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In this paper we will be interested in results surrounding the following basic question:

what are the homotopy properties that one can extract from a gradient flow? We approach

this question by decomposing it into three parts:

1. Identify what are the homotopical objects that are provided by the flow (e.g. critical

points, Conley indexes).

2. Discover what are the relations that have to be satisfied by these objects (e.g. Morse

inequalities, Lusternik-Schnirelmann type inequalities).

3. (The Realizability Problem.) Given some homotopy objects that satisfy the rela-

tions from 2., is there a corresponding flow? Is this flow unique up to some equivalence

relation?

We will consider only gradient flows induced by functions with isolated critical points,

restrict our discussion to the finite dimensional, compact context and concentrate on the

non-Morse case. One way to look at these questions in this case is to first treat numerical

invariants, then local invariants, and finally, pairwise invariants (that concern pairs of

consecutive critical points)... At each level, we can look at the points 1.,2.,3. above.

1. Numerical and local data. Let us fix some notation first. Let W be a smooth,

riemannian, compact, n-manifold with boundary and let f : W −→ R be smooth, maxi-

mal, regular and constant on ∂W . Consider W ′ = f−1[a, b] with a and b regular values,

V0 = f−1(a). Assume f has a single critical point in W ′ which is denoted by P . If P is

reasonable let Af (P ) ' f−1(−∞, f(P )] ∩ S(P, ε), where S(P, ε) is a sphere of radius ε

around P . Its homotopy type does not depend on the different choices made if ε is small

enough. The Conley index [5,31] of the critical point P with respect to the flow induced

by −∇f is denoted Cf (P ); it is the homotopy type of the quotient W ′/V0. We denote by

CX the cone over the space X; Cat(X) is the strong Lusternik-Schnirelmann category
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of X (it is the minimal number of cone attachments needed to construct a space of the

homotopy type of X starting from a point [22]) and cat(X) is the Lusternik-Schnirelmann

category of X [23,25].

It is convenient to group known facts about our subject in a table below. We start with

the well understood Morse case and proceed towards that of general critical points. In

between, one has the ”reasonable” critical points [8], a class that contains all the isolated

critical points of locally analytic functions. More information about the contents of the

table follows the table itself.

Morse Reasonable General

Numerical inv. no. crit pts. of no. crit. pts. crit(f)

index k = critk(f) = crit(f)

Relations critk(f) ≥ bk(W ) crit(f) ≥ crit(f) ≥
Cat(W ) + 1 cat(W ) + 1

Realization π1W = 0 π1W = 0, π2W = 0 same

n ≥ 6 π1∂W = 0, W ' X
∃f perfect dim(X) < n/2

∃g, crit(g) = ∃g, crit(g) =

Cat(W ) + 1 cat(W ) + 2

Local inv. index (P) Cf (P ) Cf (P )

Relations W ′ = V0
⋃
Dk−1 W ′ = V0

⋃
CAf (P ) Cf (P ) =

Cf (P ) = Sk Cf (P ) = ΣAf (P ) co-H-space

Realization ∀k ∀X Open

∃f, P ∃f, P
index (P)= k Cf (P ) = ΣX

The information contained in the table is classical in the case of Morse functions.

This case appears in the first vertical column. Recall that a Morse function is perfect if

it has the minimal possible number of critical points allowed by homological restrictions.

The second column deals with the functions having only reasonable critical points and

the third with that of functions with general critical points. The results in these two last

columns follow from [8]. The top inequality in the general case is the classical motivation

for the introduction by Lusternik and Schnirelmann of the notion of category [25].

In the ”realization” lines we mention results providing functions and critical points

realizing the restrictions indicated. For example, in the Morse case, the existence of a

perfect Morse function on any simply connected manifold is a key classical result equiv-

alent to the h-cobordism theorem. A further example is provided by the last entry in

the reasonable column. This ”realization” result claims that any finite suspension can be

realized as the Conley index of some reasonable critical point.

The construction of the function g in the reasonable case implies the result in general

because cat(X) ≤ Cat(X) ≤ cat(X) + 1 [33]. In fact g can be assumed to be self-indexed

in the sense that its critical points Pi, −1 ≤ i ≤ Cat(X) can be indexed such that

f(Pi) = i, the hessian of f has index i at Pi for i > −1 and P−1 is a minimum. Modulo
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the h-cobordism theorem this is the direct ”critical points” translation of the homotopy

fact [6,7] that Cat(X) equals the cone-length Cl(X) = min{n : ∃ ΣiZi −→ Xi −→ Xi+1

cofibration sequences , 0 ≤ i < n,X0 ' ∗, Xn ' X}.
The relationship between the Lusternik-Schnirelmann category and the cone length

plays an important role here. Its study was initiated by the papers [18] and [24]. In

particular a conjecture of Lemaire and Sigrist claimed the equality of Cl and cat for

rational spaces. The conjecture is now known to hold for rational Poincaré duality spaces

[11]. In spite of the fact that strong category and cone length agree (even geometrically),

the conjecture has been disproved by an example of Dupont [15] who constructed a

rational space Y with Cl(Y ) = 4 but cat(Y ) = 3. Rationally, if cat(Y ) = 2 then Cl(Y ) = 2

also [19].

The fact that the Conley index of any isolated critical point is a co-H-space appears in

non-explicit ways in the literature (e.g. see [14]). It was made explicit, in a more general

setting, in [8] and independently in [28]. There are no examples of critical points with a

Conley index different from a suspension.

2. Pairwise data of consecutive critical points and stable homotopy. Assume

W ′′ = f−1[a, c] with a as above and c > b regular value such that f has a single critical

point in W ′′−W ′ that we denote by Q. We also assume that P and Q are both reasonable

critical points.

We have two cofibration sequences Af (P ) −→ V0 −→W ′ and Af (Q) −→W ′ −→W ′′.

This provides a relative attaching map k(Q,P ) : Af (Q) −→ ΣAf (P ). We also have the

same construction for the function −f . We get another relative attaching map k(P,Q) :

A−f (P ) −→ ΣA−f (Q). The homotopy classes of these two maps are the invariants that

we propose in the pairwise (consecutive) case.

The relation in this case is that the two maps are Spanier-Whitehead duals up to

some twisting coming from the stable normal bundle of W [9]. In the stably paralleliz-

able Morse-Smale case this was proved by Franks [20]. The homological consequence of

this duality result follows also from a result of McCord [26]. Again in the Morse-Smale

case, but for general manifolds, the stable difference between k(P,Q) and k(Q,P ) can

be explicitly estimated as a function of certain Hopf invariants and the stable normal

bundle of the manifold. In particular, it belongs to the image of the obvious factor Jq :

π∗Ω
qΣqSO −→ πS∗ of the classical J-homomorphism (q = min{index(P ), index(Q)}).

In turn, this can be viewed as an obstruction used to detect non-smoothable Poincaré

duality spaces [13].

3. More stable ideas. Let q : Rm −→ R be a quadratic function of index k. One of

the key ingredients of both the duality result above and of the construction of the function

g in the table is that, given a flow γ on some manifold M , the flow γ×−∇q on M ×Rm

suspends all the homotopical information k-times [9]. Understanding the behaviour of

flows under suspension is also motivated by the ”stable” Morse Lusternik-Schnirelmann

theory of Eliashberg and Gromov [16], developed in the context of Lagrangian intersec-

tions.
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Stable ideas are also relevant to this same subject in a different way. Consider the

finite dimensional setting for the Arnold conjecture discussed in [16]. In this case, one

needs to evaluate the minimal number of critical points of a function that is quadratic at

infinity on M ×Rm. As shown in [10] this number is estimated by cat(M,M × Sk−1) (if

the index of the quadratic part is k). Here, cat(X,A) is the relative category introduced

by Fadell [17].

The Arnold conjecture suggests that, in general, the inequality

cat(X,X × Sk) ≥ cat(X) + 1 (1)

can be expected to hold.

A stable version of this inequality has been recently proven by Moyaux [27]. He shows

that cat(X,X × Sk−1) is bigger than the least n for which the k-th suspension of the

projection pn : BnΩX −→ X admits a section (this number has been introduced and

studied by Vanderbrouk [34] who called it the σk-category of X; the existence of a section

for pn is equivalent to cat(X) ≤ n [22]; pn is the projection at the n-th stage of Milnor’s

classifying construction applied to ΩX).

As shown in [10], the inequality (1) implies the Ganea conjecture

cat(X × Sk) = cat(X) + 1.

Iwase has recently disproved the Ganea conjecture, so (1) cannot be valid in full generality.

Finding a universal, unstable lower bound for cat(X,X × Sn) is an interesting open

question. Properties of the relative category in relation to counting critical points have

also been investigated in [2] especially in the equivariant context. For other interesting

applications see also [1].

Stable ideas have also been used efficiently by Rudyak [29] and Strom [32] in the homo-

topical study of the Lusternik-Schnirelmann category in relation to the Ganea conjecture.

Rudyak has also applied his ideas to the Arnold conjecture context and, in particular,

proved together with Oprea [30] that the category of each symplectic manifold (M,ω)

with [ω]|π2(M) = 0 is equal to dim(M). It also follows from [30] and [27] that, in this

case, cat(M,M × Sk) = cat(M) + 1.

4. Final comments. In what ways do the homotopical objects above—the Conley

indexes of the critical points and pairwise data for critical points—characterize the flow

on W or, at least, the space W itself ?

In the Morse-Smale case this is quite well understood. Pairwise, consecutive infor-

mation is insufficient to determine W even if, as indicated above, the stable difference

between k(P,Q) and k(Q,P ) is highly relevant for the stable normal structure. At the

same time, the moduli spaces of connecting flow lines for all the pairs of critical points

together with their compactifications provide the homeomorphism type of the manifold [3].

In the case of functions with isolated but general critical points much less is clear.

Essentially, one only knows how to use the maps induced in homology by the relative

attaching maps to determine the homology of W . This is the technique of connection

matrices of Franzosa [21]. Homological results abound in Conley index theory and they

apply to general flows, not only to gradient ones. However, at the geometric level, in
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this same setting of general flows, the only available general results are extensions of the

suspension and duality statements mentioned before [12].

In going beyond homology in reconstructing the homotopy type of the manifold, the

discussion above suggests that only stable global information can be expected to be

recovered from pairwise flow data in the non-Morse context. For the reconstruction of

the stable homotopy type, it is likely that one would need to use techniques similar to

those of [4].
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