EXAMPLES OF CIRCLE ACTIONS ON SYMPLECTIC SPACES

CHRISTOPHER ALLDAY

Department of Mathematics, University of Hawaii, Honolulu, Hawaii 96822, U.S.A. E-mail: chris@math.hawaii.edu

Many interesting results in the study of symplectic torus actions can be proved by purely cohomological methods. All one needs is a closed orientable topological 2nmanifold M (or, more generally, a reasonably pleasant topological space whose rational cohomology satisfies Poincaré duality with formal dimension 2n), which is cohomologically symplectic (*c*-symplectic) in the sense that there is a class $w \in H^2(M; \mathbb{Q})$ such that $w^n \neq 0$. Sometimes one requires that M satisifes the Lefschetz condition that multiplication by w^{n-1} is an isomorphism $H^1(M; \mathbb{Q}) \to H^{2n-1}(M; \mathbb{Q})$. And an action of a torus T on M is said to be cohomologically Hamiltonian (*c*-Hamiltonian) if $w \in \text{Im}[i^* : H^*(M_T; \mathbb{Q}) \to H^*(M; \mathbb{Q})]$, where M_T is the Borel construction; and $i: M \to M_T$ is the inclusion of the fibre in the fibre bundle $M_T \to BT$.

Some examples of some results which can be proved easily by cohomological methods are the following.

(a) If the group $G = T^k$, the k-dimensional torus, acts symplectically on a closed symplectic manifold M, and if the action is Hamiltonian, then the fixed point set $M^G \neq \emptyset$. (In the cohomological context, there is no reason to expect the existence of a moment map.)

(b) If $G = T^k$ acts symplectically on a closed symplectic manifold M, if M satisfies the Lefschetz condition and if $M^G \neq \emptyset$, then the action is Hamiltonian.

(c) If a compact connected Lie group G acts on a closed symplectic manifold M with only finite isotropy subgroups, then G is a torus.

(d) If $G = T^k$ acts on a closed symplectic manifold M with only finite isotropy subgroups (*i.e.*, almost–freely), and if M satisfies the Lefschetz condition, then $H^*(M; \mathbb{Q}) \cong$ $H^*(G; \mathbb{Q}) \otimes H^*(M/G; \mathbb{Q})$.

(For the results above, see, for example, [Al], [AP], [B], [F] and [LO].)

1991 Mathematics Subject Classification: 57S99, 55P99, 58F99.

The paper is in final form and no version of it will be published elsewhere.

On the other hand, the following results require some more geometrical reasoning: they do not hold in the purely cohomological context.

(1) If $G = S^1$ acts symplectically on a closed symplectic manifold M, then every component of M^G is symplectic. ([F])

(2) If $G = S^1$ acts symplectically on a closed symplectic manifold M, and if the action is Hamiltonian, then

$$\dim_{\mathbb{Q}} H^*(M; \mathbb{Q}) = \dim_{\mathbb{Q}} H^*(M^G, \mathbb{Q}).$$
 ([F])

(3) If $G = S^1$ acts symplectically on a closed symplectic 4-manifold M, and if $M^G \neq \emptyset$, then the action is Hamiltonian. ([McD])

In [A2] we gave cohomological examples in which no component of M^G is c-symplectic. In this note we give cohomological examples which do not satisfy the conclusions of (2) and (3).

EXAMPLE 1. Let $G = S^1$ act freely on $S^3 \times S^3$. Consider a tube $S^1 \times D^5$ around an orbit. The group is acting by left translations on the first factor. Remove the tube, and replace it with $D^2 \times S^4$ with G acting by standard rotations on the first factor. Call the resulting G-manifold N. So G is acting semi-freely on N with $N^G = S^4$. Furthermore, a typical Mayer–Vietoris sequence argument shows that $H^*(N;\mathbb{Z})$ is free with Betti numbers 1, 0, 1, 2, 1, 0, 1.

Now let G act semi-freely on $\mathbb{C}P^3$ with fixed point set $P + \mathbb{C}P^2$, where P is an isolated point. Form the equivariant connected sum $M = \mathbb{C}P^3 \# N$ by removing small open discs centered on fixed points in $\mathbb{C}P^2$ and S^4 . Thus G acts semi-freely on M with $M^G = P + \mathbb{C}P^2$. Clearly M is c-symplectic and satisfies the Lefschetz condition, and the action is c-Hamiltonian. However

$$\dim_{\mathbb{O}} H^*(M^G, \mathbb{Q}) = 4 < \dim_{\mathbb{O}} H^*(M; \mathbb{Q}) = 8.$$

Thus this example satisfies the conditions of Frankel's theorem (2) above as far as the cohomology is concerned, but it does not satisfy the conclusion.

Before giving Example 2 we shall prove two lemmas. The first lemma shows that, in a large number of examples similar to Example 2, there are always *c*-symplectic classes which are not *c*-Hamiltonian. The second lemma shows that in Example 2, in particular, no *c*-symplectic class is *c*-Hamiltonian.

LEMMA 1. Let M be a closed topological 4-manifold. Suppose that $G = S^1$ acts on M such that $M^G \neq \emptyset$ and

$$\dim_{\mathbb{Q}} H^*(M^G; \mathbb{Q}) < \dim_{\mathbb{Q}} H^*(M; \mathbb{Q}).$$

Then there is a class $y \in H^2(M; \mathbb{Q})$ such that $y^2 \neq 0$ and $y \notin \text{Im}\left(i^* : H^*(M_G; \mathbb{Q}) \rightarrow H^*(M; \mathbb{Q})\right)$.

Proof. Let y_1, \ldots, y_k be a basis for $H^2(M; \mathbb{Q})$ such that $y_i^2 \neq 0$ for $1 \leq i \leq k$ and $y_i y_j = 0$ for $i \neq j$. (We shall prove and not assume, however, that $H^2(M; \mathbb{Q}) \neq 0$.)

Consider the E_2 term of the Serre spectral sequence for $M_G \to BG$ in rational cohomology. Since $\dim_{\mathbb{Q}} H^*(M^G; \mathbb{Q}) < \dim_{\mathbb{Q}} H^*(M; \mathbb{Q})$, the spectral sequence does not collapse. (See, e.g., [AP], Theorem (3.10.4).) Hence $H^3(M; \mathbb{Q}) \neq 0$. Let $v \in H^3(M; \mathbb{Q})$ and

let $d_2(v) = \sum_{j=1}^k \lambda_j y_j t$, where $t \in H^2(BG; \mathbb{Q})$ is a generator. (Here $y_j t$ is an abbreviation for $t \otimes y_j \in H^2(BG; \mathbb{Q}) \otimes H^2(M; \mathbb{Q}) = E_2^{2,2}$.)

For degree reasons, $d_2(y_iv) = 0$. And $d_2(y_iv) = \lambda_i y_i^2 t$ if $d_2(y_i) = 0$. So $d_2(v) = 0$ if $d_2(y_i) = 0$ for all *i*. But, since $M^G \neq \emptyset$ and $E_2 \neq E_{\infty}$, $d_2(v) \neq 0$ for some $v \in H^3(M; \mathbb{Q})$. Thus $d_2(y_i) \neq 0$ for some *i*.

LEMMA 2. Let M be a closed c-symplectic topological 2n-manifold, and let $G = S^1$ act on M in an effective c-Hamiltonian way. Then M^G has at least two components.

Proof. Suppose that M^G is connected. Let $y \in H^2(M; \mathbb{Q})$ be a *c*-Hamiltonian class: *i.e.*, $y^n \neq 0$, and there is $\overline{y} \in H^2(M_G; \mathbb{Q})$ such that $i^*(\overline{y}) = y$, where *i*, as before, is the inclusion of the fibre $M \to M_G$.

Let $\varphi: M^G \to M$ be the inclusion, and consider

$$\varphi^*: H^*(M_G; \mathbb{Q}) \to H^*((M^G)_G; \mathbb{Q}) \cong H^*(BG; \mathbb{Q}) \otimes H^*(M^G; \mathbb{Q}).$$

By subtracting a rational multiple of the generator $t \in H^2(BG; \mathbb{Q})$ from \overline{y} , if necessary, we can assume that $\varphi^*(\overline{y}) \in H^0(BG; \mathbb{Q}) \otimes H^2(M^G; \mathbb{Q})$. Thus $\varphi^*(\overline{y}^{m+1}) = 0$ where dim $M^G = 2m$.

Now by the Localization Theorem, \overline{y}^{m+1} is torsional in $H^*(M_G; \mathbb{Q})$ viewed as a $\mathbb{Q}[t]$ module. But \overline{y}^n is not torsional, since $i^*(\overline{y}^n) = y^n \neq 0$. (There can be no torsion on the top row of the Serre spectral sequence.) Hence $m \geq n$, which contradicts the effectiveness of the action.

REMARKS. Lemma 2 can be generalized as follows. Let M be a closed c-symplectic topological 2n-manifold, and let $G = T^k$, the k-dimensional torus, act on M in an effective, uniform (see below), c-Hamiltonian way. Then M^G has at least k + 1 components.

See [AP], Definition (3.6.17), for the definition of a uniform action. Note that an actual Hamiltonian action is uniform by [AP], Corollary (3.6.19) and Frankel's Theorem (2) above, which is also valid for torus actions (as follows from the circle case).

Lemma 2 is another example of a well-known geometric theorem which has a purely cohomological proof. See, e.g., [Au], Chapter III, Corollary 4.2.3 and its proof, for the geometric version, which follows from the Atiyah–Guillemin–Sternberg Convexity Theorem.

Now we conclude with Example 2 which shows that McDuff's Theorem (3) above does not have a purely cohomology proof.

EXAMPLE 2. The example begins with two copies of $\mathbb{C}P^2$ with different orientations, and with $G = S^1$ acting on each copy semi-freely fixing $P + S^2$ where P is an isolated point. Now let N be the equivariant connected sum formed by removing small open discs centered on the isolated fixed points. So $N = \mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$; and G acts semi-freely on Nwith $N^G = S^2 + S^2$. Next remove two small open discs centered on fixed points, one in each component of N^G . Let M be the result of equivariantly attaching $S^3 \times I^1$. Clearly this can be done so that M is orientable; and G is acting semi-freely on M with $M^G = S^2$.

Again, a Mayer–Vietoris sequence argument shows that $H^*(M; \mathbb{Z})$ is free with Betti numbers 1, 1, 2, 1 and 1. Since $H^2(M; \mathbb{Q}) \neq 0$, M is *c*-symplectic. Since M^G is connected, the action is not *c*-Hamiltonian with respect to any *c*-symplectic class by Lemma 2. Acknowledgements. I would like to thank John Oprea for raising the questions which led to this paper; and I would like to thank Volker Puppe for some helpful discussions, especially concerning Example 1.

References

- [Al] C. Allday, Lie group actions on cohomology Kähler manifolds, unpublished manuscript (1978).
- [A2] C. Allday, Circle actions on Kähler spaces, J. of Pure and Applied Alg. 91 (1994), 23–27.
- [AP] C. Allday and V. Puppe, Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics 32, Cambridge University Press, 1993.
- [Au] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics, Volume 93, Birkhäuser Verlag, Basel, Boston, Berlin, 1991.
- [B] A. Borel et al., Seminar on Transformation Groups, Princeton University Press, Princeton, 1960, Ann. of Math Studies No. 46.
- [F] T. Frankel, Fixed points on Kähler manifolds, Ann. of Math. 70 (1959), 1-8.
- [LO] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347, no. 1 (1995), 261–288.
- [McD] D. McDuff, The moment map for circle actions on symplectic manifolds, J. of Geom. Physics 5 (1988), 149–160.