any class of structures C and for any k, every formula of Lk∞ω is

equivalent to a formula of Lk if, and only if, no k variable induction on C is unbounded.

To make this precise, we have to specify what a k variable induction is. It is not sufficient

to define these as the inductions defined by positive formulas of Lk. Rather, as Kolaitis

and Vardi show, we need to consider systems of inductive formulas having no more than

k variables all together. They call the logic thus formed LFPk.

With this formulation, there is a version of McColm’s first conjecture that remains

open, namely are the following two conditions equivalent for any class of structures C:

1. every formula of Lk∞ω is equivalent to a formula of Lk; and

2. every formula of LFPk is equivalent to a formula of Lk?

This is not refuted by the examples in [32], which are classes of structures where the first

condition fails, and every formula of LFP is equivalent to a first order formula, but one

with possibly many more variables.

Another question related to McColm’s first conjecture that remains open is whether

it holds of classes of structures C where structures are linearly ordered. This form of the

question was posed in [40]. It was argued in [20] that a resolution of the question either

way would solve outstanding complexity theoretic questions. In particular, if it can be

shown that there is an infinite class of ordered structures on which every formula of LFP

is equivalent to a first order formula, then P 6=PSPACE (this was proved in [17]). On

the other hand, if every proficient class of ordered structures admits an LFP formula

that is not equivalent to any first order formula, then this is true in particular of the

class of structures of the form (n,+,×), i.e. those structures whose universe is a finite

initial segment of the natural numbers equipped with ternary relations for addition and

multiplication. It is shown that the separation of LFP from first order logic on this

class would imply the separation of the linear time hierarchy from the complexity class

ETIME. The question of whether LFP is more expressive than first order logic on the
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class of structures (n,+,×) was also posed as an open question in [32] in an equivalent

form about structures (n,<,BIT).

It is also shown in [20] that Kolaitis and Vardi’s ordered conjecture would be proved if,

for every signature σ, there is a k such that every sentence of first order logic is equivalent,

over ordered σ-structures, to a formula of Lk. For unary signatures σ this is true, as in

this case every first order sentence is equivalent to one of L3. While it seems extremely

unlikely for other signatures, no counterexample has so far been found. Note that it is

the case for all σ that there is a k such that every formula of Lω∞ω is equivalent over

ordered σ structures to a formula of Lk∞ω (see Example 4).

It also remains an open question whether or not every first order sentence is equivalent

to one in L3 on the class of structures (n,+,×). On the classical structure of arithmetic

(N,+,×) every first order sentence is, in fact, equivalent to a sentence with just three

variables. This can be proved using an arithmetic pairing function.

4. Relational complexity. Abiteboul and Vianu proved the remarkable result that

the logics LFP and PFP are equivalent in expressive power on the class of finite structures

if, and only if, the complexity classes P and PSPACE coincide:

Theorem 21 (Abiteboul-Vianu [4, 5]). LFP = PFP if, and only if, P = PSPACE.

This holds despite the fact that the two logics capture the respective complexity

classes only on ordered structures, and are otherwise weaker. The result, first appearing

in [4] was proved through establishing a normal form for these logics using loosely coupled

generic machines. This result was later re-analysed in [5, 19] in terms of finite variable

logics.

One direction of Theorem 21 follows immediately from Theorems 1 and 2. That is, if

the two logics LFP and PFP are equally expressive then, in particular, they are equally

expressive on ordered structures, where their expressive power is exactly the respective

complexity classes P and PSPACE. Thus, the two complexity classes must coincide. It is

in proving the other direction that finite variable logics come into play.

4.1. Invariants. We can define for every structure A and every k, a structure Ik(A)

whose universe is the set of ≡k equivalence classes of Ak. The structure Ik(A) is equipped

with a linear order on its universe and a variety of other relations that encode the structure

of A. To be precise, suppose A is a structure in the signature σ, and τ1, . . . , τm is an

enumeration of all atomic types in k variables in the signature σ (recall Section 2.1). We

first define the structure Ik(A)− as follows:

Ik(A)− = (Ak/ ≡k, T1, . . . , Tm, X1, . . . , Xk)

where,

• the universe is Ak/ ≡k;

• for 1 ≤ j ≤ m, Tj([s]) if, and only if, A |= τj [s]; and

• for 1 ≤ i ≤ k, Xi([s], [t]) if, and only if, s and t differ at most on their ith element.

It turns out that a structure Ik(A) = (Ik(A)−, <) which is an expansion of Ik(A)−

with a linear order is interpretable inside A uniformly, using formulas of LFP. That
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is, there are formulas of LFP, one for every relation symbol in the signature of Ik(A)

which define the corresponding relations in every structure A. We have already seen as

a consequence of Theorem 20 that there is such a definition of the relation ≡k. A rather

more involved construction can be used to show that there is, in fact, a formula of LFP

that uniformly orders these equivalence classes. The other relations above are easily first

order definable.

One consequence of the LFP interpretability of Ik(A) in A is that every LFP formula

ϕ in the signature of Ik(A) can be translated into an LFP formula ϕ′ in the signature σ

such that Ik(A) |= ϕ if, and only if, A |= ϕ′. This translation is carried out by the simple

substitution of the LFP formulas defining the relations in Ik(A) for the corresponding

relation symbols. Thus, a similar translation also yields a PFP formula in the signature

σ for every PFP formula on the interpreted structures.

The relations Xi are included in the definition of Ik(A) to allow for a translation in

the other direction. That is, we can take any σ-formula in Lk and translate it into a

corresponding formula on the structures Ik(A). This translation also extends to formulas

of LFP and PFP with fewer than k variables.

4.2. Complexity. Now, suppose that P=PSPACE and let ϕ be an arbitrary PFP

formula. Choosing an appropriate k, we can translate ϕ into a PFP formula ϕ′ on the

structures Ik(A). However, since these are ordered structures, by hypothesis, on this class

of structures every PFP formula is equivalent to a formula of LFP. This LFP formula

ψ can now be translated back into an LFP formula ψ∗ in the signature σ, which is by

construction equivalent to ϕ on all structures. This establishes Theorem 21.

This result shows that, even though the fixed point logics do not themselves capture

the corresponding complexity classes, their equivalence turns out to be equivalent to

an open complexity theoretic question. This leads to a view of these logics as defining

complexity classes on a relational machine (defined in [2]), where we measure complexity

not in terms of the size of a structure, but in terms of its k-size.

A relational machine is a Turing-like machine which is presented an input not on

a tape, but a relational store. This relational store is accessed by the machine through

first order queries whose results are stored in other relational registers. It can be shown

that the class of structures accepted by a relational machine is always closed under ≡k
for some k. The value of k may be determined by examining the machine, as it is no

greater than the largest number of variables occurring in any formula used to query the

relational store. Conversely, any recursive set of structures that is closed under ≡k is

accepted by some relational machine. The power of resource bounded versions of the

machine then corresponds to the expressive power of various fixed point logics. Thus,

polynomial time and polynomial space bounded relational machines accept exactly the

classes of structures that are definable in LFP and PFP respectively. Here we measure

polynomial time and space not in terms of the size of the input structure but in terms

of its k-size, since a relational machine is not even capable of determining the size of the

input structure. Indeed, for any complexity class C that includes P, it can be shown that

a class of structures D is in the relational version of C if, and only if, the class of ordered

structures {Ik(A) | A ∈ D} is in C. For instance, a polynomial time relational machine is
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equivalent to a a polynomial time machine that receives as input, instead of the encoding

of its input structure A, an encoding of the invariant Ik(A), where k depends only on

the machine. Note that the size of the structure Ik(A) is k-size(A). Abiteboul et al. give

characterisations of a variety of relational complexity classes ranging from P to EXP in

terms of fixed point logics, including non-deterministic fixed point and alternating fixed

point logic.

This line of investigation has shown that a large number of complexity theoretic

questions can be reproduced as questions about fragments of the infinitary logic Lω∞ω
(see [2, 15, 18]). Below, we exhibit one such set of results which concerns an effective

fragment of Lω∞ω that is not obtained by fixed point logics, but by a restricted form

of second order quantification. This provides a characterisation of relational complexity

classes closer in spirit to Fagin’s result concerning NP.

The following definition is from [15]:

Definition 22.

• For an l-ary relation symbol R, and k ≥ l, we define the second order quantifier

∃kR to have the following semantics: A |= ∃kRϕ if there is an X ⊆ Al such that X

is closed under the equivalence relation ≡k in A, and (A, X) |= ϕ. As usual, ∀kR
abbreviates ¬∃kR¬.

• Σ1,ω
1 denotes the class of formulas of the form ∃k1R1 . . . ∃kmRmϕ, where ϕ is first

order.

• Π1,ω
1 denotes the class of formulas of the form ∀k1R1 . . . ∀kmRmϕ, where ϕ is first

order.

• Σ1,ω
n+1 denotes the class of formulas of the form ∃k1R1 . . . ∃kmRmϕ, where ϕ is Π1,ω

n .

• Π1,ω
n+1 denotes the class of formulas of the form ∀k1R1 . . . ∀kmRmϕ, where ϕ is Σ1,ω

n .

• SOω =
⋃
n∈ω Σ1,ω

n .

On ordered structures, the existential fragment Σ1,ω
1 captures NP. This is, because if

A is ordered, then every X ⊆ Al is ≡k-closed. The correspondence extends all the way

up the polynomial hierarchy.

Theorem 23. On ordered structures, for every n ∈ ω, Σ1,ω
n = Σpn and Π1,ω

n = Πp
n.

Σ1,ω
1 fails to capture NP on arbitrary structures because for every formula ϕ of this

logic there is a k such that the global relation defined by ϕ is closed under ≡k, and we

saw in Section 2 many examples of properties in NP that are not closed under any such

relation. In fact, the following containments hold, in terms of expressive power:

LFP ⊆ Σ1,ω
1 ⊆ PFP

Moreover, by an argument similar to the one used to prove Theorem 21, we can

establish the following [15]:

Theorem 24. LFP = Σ1,ω
1 if, and only if, P = NP.

Theorem 25. Σ1,ω
1 = PFP if, and only if, NP = PSPACE.

Analogous results hold for all levels of the polynomial hierarchy. Details can be found

in [15].
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The logic Σ1,ω
1 is equivalent in expressive power to the non-deterministic fixed point

logic introduced in [2] specifically to establish results of the form presented in Theorem 24.

The paper also introduced an alternating fixed point logic equivalent in expressive power

to PFP. SOω is equivalent to the fragment of that logic given by a bounded number of

alternations.

Theorem 21 may be compared with a result due to Tiuryn and Urzyczyn [58] to the

effect that two different dynamic logics of programs are equivalent in expressive power

if, and only if, P=PSPACE. The two logics in question are dynamic logics formed from

program schemes with one stack (LFDS) and program schemes with arrays (LPDA).

As with Theorem 21, one direction of the equivalence follows from capturing results

on a specialised class of structures. Thus, LFDS expresses exactly the polynomial time

computable properties of “Herbrand like structures” and a similar result holds for LFDA

and polynomial space computation. Herbrand like structures are structures in which

every element is named by a term. This requirement plays a role similar to that of the

ordering required in Theorems 1 and 2 in that it eliminates all non-trivial automorphisms

of the structure. Indeed, it is not difficult to see that there is an LFP-definable order on

Herbrand like structures (as these structures are 1-rigid, see Section 6.1). The other

direction of Tiuryn and Urzyczyn’s result follows from the observation that formulas of

the logics LFDS or LFDA have only limited access to a structure outside of the elements

that are named by terms. Thus, the truth value of a formula ϕ on any structure A is

determined by the substructure of A generated by the interpretation of the free variables

of ϕ, and this is, naturally, a Herbrand like structure.

The results on relational complexity classes above have all been formulated for com-

plexity classes including P. It is not known if similar results can be obtained for lower

complexity classes. For instance, is there a logic L such that L = LFP if, and only if,

L=P? It does not seem likely that the methods used above could be deployed to show

this, as it seems unlikely that a formula defining ≡k or a formula ordering the ≡k-classes

could be constructed in a logic which can only express properties that are in L. Indeed,

Grohe [29] has shown that the relation ≡k is P-complete.

5. Relation between size and k-size. Many of the results in the previous sections

have established the importance of k-size as an invariant of a complete Lk theory. For

any structure A, k-size(A) is the size of the structure Ik(A). It is the measure used

for determining relational complexity. It is also of crucial importance in the context of

McColm’s conjectures. A class of structures C is proficient in the sense of McColm if, and

only if, there is no bound on the k-size of structures in C.
While the results in Section 4 established that a variety of interesting complexity

theoretic questions can be translated into questions about finite variable logics, i.e. logics

in which definable classes are closed under the ≡k equivalence relation, such translations

have not necessarily thrown new light on the separation of complexity classes. One reason

for this is that the main tool for establishing inexpressibility results for these logics is the

pebble game. This can be used to show that a class of structures is not closed under any of

the relations ≡k, and therefore not definable in any of the logics we have been considering.

This means, however, that the pebble game cannot be used directly to separate the logics
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in question. Simply put, such games can be used to show that a class of structures is not

definable in LFP, but it shows at the same time that it is not definable in PFP either.

There is, however, one method that has been used to show that certain problems

that are closed under ≡k are nonetheless not definable in LFP. This is the analysis of

complexity in terms of k-size. Thus, a class of structures which is closed under ≡k, but

whose complexity is not polynomial in the k-size of the structures cannot be definable

in LFP. In [19], it was shown that there are polynomial time decidable classes of binary

trees that are closed under ≡4 but are not definable in LFP. The crucial fact here is that

the size of a binary tree is exponential in its height, but its k-size is only polynomial in

its height.

The question naturally arises: how far can the size of structure and its k-size diverge,

or more generally, how is the k-size of a structure related to its size? We can begin with

a few straightforward observations. First of all, it is immediate from the definition that,

if |A| = n, then k-size(A) ≤ nk, since there are at most nk k-tuples in A. This bound is

actually achieved in the class of linear orders, for all k ≥ 2.

If we turn the question around and ask how large a structure can we find with a given

k-size, at first things appear equally simple. It is trivial to construct arbitrarily large such

structures. Thus, if we consider the class of structures in the empty signature (see Exam-

ple 5), it is clear that the k-size of structures in this class is bounded by a constant, and

yet there are arbitrarily large structures in this class. However, this class splits into only

finitely many ≡k equivalence classes of structures since it is k-compact (see Section 3.1).

So, the existence of arbitrarily large structures of a fixed k-size follows simply from the ex-

istence of infinite ≡k equivalence classes. The more interesting question is: how large can

the smallest or largest structure in a ≡k equivalence class be, with respect to its k-size?

To be precise, define the following two functions dk, ek : N→ N by:

dk(n) = max{card(A) | k-size(A) ≤ n and A is smallest in its ≡k class},
ek(n) = max{card(A) | k-size(A) ≤ n and A belongs to a finite ≡k class}.

These functions are well defined, since there are only finitely many ≡k classes of structures

with a fixed k-size. This latter fact follows from the fact that every complete Lk theory

is axiomatised by an Lk sentence whose quantifier rank is determined by its k-size (see

the discussion in Section 3.1, following Theorem 18). By the definition of the functions,

we can make the following statements:

Proposition 26. For every structure A, with k-size(A) ≤ n,

• there is a structure B with card(B) ≤ dk(n) such that A ≡k B; and

• if card(A) > ek(n) then there are arbitrarily large structures B such that A ≡k B.

These can be seen as downward and upward Löwenheim-Skolem properties for finite

structures. However, they raise the question of what kind of bounds can we put on

the functions dk and ek? This is also related to the second of Poizat’s questions (see

Section 2.3). That is, the second part of Proposition 26 can be seen as an answer to the

question as it shows one sense in which if a complete Lk theory has a sufficiently large

model, it has arbitrarily large models.
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As already indicated above, the class of binary trees provides exponential lower bounds

on both the functions dk and ek. It was shown in [16] that this bound is in some sense

optimal for the class of trees. That is, if the structures A in the definitions above are

restricted to be trees, there are exponential upper bounds on the functions dk and ek.

In [30], Grohe showed the following:

Theorem 27. For all k ≥ 3, there is no recursive function f such that dk(n) < f(n)

for all n.

Grohe’s construction relies on a gadget called a scale, which is a structure, containing

two distinguished sets of elements M and N , which have the same cardinality, but such

that no non-trivial relation among them is definable in Lk. The equal cardinality condition

is enforced by including in the structure elements and relations that encode bijections

between the two sets. If a sufficiently large number of such bijections is included, then

only trivial relations are definable.

The crucial step in the argument is that such scales can be constructed, even when

the set M can be decomposed into two disjoint definable sets M1 and M2. This is an

addition scale, as it can be seen as witnessing that the cardinality of the set N is the sum

of the cardinalities of M1 and M2. Such scales are then used to construct structures whose

Lk theory enforces constraints on cardinalities of sets, where the constraints are given

by an arithmetic equation. Multiplication is easily implemented as a cartesian product.

Such a construction can be used to obtain an encoding of Diophantine equations as finite

structures, where the k-size of the structure depends only on the size of the equation, but

the size of the structure depends on the size of a solution to the equation. Since there is

no recursive upper bound on the solution of a Diophantine equation in terms of the size

of the equation, Theorem 27 follows.

One consequence of this result is that there is no computable function f which is

the inverse of the function Ik. That is, there is no computable function f such that

f(Ik(A)) ≡k A. This is related to a question posed in [19] asking whether the construction

of the invariant Ik can be inverted in time polynomial in the size of the output . Note that

this is not immediately ruled out by the non-existence of a function f as above. However,

Grohe [28] has also shown that this is unlikely, as the following problem is NP-complete:

Input: A finite structure J and a string x.

Question: Is there a structure A of size ≤ length(x) such that Ik(A) = J .

This suggests that though the equivalence relation ≡k is polynomial time decidable,

it most likely does not admit polynomial time construction of canonical representatives.

6. Other directions. The previous sections have explored in some detail a few of

the research directions related to finite variable logics in finite model theory. This section

takes a briefer look at directions not yet covered.

6.1. When is an order definable? Since so many results related to fixed point logics

hold specifically on ordered structures only — for instance the theorem of Immerman

and Vardi identifying definability in LFP with computability in PTIME, an important

question that arises is on what classes of structures is a linear order definable, even when
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it is not explicitly present. That is, what classes of structures C have the property that

there is a formula λ(x, y) (in a logic L) such that the interpretation of λ on any structure

in C is a linear order of the universe? If such a formula λ exists, we say that C admits

an L-definable linear order. It is easy to see that if this holds then every structure in

C must be rigid, that is, it does not admit any automorphisms other than the trivial

one.

If a structure A has the property that no two elements of A have the same Lk-type,

we say that A is k-rigid. This notion was introduced in [14, 19] where it was also shown

that every finite rigid structure is k-rigid for some k. It was also established in [14] that

a class C admits an LFP-definable linear order if, and only if, there is a k such that every

structure in C is k-rigid. Indeed, if there is no such k, then C does not admit even an

Lω∞ω-definable linear order. The other direction, showing that if such a bound exists then

C admits an LFP-definable linear order is based on the general result about ordering the

equivalence classes of ≡k in an arbitrary (not necessarily rigid) structure, which is the

basis of Theorem 21 discussed in Section 4.s

Stolboushkin [55] showed that there is a first order definable class of structures which

admits an LFP-definable linear order but no first order definable order. Gurevich and

Shelah [33] constructed a first order definable class of structures such that all structures

in the class are rigid, but it does not admit an Lω∞ω-definable linear order.

6.2. Infinitary logic and formal languages. As was mentioned above, any recursively

enumerable class of structures C that is closed under ≡k is accepted by a relational

machine. Moreover, the complement of C is axiomatised by a recursive set of sentences of

Lk. Thus C is recursive and closed under ≡k if, and only if, both it and its complement

are axiomatised by a recursive set of sentences of Lk. These equivalences were essentially

established in [1], in terms of infinite disjunctions of sets of Lk formulas.

Abiteboul et al. [1] also showed a correspondence between definability in fixed point

logics and axiomatisability by sets of sentences generated by regular languages. This is

done by making an analogy between concatenation of strings and composition of formulas.

Formally, we are given a finite set Σ of formulas of Lk, each with a distinguished second

order variable. The composition ϕψ of two formulas ϕ(R) and ψ(S) in Σ is defined as the

formula obtained by replacing all occurrences of R in ϕ with ψ, renaming variables in ψ

as necessary for each replacement. Given a finite alphabet Γ and a map h from Γ to Σ, h

is extended in a natural way to a map from the set of strings Γ∗ into the set of formulas

of Lk so as to commute with the operations of concatenation on Γ∗ and composition in

Lk. We now call a set of sentences of Lk regular if it is the image under h of a regular

subset of Γ∗. The following is the result proved by Abiteboul et al.

Theorem 28 (Abiteboul et al. [1]). The following are equivalent for any class of

structures C:

• C is definable by a sentence of PFP.

• C is axiomatised by a regular set of sentences of Lk for some k.

A similar characterisation of LFP is obtained by considering one letter end marked

languages. These are regular languages of the form a∗b for some letters a and b. We call
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a set of sentences of Lk positive one letter end marked if it is the image of a one letter

end marked language under a map h from {a, b} to a pair of positive formulas of Lk.

Theorem 29 (Abiteboul et al. [1]). The following are equivalent for any class of

structures C:

• C is definable by a sentence of LFP.

• C is axiomatised by a positive one letter end marked set of sentences of Lk for

some k.

These results should be compared with an earlier result due to Engeler [23] which

characterised an iterative programming language in terms of formulas of Lω1ω. The for-

mulas so obtained are infinite disjunctions of first order formulas, and the equivalence

is established over any fixed single structure. Engeler also noted that only finitely many

variables were required. The programming language considered by Engeler is a version

of the while language. As has been shown by Abiteboul and Vianu [3], the logic PFP is

equivalent to a relational version of the while language.

Another related result that deserves mention is one due to Immerman [37] who showed

that on ordered structures the complexity class PSPACE is characterised by iterated first

order formulas. The iteration is essentially similar to the composition of formulas in

[1], and the iterated formulas therefore have a bound on the number of variables that

may appear. Indeed, Immerman shows a tight correspondence between the bound on the

number of variables required and the space complexity. In a sufficiently rich language6

the properties definable by iterated first order formulas with k + 1 variables are exactly

the properties in the complexity class DSPACE[nk].

6.3. Existential fragments. Just as the fixed point logics of Section 1.3 can be seen as

fragments of Lω∞ω in terms of expressive power, so the database query language Datalog

can be seen as a fragment of an existential version of Lω∞ω. This observation, due to

Kolaitis and Vardi [42] has been the basis of a line of investigation on existential finite

variable logics.

Let pLk(∃) denote the positive existential fragment of Lk. That is to say that pLk(∃)
contains those formulas of Lk that are obtained from atomic formulas through the opera-

tions of conjunction, disjunction and existential quantification. Lk(∃, 6=) is the extension

of pLk(∃) where we allow negation in front of atomic equalities only, and Lk(∃) is exis-

tential Lk, the extension of Lk(∃, 6=) obtained by allowing negations of arbitrary atomic

formulas. The logics pLk∞ω(∃), Lk∞ω(∃, 6=) and Lk∞ω(∃) are the respective closures of these

logics under infinitary conjunctions and disjunctions; pLω∞ω(∃), Lω∞ω(∃, 6=) and Lω∞ω(∃)
are the respective unions of the latter over all k. It is clear that of all these, the logic

Lω∞ω(∃) is the strongest in that it subsumes all the others.

One important property of these logics is that all classes of structures definable in

any of them are closed under extensions. That is, if ϕ is a sentence of Lω∞ω(∃) and

A |= ϕ and A ⊆ B, then B |= ϕ. In addition, properties definable in Lω∞ω(∃, 6=) are

closed under one-to-one homomorphisms, and those definable in pLω∞ω(∃) are closed

6Essentially one which besides the order on the structures also provides arithmetic operations.
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under all homomorphisms. Moreover, on ordered structures, these logics are complete:

Lω∞ω(∃) can express all properties closed under extensions, Lω∞ω(∃, 6=) can express all

properties closed under one-to-one homomorphisms and pLω∞ω(∃) all properties closed

under homomorphisms (see [7]).

Datalog is a database language in which queries are defined through a series of Horn

clauses, whose inductive closure is used to define the query. Datalog(6=) denotes the

extension of Datalog in which inequalities are allowed to appear in the bodies of the

Horn clauses, while Datalog(¬, 6=) is an extension in which negations are allowed on

atomic formulas whose relation symbol does not appear in the head of any clause. These

query languages can be seen as fixed point logics whose expressive power is bounded by

the logics pLω∞ω(∃), Lω∞ω(∃, 6=) and Lω∞ω(∃) respectively. This fact is used by Afrati et al.

[7] and Kolaitis and Vardi [42] to establish a number of inexpressibility results for these

variants of Datalog. Some of these results (particularly those in [42]) are proved using a

pebble game simlar to that in Section 2.

We write A �k B to denote that for every sentence ϕ of Lk(∃), if A |= ϕ, then

B |= ϕ. Note that this relation is not symmetric. The relation is characterised by a

pebble game just like the one in Section 2 except that Spoiler is restricted to playing his

moves in the structure A. Games for pLω∞ω(∃) (or Lω∞ω(∃, 6=)) are obtained by modifying

the winning conditions in this game so that Duplicator is only required to maintian a

partial homomorphism (respectively, one-to-one homomorphism) rather than a partial

isomorphism. In [42], Kolaitis and Vardi use these games to show that a variety of fixed

subgraph homomorphism problems are not definable in Lω∞ω(∃, 6=). In particular consider

the class of directed graphs with two distinguished pairs of vertices (s1, t1) and (s2, t2)

such that there disjoint paths from s1 to t1 and from s2 to t2. It is shown that this class is

not definable in Lω∞ω(∃, 6=). It remains an open question whether this is definable in Lω∞ω.

Rosen and Weinstein [53] considered preservation theorems for the existential finite

variable logics. This study is motivated by the failure of the  Loś-Tarski preservation

theorem when restricted to finite models. They showed that the existential preservation

property fails for Lω∞ω both on finite structures and in general. That is, there is a sentence

of Lω∞ω whose models (finite or infinite) are closed under extensions, but which is not

equivalent (even on finite models) to a sentence of Lω∞ω(∃). Another notable result is that

unlike for Lk, the Lk(∃) theory of a finite structure is not necessarily finitely axiomati-

sable. That is, there is a finite structure A such that for every sentence ϕ ∈ Lk(∃) such

that A |= ϕ, there is a structure B such that B |= ϕ and A 6�k B. Many of the results

are proved using the extension axioms of Section 2.1. Recall that θk is the conjunction of

all k variable extension axioms (Example 6). It can be verified that if A |= θk, then for

all structures B, B �k A. This and related properties of models of the extension axioms

are explored in [52].
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