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Abstract. We give conditions for a map of spaces to induce maps of the homology decom-
positions of the spaces which are compatible with the homology sections and dual Postnikov
invariants. Several applications of this result are obtained. We show how the homotopy type
of the (n + 1)st homology section depends on the homotopy type of the nth homology section
and the (n+ 1)st homology group. We prove that all homology sections of a co-H-space are co-
H-spaces, all n-equivalences of the homology decomposition are co-H-maps and, under certain
restrictions, all dual Postnikov invariants are co-H-maps. We give a new proof of a result of
Berstein and Hilton which gives conditions for a co-H-space to be a suspension.

1. Introduction. The Postnikov decomposition of a 1-connected space has been ex-

tremely useful in homotopy theory. A basic property of this construction is the existence

of induced maps, that is, a map between spaces induces maps between the Postnikov sec-

tions of the spaces which are compatible with all the data of the Postnikov decompositions

[Wh, Chap. IX]. This can be used, for example, to show that the Postnikov sections of

an H-space are H-spaces and the Postnikov invariants are H-maps. The Eckmann-Hilton

dual of the Postnikov decomposition of a space is the homology decomposition of a space.

This too has been a very useful way to describe a space. However, it has been known for

some time that induced maps of homology decompositions do not always exist. In [Cu1]

Curjel gives necessary and sufficient conditions for a map of spaces to induce compatible

maps of homology sections. Here we carry this one step further by giving conditions for

the induced maps to be compatible with the dual Postnikov invariants. We derive several

consequences of these results. We show that, with certain restrictions, the homotopy type

of the homology sections of a space are determined by the homotopy type of the space.

We also give conditions under which we can describe the homotopy type of (n + 1)st

homology sections with fixed nth homology section and fixed (n+ 1)st homology group.
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In the last section we consider the homology decomposition of a co-H-space X. We prove

that the homology sections are co-H-spaces which are compatible with the co-H-structure

of X and, if X is either 2-connected or has torsion-free homology, that the dual Post-

nikov invariants are co-H-maps. From this we obtain a new proof of the following result

of Berstein and Hilton: a (q−1)-connected co-H-space of dimension ≤ 3q−3 is equivalent

to a suspension.

For the remainder of this section we present our notation and conventions. All spaces

are 1-connected, based spaces of the based homotopy type of a CW-complex. We denote

the base point of a space and the one point space by ∗, the constant map by 0 and the

identity map or homomorphism by id. All maps preserve the base point and we do not

distinguish notationally between a map and its homotopy class. Thus equality of maps

means either homotopy of the maps or equality of their homotopy classes. The usual

notation of homotopy theory will be in effect: [A,B] for the set of homotopy classes

A→ B, f∗ : [A,B]→ [A,B′] for the function induced by f : B → B′, Σ for the reduced

suspension, Cg for the mapping cone of a map g, K(G,n) for the Eilenberg-MacLane

space of type (G,n) and M(G,n) for the Moore space of type (G,n). We note that

M(G,n) can be regarded as a CW-complex of dimension ≤ n + 1 which has dimension

≤ n when G is free-abelian. The nth homotopy group πn(G;X) of X with coefficients in

G is [M(G,n), X]. The nth cohomology group Hn(X;G) of X with coefficients in G will

often be taken to be [X,K(G,n)].

We would like to thank Peter Hilton and Jin-Yen Tai for valuable discussions. We are

grateful to Marek Golasiński for providing us with a copy of [G-K].

2. Basic classes and homology decompositions. We begin with a statement of

the generalized Blakers-Massey Theorem which follows easily from [Hi2, Thm. 1′].

Theorem 2.1. Let A
i−→ Y

p−→ C be a cofibre sequence with A (m–1 )-connected and

C (n–1 )-connected , m,n ≥ 2. If X is a CW-complex of dimension ≤ m+n− 2, then the

following sequence is exact

[X,A]
i∗−→ [X,Y ]

p∗−→ [X,C].

Now let B be an (r − 1)-connected space with Hr(B) = G, for r ≥ 2. Then the

homomorphism of the universal coefficient theorem for cohomology η : Hr(B;G) →
Hom(Hr(B), G) = Hom(G,G) is an isomorphism.

Definition 2.2. The basic class br ∈ Hr(B;G) of B is defined by η(br) = id.

We can regard the basic class as a homotopy class br : B → K(G, r). Then br is an

(r + 1)-equivalence, i.e., on homotopy groups it induces an isomorphism in dimensions

≤ r and an epimorphism in dimension r + 1. Thus by [Sp, Cor. 23, p. 405], if A is a

CW-complex of dimension ≤ r, then br∗ : [A,B]→ [A,K(G, r)] = Hr(A;G) is a bijection.

Thus we have

Proposition 2.3. If B is an (r–1 )-connected space, r ≥ 2 and A is a CW-complex

of dimension ≤ r, then g ∈ [A,B] is trivial if and only if g∗(br) = 0.

We next consider homology decompositions.
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Definition 2.4. Given a 1-connected space X. A homology decomposition of X con-

sists of (i) a sequence of spaces Xn, n ≥ 2 with Hi(Xn) = 0 for i > n and maps

jn : Xn → X such that jn∗ : Hi(Xn) → Hi(X) is an isomorphism for i ≤ n and

(ii) maps kn : M(Hn+1(X), n) → Xn with M(Hn+1(X), n)
kn−→ Xn

in−→ Xn+1 a map-

ping cone sequence (i.e., Xn+1 is the mapping cone of kn with inclusion in). We re-

quire that jn+1in = jn : Xn → X. We refer to the collection of spaces and maps

{Xn; jn, kn, in; n ≥ 2} as the homology decomposition of X. The space Xn is called the

nth homology section of X and the maps kn ∈ πn(Hn+1(X);Xn) the nth dual invariant.

We make several comments about this definition.

(1) For a 1-connected space of the homotopy type of a CW-complex, a homology

decomposition always exists [Hi1, Chaps. 8, 10].

(2) The dual invariant kn induces the trivial homomorphism on homology [Hi1, p. 57].

(3) We can regard Xn as a CW-complex of dimension ≤ n+ 1 [Hi1, p. 57].

(4) If X is an N -dimensional CW-complex, then jN : XN → X is a homotopy

equivalence and we can identify XN with X.

(5) If Hn+1(X) = 0, then M(Hn+1(X), n) =∗. Thus kn= 0, Xn+1 =Xn and in = id.

Note too that X2 = M(H2(X), 2).

We conclude this section by defining basic classes for a homology decomposition. Let

{Xn; jn, kn, in; n ≥ 2} be a homology decomposition of X. Consider

Xr−1
jr−1−→ X

qr−→ Cr,

where Cr is the cofibre of jr−1 and qr is the projection. Then Cr is (r−1)-connected and

Hr(Cr) ≈ Hr(X). Let br ∈ Hr(Cr;Hr(X)) be the basic class of Cr.

Definition 2.5. The element hr = q∗r (br) ∈ Hr(X;Hr(X)) is called the rth basic

class of the homology decomposition {Xn; jn, kn, in; n ≥ 2}.

3. Induced maps. Given two spaces X and X ′ with homology decompositions and a

map f : X → X ′. We consider when f gives rise to induced maps, i.e., compatible maps

of all the spaces of the homology decomposition of X into the corresponding spaces of

the homology decomposition of X ′.

Theorem 3.1. Let X and X ′ have homology decompositions {Xn; jn, kn, in} and

{X ′n; j′n, k
′
n, i
′
n}, respectively , and let f : X → X ′ be a map.

(1) There is a map fn : Xn → X ′n such that j′nfn = fjn if and only if j∗nf
∗(h

′n+1) = 0

in Hn+1(Xn;Hn+1(X ′)), where h
′n+1 is the (n+1 )st basic class of the homology decom-

position {X ′n; j′n, k
′
n, i
′
n}.

(2) Assume that j∗rf
∗(h

′r+1) = 0 for r = n, n + 1. Then there exists fr : Xr → X ′r
such that j′rfr = fjr for r = n, n+ 1 and i′nfn = fn+1in.

(3) Assume that there exists fr : Xr → X ′r for r = n, n+1 such that i′nfn = fn+1in. If

Hn+1(X) is free-abelian or if X ′ is 2-connected , then there exists f̂n : M(Hn+1(X), n)→
M(Hn+1(X ′), n) such that k′nf̂n = fnkn.

P r o o f. (1) If there is an fn : Xn → X ′n with j′nfn = fjn, then j∗nf
∗(h

′n+1) =

f∗nj
′∗
n q
′∗
n+1(b′n+1) = 0 since q′n+1j

′
n = 0. Now suppose that j∗nf

∗(h
′n+1) = 0. Then
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(q′n+1fjn)∗(b
′n+1) = 0. By Proposition 2.3, q′n+1fjn = 0. Now apply Theorem 2.1 to

the cofibration X ′n
j′n−→ X ′

q′n+1−→ C ′n+1 to conclude that

[Xn, X
′
n]

j′n∗−→ [Xn, X
′]
q′n+1∗−→ [Xn, C

′
n+1]

is exact. Since q′n+1∗(fjn) = 0, there exists an fn ∈ [Xn, X
′
n] such that fjn = j′nfn.

(2) By (1), there exists fn+1 : Xn+1 → X ′n+1 such that fjn+1 = j′n+1fn+1. It suffices

to prove that there is an fn : Xn → X ′n such that i′nfn = fn+1in. But this follows imme-

diately from (1) by taking {Xr; in · · · ir, kr, ir; 2 ≤ r ≤ n} and {X ′r; i′n · · · i′r, k′r, i′r; 2 ≤
r ≤ n} as homology decompositions of Xn+1 and X ′n+1, respectively.

(3) For notational convenience we write Hi = Hi(X) and H ′i = Hi(X
′). Here we

consider the cofibre sequence

M(H ′n+1, n)
k′n−→ X ′n

i′n−→ X ′n+1.

If Hn+1 is free-abelian so that dimM(Hn+1, n) ≤ n or if X ′ is 2-connected so that X ′n+1

is 2-connected, then by Theorem 2.1 the following sequence is exact

[M(Hn+1, n),M(H ′n+1, n)]
k′n∗−→ [M(Hn+1, n), X ′n]

i′n∗−→ [M(Hn+1, n), X ′n+1].

But i′n∗(fnkn) = fn+1inkn = 0. Thus there is an f̂n ∈ [M(Hn+1, n),M(H ′n+1, n)] such

that k′nf̂n = fnkn.

Remarks 3.2. (1) Part (1) of Theorem 3.1 was proved in [Cu1], though we have given

a different proof based on Theorem 2.1. It would be interesting to know if (3) holds under

weaker hypotheses. We note that there is considerable freedom in the choice of f̂n in (3),

e.g., if k′n = 0, then any map M(Hn+1, n)→M(H ′n+1, n) can be taken for f̂n.

(2) There are a few cases in which induced maps always exist, i.e., when (1) of The-

orem 3.1 holds. We mention two of these: (i) If X ′ is a rational space, then Hr(X
′)

is a rational vector space for all r. Thus Ext(Hr(Xr), Hr+1(X ′)) = 0 for all r. But

j∗rf
∗(h

′r+1) ∈ Ext(Hr(Xr), Hr+1(X ′)). Hence in this case there are maps fn : Xn → X ′n
which satisfy (1) and (2) of Theorem 3.1 for all n. (ii) If f : X → X is such that f∗ =

id : Hn+1(X;Hn+1(X)) → Hn+1(X;Hn+1(X)), then j∗nf
∗(hn+1) = j∗nq

∗
n+1(bn+1) = 0.

Thus there is an fn : Xn → Xn such that jnfn = fjn.

Next we give a concrete example to show that induced maps do not always exist.

Example 3.3. Let T be a non-trivial finite abelian group and F a non-trivial free-

abelian group of finite rank. Let n ≥ 3, M1 = M(T, n − 1), M2 = M(F, n) and X =

X ′ = M1 ∨M2. Let λs : Ms → X be the inclusions and πr : X → Mr the projections,

r, s = 1, 2. A map f : X → X is completely determined by the 4-tuple (f11, f12, f21, f22),

where frs : Ms →Mr is defined by frs = πrfλs (see for example [A-M, §4]). A homology

decomposition for X is obtained by setting X2 = · · · = Xn−2 = ∗, Xn−1 = M1 and

Xn = X = M1 ∨M2. Then in−1 : Xn−1 → Xn is the inclusion λ1 : M1 → M1 ∨M2.

Suppose that f induces f ′ : M1 →M1 such that λ1f
′ = fλ1. If x ∈M1,

(f ′(x), ∗) = λ1f
′(x) = fλ1(x) = (f11(x), f21(x)).
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Hence f11 = f ′ and f21 = 0. Thus if f : X → X is a map such that f21 6= 0, then

there can be no map f ′ = fn−1 : Xn−1 → Xn−1 such that in−1fn−1 = fin−1. But

f21 ∈ [M1,M2] = πn−1(T ;M(F, n)) ≈ Ext(T, F ) 6= 0 since T and F are non-trivial.

Therefore we can choose f21 6= 0. For example, if T = Zm and F = Z, then f21 can be

taken to be the projection M(Zm, n − 1) → Sn. We then form f = (f11, f12, f21, f22)

which admits no induced map of homology decompositions.

We conclude this section with a number of simple results which are a direct conse-

quence of the existence of induced maps.

It is known that for a fixed n, the homotopy type of the nth homology section of a

homology decomposition of X is not determined by X. More precisely, an example is

given in [B-C, §3] of two spaces X and X ′ with nth homology sections Xn and X ′n such

that X and X ′ have the same homotopy type but Xn and X ′n do not. We next give a

condition which ensures that this does not happen. This generalizes Theorems 3.3 and

3.4 of [B-C].

Proposition 3.4. Let {Xn; jn, kn, in} and {X ′n; j′n, k
′
n, i
′
n} be homology decomposi-

tions of X and X ′ respectively. If f : X → X ′ is a homotopy equivalence and

Ext(Hn(X), Hn+1(X ′)) = 0, then there exists a homotopy equivalence fn : Xn → X ′n
such that fjn = j′nfn. If in addition, Ext(Hn+1(X), Hn+2(X ′)) = 0 and either X ′

is 2-connected or Hn+1(X) is free-abelian, then there exists a homotopy equivalence

f̂n : M(Hn+1(X), n)→M(Hn+1(X ′), n) such that k′nf̂n = fnkn.

P r o o f. Since Hn+1(Xn;Hn+1(X ′)) ≈ Ext(Hn(X), Hn+1(X ′)) = 0, j∗nf
∗(h′n+1) =

0. Thus there exists fn : Xn → X ′n with fjn = j′nfn. It follows that fn induces an

isomorphism of homology, and so is a homotopy equivalence.

Similarly the condition Ext(Hn+1(X), Hn+2(X ′)) = 0 implies the existence of a ho-

motopy equivalence fn+1 : Xn+1 → X ′n+1 such that fn+1in = i′nfn. Also the condition

X ′ is 2-connected or Hn+1(X) is free-abelian implies there exists f̂n : M(Hn+1(X), n)→
M(Hn+1(X ′), n) with k′nf̂n = fnkn. It follows that the diagram

M(Hn+1(X), n)
kn−→ Xn

in−→ Xn+1y f̂n

y fn

y fn+1

M(Hn+1(X ′), n)
k′n−→ X ′n

i′n−→ X ′n+1

commutes. Thus f̂n is a homotopy equivalence.

We next determine, under suitable restrictions, the homotopy types of all (n + 1)st

homology sections with fixed nth homology section. We first introduce some notation.

If A and B are spaces, then define an equivalence relation on the set [A,B] as follows:

if f, g ∈ [A,B], then f is equivalent to g means that there exist homotopy equivalences

a : A→ A and b : B → B such that g = bfa. We let [[A,B]] denote the set of equivalence

classes. We consider the set of homotopy types of mapping cones of maps from a Moore

space to a homology section.

Proposition 3.5. Let B be a space such that Hi(B) = 0 for i > n, n ≥ 2, and

consider the collection of maps f : M(G,m)→ B for a fixed abelian group G and integer
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m ≥ n (if m = n, we require that f∗ = 0 in homology). Then the set of homotopy types of

mapping cones Cf for all such f is in one-one correspondence with the set [[M(G,m), B]]

provided Ext(Hm(B), G) = 0 and either B is 2-connected or G is free-abelian.

P r o o f. We have a homology decomposition of X = Cf with Xm = B, km = f :

M(G,m) → B and Xm+1 = X. Let X ′ = Cg be another such mapping cone with

analogous homology decomposition and assume that Cf and Cg have the same homotopy

type. By Proposition 3.4, there exist homotopy equivalences a : M(G,m) → M(G,m)

and b : B → B such that bf = ga. Thus f is equivalent to g.

Conversely, if f, g : M(G,m) → B are equivalent, then it is easily seen that Cf and

Cg have the same homotopy type.

Corollary 3.6. Let B be a space such that Hi(B) = 0 for i > n and G an abelian

group. Suppose Ext(Hn(B), G)=0 and either B is 2-connected or G is free-abelian. Then

the set of homotopy types of (n+1)st homology sections with nth homology section B and

(n+ 1)st homology group G is in one-one correspondence with the equivalence classes of

homologically trivial maps in [[M(G,n), B]].

Remark 3.7. Corollary 3.6 generalizes Theorem 4.2 of [B-C]. The dual result for

Postnikov sections is true without any restrictions [Ar1, 5.2, p. 197].

4. Co-H-spaces. We first recall the definitions of co-H-space and co-H-map (for more

details, see [Ar2]). If X is a space, then φ : X → X ∨ X is called a comultiplication if

qiφ = id : X → X, where qi : X ∨X → X are the projections, i = 1, 2. The pair (X,φ) is

then called a co-H-space. If (A,ψ) and (X,φ) are co-H-spaces, and f : A→ X is a map,

then f is called a co-H-map if φf = (f ∨ f)ψ. We then write f : (A,ψ)→ (X,φ). If f is

a co-H-map and a homotopy equivalence, we say that f is a co-H-equivalence and that

the co-H-spaces A and X are co-H-equivalent.

The following lemma will be useful.

Lemma 4.1. Given spaces A and X, maps f : A→ X, φ′ : A→ A ∨ A and φ :

X → X ∨X and projections pi : A ∨ A → A, i = 1, 2. Suppose (X,φ) is a co-H-space,

(f ∨ f)φ′ = φf : A → X ∨X and piφ
′ : A → A are homotopy equivalences. Then there

exists a comultiplication ψ : A→ A ∨A such that f : (A,ψ)→ (X,φ) is a co-H-map.

P r o o f. Consider the commutative diagram

A
φ′−→ A ∨A pi−→ Ay f

y f∨f
y f

X
φ−→ X ∨X qi−→ X.

Let ai = piφ
′ : A → A and let ai : A → A be the homotopy inverse of ai. Then

fai = qiφf = f and so f = fai. Now define ψ = (a1 ∨ a2)φ′ : A→ A ∨A. Then

piψ = aipiφ
′ = aiai = id

for i = 1, 2. Thus ψ is a comultiplication of A. Finally,

(f ∨ f)ψ = (fa1 ∨ fa2)φ′ = (f ∨ f)φ′ = φf

and so f : (A,ψ)→ (X,φ) is a co-H-map.
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Next we consider a space X with homology decomposition {Xn; jn, kn, in}. It is clear

that {Xn ∨ Xn; jn ∨ jn, kn ∨ kn, in ∨ in} is a homology decomposition of X ∨ X. We

express the basic classes of this homology decomposition of X ∨X in terms of the basic

classes of the homology decomposition of X. Let q1, q2 : X ∨X→X be projections and

let i1, i2 : X→X ∨X be inclusions. For any space A, denote by ir∗∗ : Hk(A;Hl(X))→
Hk(A;Hl(X ∨ X)), r = 1, 2, the coefficient homomorphism induced by ir∗ : Hl(X) →
Hl(X∨X). Let hn∈Hn(X;Hn(X)) be the nth basic class of the homology decomposition

of X. Then it is straightforward to show that

χn = i1∗∗q
∗
1(hn) + i2∗∗q

∗
2(hn) ∈ Hn(X ∨X;Hn(X ∨X))

is the nth basic class of the homology decomposition of X ∨X.

Now we consider the homology decomposition of a co-H-space.

Theorem 4.2. If (X,φ) is a co-H-space and {Xn; jn, kn, in} a homology decomposi-

tion of X, then there are comultiplications φn : Xn → Xn∨Xn such that jn : (Xn, φn)→
(X,φ) and in : (Xn, φn)→ (Xn+1, φn+1) are co-H-maps. If in addition X is 2-connected

or Hn+1(X) is free-abelian, then kn : (M(Hn+1(X), n), µn) → (Xn, φn) is a co-H-map,

where µn is the canonical comultiplication of the Moore space M(Hn+1(X), n).

P r o o f. We verify (1) of Theorem 3.1 for the map φ and basic class χn+1. We have

j∗nφ
∗(χn+1) = j∗nφ

∗(i1∗∗q
∗
1(hn+1) + i2∗∗q

∗
2(hn+1))

= i1∗∗j
∗
n(q1φ)∗q∗n+1(bn+1) + i2∗∗j

∗
n(q2φ)∗q∗n+1(bn+1)

= i1∗∗j
∗
nq
∗
n+1(bn+1) + i2∗∗j

∗
nq
∗
n+1(bn+1) = 0

since qn+1jn = 0. Thus there exists φ′n : Xn → Xn ∨Xn such that (jn ∨ jn)φ′n = φjn and

(in ∨ in)φ′n = φn+1in. Then with pr : Xn ∨Xn → Xn the projections,

jnprφ
′
n = qr(jn ∨ jn)φ′n = qrφjn = jn.

But jn∗ : Hi(Xn)→ Hi(X) is a monomorphism for all i. Therefore prφ
′
n is a homotopy

equivalence. By Lemma 4.1, there exists a comultiplication φn : Xn → Xn∨Xn such that

(jn ∨ jn)φn = φjn. From the construction of φn in Lemma 4.1, it immediately follows

that (in ∨ in)φn = φn+1in.

Now assume that X is 2-connected or Hn+1(X) is free-abelian and write Mn for

M(Hn+1(X), n). Then there exists φ̂n : Mn →Mn ∨Mn such that (kn ∨ kn)φ̂n = φnkn.

Let ri : Mn ∨ Mn → Mn, pi : Xn ∨ Xn → Xn and qi : Xn+1 ∨ Xn+1 → Xn+1 be

projections and consider the commutative diagram

Mn
kn−→ Xn

in−→ Xn+1y riφ̂n

y piφn

y qiφn+1

Mn
kn−→ Xn

in−→ Xn+1.

Since piφn = id and qiφn+1 = id, it follows that riφ̂n is a homotopy equivalence. By

Lemma 4.1, there exists a comultiplication µn of Mn such that kn : (Mn, µn)→ (Xn, φn)

is a co-H-map. Then µn is the canonical comultiplication of Mn (see Remark 4.4 (2)).

Corollary 4.3. If X is a co-H-space and {Xn; jn, kn, in} is a homology decompo-

sition of X, then there is a comultiplication on each nth homology section Xn such that
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jn : Xn → X and in : Xn → Xn+1 are co-H-maps. If either X is 2–connected or X

has no torsion in its homology , then all dual invariants kn : M(Hn+1(X), n) → Xn are

co-H-maps.

Remarks 4.4. (1) The first assertion of Corollary 4.3 was originally proved in [Cu2,

Lem. 2.3] (see also [B-H1] and [G-K]). Moreover, Berstein and Hilton proved in [B-H1,

§3] the analogous result for spaces of cat≤ n. The second assertion of Corollary 4.3 for

2–connected spaces was proved by Golasiński and Klein in [G-K, Cor. 3] by different

methods.

(2) A Moore space M(G,n) has a unique comultiplication for n ≥ 3. However, the

comultiplications on M(G, 2) are in one-one correspondence with Ext(G,G ⊗ G). Thus

if G is free-abelian, M(G, 2) has a unique comultiplication. For more details on comulti-

plications on Moore spaces, see [A-G].

(3) It would be interesting to know if the second assertion of Corollary 4.3 is true with

a weaker hypothesis or even without any restrictions. In this connection we note that the

first dual invariant of a co-H-space is always a co-H-map. Because this result is limited and

the proof is long, we just state it: Let (X,φ) be a co-H-space, {Xn; jn, kn, in} a homology

decomposition of X and φn : Xn → Xn ∨Xn the induced comultiplication. Then there

exists a comultiplication ψ2 on M(H3(X), 2) such that k2 : (M(H3(X), 2), ψ2)→ (X2, φ2)

is a co-H-map.

We conclude the paper by giving a new proof of a basic result on co-H-spaces which

is due to Berstein and Hilton. We base our proof on Theorem 4.2 and another result of

Berstein and Hilton which we now state.

Theorem B [B-H2, Thm. B]. If A and B are spaces such that dimension A ≤ 3q − 2

and B is (q − 1)-connected , q ≥ 1, then every co-H-map ΣA→ ΣB is a suspension.

The following theorem appears in [B-H2, Thm. A].

Theorem 4.5. If X is a (q − 1)-connected CW-complex of dim≤ 3q − 3, q ≥ 1, and

φ is a comultiplication of X, then (X,φ) is co-H-equivalent to a suspension.

P r o o f. For notational convenience we write Hi for Hi(X). The case q = 1 is trivial

and so we first consider the case q = 2. Then X is a 1-connected complex of dimension

≤ 3. Thus H3 is free-abelian and so by Theorem 4.2, k2 : M(H3, 2)→ X2 = M(H2, 2) is

a co-H-map (this also follows from the result stated in Remark 4.4 (3)). By Theorem B

above, k2 is a suspension, and so X = X3 is co-H-equivalent to a suspension. Now assume

q ≥ 3 so that X is 2-connected. We let {Xn; jn, kn, in} be a homology decomposition

for X with Xq−1 = ∗, Xq = M(Hq, q) and X3q−3 = X. Then by Corollary 4.3, all Xn

are co-H-spaces and all jn, in and kn are co-H-maps. We prove by induction on i that

Xi is a suspension, i = q, . . . , 3q − 3. Clearly this is true for i = q. Now suppose that

Xi = ΣX ′i for some space X ′i and consider ki : ΣM(Hi+1, i − 1) → ΣX ′i. If i < 3q − 4,

then dimM(Hi+1, i − 1) ≤ i ≤ 3q − 5. Now let i = 3q − 4. Then Hi+1 = H3q−3 is

free-abelian, and so dimM(H3q−3, 3q − 5) ≤ 3q − 5. Thus dimM(Hi+1, i − 1) ≤ 3q − 5

for all i ≤ 3q− 4. Therefore we apply Theorem B to conclude that ki is a suspension and

so Xi+1 is co-H-equivalent to a suspension. This completes the induction.
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