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Many interesting results in the study of symplectic torus actions can be proved

by purely cohomological methods. All one needs is a closed orientable topological 2n-

manifold M (or, more generally, a reasonably pleasant topological space whose ratio-

nal cohomology satisfies Poincaré duality with formal dimension 2n), which is coho-

mologically symplectic (c-symplectic) in the sense that there is a class w ∈ H2(M ;Q)

such that wn 6= 0. Sometimes one requires that M satisifes the Lefschetz condition

that multiplication by wn−1 is an isomorphism H1(M ;Q) → H2n−1(M ;Q). And an

action of a torus T on M is said to be cohomologically Hamiltonian (c-Hamiltonian)

if w ∈ Im[i∗ : H∗(MT ;Q) → H∗(M ;Q)], where MT is the Borel construction; and

i : M →MT is the inclusion of the fibre in the fibre bundle MT → BT .

Some examples of some results which can be proved easily by cohomological methods

are the following.

(a) If the group G = T k, the k-dimensional torus, acts symplectically on a closed

symplectic manifold M , and if the action is Hamiltonian, then the fixed point set MG 6= ∅.
(In the cohomological context, there is no reason to expect the existence of a moment

map.)

(b) If G = T k acts symplectically on a closed symplectic manifold M , if M satisfies

the Lefschetz condition and if MG 6= ∅, then the action is Hamiltonian.

(c) If a compact connected Lie group G acts on a closed symplectic manifold M with

only finite isotropy subgroups, then G is a torus.

(d) If G = T k acts on a closed symplectic manifold M with only finite isotropy sub-

groups (i.e., almost–freely), and if M satisfies the Lefschetz condition, then H∗(M ;Q) ∼=
H∗(G;Q)⊗H∗(M/G;Q).

(For the results above, see, for example, [Al], [AP], [B], [F] and [LO].)
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On the other hand, the following results require some more geometrical reasoning:

they do not hold in the purely cohomological context.

(1) If G = S1 acts symplectically on a closed symplectic manifold M , then every

component of MG is symplectic. ([F])

(2) If G = S1 acts symplectically on a closed symplectic manifold M , and if the action

is Hamiltonian, then

dimQH
∗(M ;Q) = dimQH

∗(MG,Q). ([F])

(3) If G = S1 acts symplectically on a closed symplectic 4-manifold M , and if MG 6= ∅,
then the action is Hamiltonian. ([McD])

In [A2] we gave cohomological examples in which no component of MG is c-symplectic.

In this note we give cohomological examples which do not satisfy the conclusions of (2)

and (3).

Example 1. Let G = S1 act freely on S3 × S3. Consider a tube S1 × D5 around

an orbit. The group is acting by left translations on the first factor. Remove the tube,

and replace it with D2 × S4 with G acting by standard rotations on the first factor.

Call the resulting G-manifold N . So G is acting semi-freely on N with NG = S4. Fur-

thermore, a typical Mayer–Vietoris sequence argument shows that H∗(N ;Z) is free with

Betti numbers 1, 0, 1, 2, 1, 0, 1.

Now let G act semi-freely on CP 3 with fixed point set P + CP 2, where P is an

isolated point. Form the equivariant connected sum M = CP 3#N by removing small

open discs centered on fixed points in CP 2 and S4. Thus G acts semi-freely on M with

MG = P +CP 2. Clearly M is c-symplectic and satisfies the Lefschetz condition, and the

action is c-Hamiltonian. However

dimQH
∗(MG,Q) = 4 < dimQH

∗(M ;Q) = 8.

Thus this example satisfies the conditions of Frankel’s theorem (2) above as far as the

cohomology is concerned, but it does not satisfy the conclusion.

Before giving Example 2 we shall prove two lemmas. The first lemma shows that, in

a large number of examples similar to Example 2, there are always c-symplectic classes

which are not c-Hamiltonian. The second lemma shows that in Example 2, in particular,

no c-symplectic class is c-Hamiltonian.

Lemma 1. Let M be a closed topological 4-manifold. Suppose that G = S1 acts on M

such that MG 6= ∅ and

dimQH
∗(MG;Q) < dimQH

∗(M ;Q).

Then there is a class y ∈ H2(M ;Q) such that y2 6= 0 and y 6∈ Im
(
i∗ : H∗(MG;Q) →

H∗(M ;Q)
)
.

P r o o f. Let y1, . . . , yk be a basis for H2(M ;Q) such that y2i 6= 0 for 1 ≤ i ≤ k and

yiyj = 0 for i 6= j. (We shall prove and not assume, however, that H2(M ;Q) 6= 0.)

Consider the E2 term of the Serre spectral sequence for MG → BG in rational coho-

mology. Since dimQH
∗(MG;Q) < dimQH

∗(M ;Q), the spectral sequence does not col-

lapse. (See, e.g., [AP], Theorem (3.10.4).) Hence H3(M ;Q) 6= 0. Let v ∈ H3(M ;Q) and
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let d2(v) =
∑k

j=1 λjyjt, where t ∈ H2(BG;Q) is a generator. (Here yjt is an abbreviation

for t⊗ yj ∈ H2(BG;Q)⊗H2(M ;Q) = E2,2
2 .)

For degree reasons, d2(yiv) = 0. And d2(yiv) = λiy
2
i t if d2(yi) = 0. So d2(v) = 0 if

d2(yi) = 0 for all i. But, since MG 6= ∅ and E2 6= E∞, d2(v) 6= 0 for some v ∈ H3(M ;Q).

Thus d2(yi) 6= 0 for some i.

Lemma 2. Let M be a closed c-symplectic topological 2n-manifold , and let G = S1

act on M in an effective c-Hamiltonian way. Then MG has at least two components.

P r o o f. Suppose that MG is connected. Let y ∈ H2(M ;Q) be a c-Hamiltonian class:

i.e., yn 6= 0, and there is y ∈ H2(MG;Q) such that i∗(y) = y, where i, as before, is the

inclusion of the fibre M →MG.

Let ϕ : MG →M be the inclusion, and consider

ϕ∗ : H∗(MG;Q)→ H∗
(
(MG)G;Q

) ∼= H∗(BG;Q)⊗H∗(MG;Q).

By subtracting a rational multiple of the generator t ∈ H2(BG;Q) from y, if necessary, we

can assume that ϕ∗(y) ∈ H0(BG;Q)⊗H2(MG;Q). Thus ϕ∗(ym+1) = 0 where dimMG =

2m.

Now by the Localization Theorem, ym+1 is torsional in H∗(MG;Q) viewed as a Q[t]-

module. But yn is not torsional, since i∗(yn) = yn 6= 0. (There can be no torsion on the

top row of the Serre spectral sequence.) Hence m ≥ n, which contradicts the effectiveness

of the action.

Remarks. Lemma 2 can be generalized as follows. Let M be a closed c-symplectic

topological 2n-manifold, and let G = T k, the k-dimensional torus, act on M in an effec-

tive, uniform (see below), c-Hamiltonian way. Then MG has at least k + 1 components.

See [AP], Definition (3.6.17), for the definition of a uniform action. Note that an

actual Hamiltonian action is uniform by [AP], Corollary (3.6.19) and Frankel’s Theorem

(2) above, which is also valid for torus actions (as follows from the circle case).

Lemma 2 is another example of a well-known geometric theorem which has a purely

cohomological proof. See, e.g., [Au], Chapter III, Corollary 4.2.3 and its proof, for the ge-

ometric version, which follows from the Atiyah–Guillemin–Sternberg Convexity Theorem.

Now we conclude with Example 2 which shows that McDuff’s Theorem (3) above does

not have a purely cohomology proof.

Example 2. The example begins with two copies of CP 2 with different orientations,

and with G = S1 acting on each copy semi-freely fixing P + S2 where P is an isolated

point. Now let N be the equivariant connected sum formed by removing small open discs

centered on the isolated fixed points. So N =CP 2 #CP 2; and G acts semi-freely on N

with NG = S2 + S2. Next remove two small open discs centered on fixed points, one in

each component of NG. Let M be the result of equivariantly attaching S3 × I1. Clearly

this can be done so that M is orientable; and G is acting semi-freely on M with MG = S2.

Again, a Mayer–Vietoris sequence argument shows that H∗(M ;Z) is free with Betti

numbers 1, 1, 2, 1 and 1. Since H2(M ;Q) 6= 0, M is c-symplectic. Since MG is connected,

the action is not c-Hamiltonian with respect to any c-symplectic class by Lemma 2.
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