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Abstract. The paper is an overview of our results concerning the existence of various struc-
tures, especially complex and quaternionic, in 8-dimensional vector bundles over closed connected
smooth 8-manifolds.

1. Introduction. Let ξ be an oriented n-dimensional vector bundle over a closed

connected smooth manifold M of dimension n. It is well known that ξ is associated with

a principal fiber bundle with the structure group SO(n). Let G be a subgroup of SO(n).

Under a G-structure on ξ we understand a reduction of this principal fiber bundle to the

subgroupG. There are plenty of interesting reductions. The most famous is a reduction to

SO(n− k) which means geometrically the existence of k linearly independent sections in

the vector bundle ξ. Similarly a reduction to SO(k)×SO(n−k) represents the existence

of a k-dimensional subbundle in ξ. Both cases for k≤3 has been treated by many authors

(see for instance [AD], [CS], [Du], [K1], [K2], [T2]).

In this overview we are interested especially in U(4)-structures, which we shall call

complex structures, in Sp(2)-structures and Sp(2) · Sp(1)-structures in dimension n = 8.

1991 Mathematics Subject Classification: 57R22, 57R25, 55R25, 22E99.
Key words and phrases: vector bundle, reduction of the structure group, Cayley numbers,

principle of triality, classifying spaces, characteristic classes, obstructions.
Research supported by the grant 201/96/0310 of the Grant Agency of the Czech Republic.
The paper is in final form and no version of it will be published elsewhere.

[183]
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These structures appear in the tangent bundles of the Kähler, the hyper-Kähler and the

quaternion-Kähler manifolds of dimension 8, respectively.

First, we explain the necessary notions. Sp(k) denotes the group of the quaternionic

linear automorphisms acting from the left on the right quaternionic k-dimensional vector

space Hk preserving the canonical positive definite Hermitian form on it. If we identify

Hk with R4k, Sp(k) can be understood as a subgroup of SO(4k). Sp(k) · Sp(1) is the

group Sp(k)×Sp(1)/{(1, 1), (−1,−1)}. Identifying again Hk with R4k, the following left

action on Hk

(A,α)v = Avᾱ, A ∈ Sp(k), α ∈ Sp(1), v ∈ Hk,

where ᾱ is the quaternionic conjugate to α, induces an inclusion Sp(k) ·Sp(1) ↪→ SO(4k).

The Sp(k) · Sp(1)-structure is sometimes called a quaternionic structure since it is

just the structure which appears in the tangent bundles of the quaternionic projective

spaces.

Notice that the existence of reductions to the subgroups Sp(k) and Sp(k) · Sp(1)

for k = 1 can be easily solved since Sp(1) is isomorphic to SU(2) and Sp(1) · Sp(1) is

isomorphic to Spin(4).

In this paper we shall study the case n = 8, i.e. we shall consider an oriented 8-

dimensional vector bundle ξ over a closed connected smooth manifold M of dimension 8.

The reason for this restriction is twofold. First, in dimension 8 we have at our disposal a

complete classification of 8-dimensional oriented vector bundles over 8-dimensional CW-

complexes in terms of the characteristic classes. (A classification of this type is possible

also in other low dimensions. For further information see [CV1].) Secondly, the group

Spin(8) is the only group among the groups Spin(n), n = 2, 3, . . . which admits outer

automorphisms. This enables us a convenient transformation of our original problems.

The problem of the reduction to a subgroup G = U(k), Sp(k) or Sp(k) ·Sp(1) for greater

n = 2k or 4k is in general topologically difficult. The reason, roughly speaking, is that

the corresponding homogeneous spaces SO(n)/G have nontrivial homotopy groups from

the dimension n/2.

Let us remark here that the problem of existence of a complex structure in the tangent

bundle of a 4-dimensional manifold has been solved by Hirzebruch and Hopf [HH] and in a

6-dimensional vector bundle by C. Ehresmann [E]. Also the existence of a complex struc-

ture in 8-dimensional vector bundles over 8-manifolds has been treated. T. Heaps has

established necessary and sufficient conditions for the existence of such a structure in the

tangent bundles in [He]. E. Thomas in [T1] has solved the general problem of the existence

of a complex structure in an even dimensional oriented vector bundle ξ over an oriented

8-dimensional manifold M constructing the Postnikov tower and using the method of

the generating class for computing obstructions. (See [T2].) His main result contains a

secondary cohomology operation applied on a class which is not easy to find. He has suc-

ceeded in computing the secondary operation only in the special case when the oriented

closed manifold M satisfies δw2(M) = 0 and the bundle satisfies δw2(ξ) = 0 and w4(ξ) =

w4(M). In our paper we assume that the oriented closed 8-dimensional manifold M satis-

fies w2(M) = 0 and that w2(ξ)=0. Our necessary and sufficient conditions in this case are

only in terms of the cohomology ring of M without any secondary cohomology operation.
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Also our method of proof is different. We will show that in the dimension 8 the

existence of a U(4)-structure, an Sp(2)-structure and an Sp(2) · Sp(1)-structure can be

reduced to the problems of existence of a 2-dimensional subbundle, 3 linearly independent

sections and a 3-dimensional subbundle in a certain other 8-dimensional vector bundle,

respectively.

To prove the reduction theorem we exploit the Cayley numbers, the principle of

triality and the triality automorphism of Spin(8). We use the triality to describe the

isomorphisms between the double covering of U(4) and Spin(6) ·Spin(2), between Sp(2)

and Spin(5), and between Sp(2) · Sp(1) and Spin(5) · Spin(3). All this is carried out in

Section 2.

In Section 3 we present results about the existence of linearly independent sections (or

in other words about the existence of a k-field) and various subbundles in an 8-dimensional

oriented vector bundle ξ. For the existence of a 2-dimensional subbundle and 3 linearly

indpendent sections we have applied the results of M. C. Crabb and B. Steer [CS] de-

rived using index theory. The most difficult problem was the existence of a 3-dimensional

subbundle. Here it was necessary to describe the characteristic classes of 3-dimensional

vector bundles over an 8-dimensional manifold. We have succeeded only under the as-

sumption that the 3-dimensional vector bundle is a spin bundle. Then we were able to

prove a theorem about the existence of a 3-dimensional subbundle of an 8-dimensional

vector bundle. Explicit computations of secondary and tertiary cohomology operations

play very important role here. They are based on the characterization of oriented 8-

dimensional vector bundles over 8-dimensional CW-complexes and on the comparison of

two different approaches to the question of the existence of 3-fields.

The previous results are applied to obtain necessary and sufficient conditions for the

existence of a U(4)-structure and an Sp(2)-structure in oriented 8-dimensional spin vector

bundles in Section 4. In the last section we will establish nontrivial sufficient conditions

for 8-dimensional vector bundles to have an Sp(2) ·Sp(1)- structure. In both sections the

results are demonstrated on examples.

2. The action of U(4), Sp(2) and Sp(2) · Sp(1) on the Cayley numbers. The

letters Z, R, C, H and O will denote the integers, the real numbers, the complex numbers,

the quaternions and the Cayley numbers, respectively.

Let π : Spin(8) → SO(8) be the standard double covering. Since Sp(2) is simply

connected, there is a monomorphism Sp(2) ↪→ Spin(8) covering the standard inclusion

Sp(2) ↪→ SO(8):

Spin(8)

Sp(2) SO(8)

π

���
z
v
v
v
v
v
v
v

::

�
o //

The action of Sp(2) × Sp(1) described in Section 1 determines a homomorphism

Sp(2)×Sp(1)→ SO(8) with kernel {(1, 1), (−1,−1)}, whence an inclusion Sp(2)·Sp(1) ↪→
SO(8). The former homomorphism induces also a homomorphism Sp(2) × Sp(1) →
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Spin(8). The kernel of this homomorphism is again {(1, 1), (−1,−1)}. That is why there

is an inclusion Sp(2) · Sp(1) ↪→ Spin(8) such that the diagram

Spin(8)

Sp(2) · Sp(1) SO(8)

π

���
x
q
q
q
q
q
q
q
q
q
88

�
o //

commutes.

We denote by Ũ(4) = π−1U(4) the inverse image of the subgroup U(4) ⊂ SO(8).

Because the Lie group U(4) is connected we can see that the Lie group Ũ(4) has either

one or two components. It is easy to find a curve lying in Ũ(4) and joining the elements

1 and −1. This shows that the group Ũ(4) is connected and we get the commutative

diagram

Ũ(4) Spin(8)

U(4) SO(8)

π

��

�
o //

π

��
�
o //

Now we convert the Cayley numbers into a right quaternionic vector space. Although

H is a subalgebra of O, the usual multiplication is not a right action. We define a new

multiplication denoted by the dot · : O×H→ O in the following way

x · 1 = x, x · i = xi, x · j = xj, x · k = (xi)j,

where x ∈ O and xy stands for the usual multiplication in O. This multiplication con-

verts O into a right H-vector space with the basis 1 and e. (The basis of O over R is

1, i, j, k, e, f, g, h, the usual multiplication is given in the same way as in [Po].) Since the

old and the new multiplication by i and j from the right are the same, we will omit the

dot · when multiplying by these elements from the right.

This multiplication enables us to describe the Lie algebras corresponding to the groups

Ũ(4), Sp(1), Sp(2), Spin(2), Spin(3), Spin(5) and Spin(6) in the following way:

u(4) = {a ∈ so(8) : a(xi) = a(x)i for every x ∈ O},
sp(1) = {a ∈ so(8) : there is α ∈ H, ᾱ = −α, a(x) = x · ᾱ},
sp(2) = {a ∈ so(8) : a(xi) = a(x)i, a(xj) = a(x)j for every x ∈ O},
so(2) = {c ∈ so(8) : c(j) = c(k) = c(e) = c(f) = c(g) = c(h) = 0},
so(3) = {c ∈ so(8) : c(k) = c(e) = c(f) = c(g) = c(h) = 0},
so(5) = {c ∈ so(8) : c(1) = c(i) = c(j) = 0},
so(6) = {c ∈ so(8) : c(1) = c(i) = 0}.

According to [Fr] (see also [Br]) there are outer automorphisms λ and κ of so(8) such

that the principle of triality holds. For every x, y ∈ O and every a ∈ so(8) we have

a(xy) = b(x)y + xc(y)
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where

b = (λκ)(a), c = (κλ)(a).

The automorphisms λ and κ are described in detail in [Fr] and [Bra]. For the moment we

need only the following properties

λ3 = id, κ2 = id, κλκ = λ2, λ 6= id .

Let us define Spin(6) · Spin(2) = Spin(6)× Spin(2)/{(1, 1), (−1,−1)} and Spin(5) ·
Spin(3)=Spin(5)×Spin(3)/{(1, 1), (−1,−1)}. It is not difficult to prove (see [CV3] and

[CV5]):

Lemma 2.1. The automorphism κλ maps the Lie algebras u(4), sp(2), sp(2)⊕sp(1) on

the Lie algebras so(2)⊕ so(6), so(5) and so(3)⊕ so(5), respectively. Taking this automor-

phism on the level of the Lie group Spin(8), its appropriate restrictions give isomorphisms

between Û(4) and Spin(6) ·Spin(2), between Sp(2) and Spin(5) and between Sp(2) ·Sp(1)

and Spin(5) · Spin(3).

Since the G-structures with G equal to Spin(6)·Spin(2), Spin(5) and Spin(5)·Spin(3)

describe the existence of 2-dimensional subbundles, 3 linearly independent sections and

3-dimensional subbundles in 8-dimensional spin vector bundles, respectively, we obtain

immediately

Theorem 2.2 (see [CV3] and [CV5]). Let X be a CW-complex and let ξ be an oriented

8-dimensional vector bundle over X. Then ξ has an Sp(2)-structure if and only if it has

a spinor structure ξ̄ and the vector bundle π∗(κλ)∗(ξ̄) has 3 linearly independent sections.

ξ has an Sp(2) · Sp(1)-structure if and only if it has a spinor structure ξ̄ and the vector

bundle π∗(κλ)∗(ξ̄) has an oriented 3-dimensional subbundle.

Finally , suppose that ξ has a spinor structure ξ̄. Then ξ has a U(4)-structure if and

only if the vector bundle π∗(κλ)∗(ξ̄) has an oriented 2-dimensional subbundle.

3. Existence of sections and subbundles. Before we can formulate the existence

results we must introduce the necessary notions. We will denote ws(ζ) the s-th Stiefel–

Whitney class of the vector bundle ζ, ps(ζ) the s-th Pontrjagin class, and e(ζ) the Euler

class. If M is a manifold, the notation ws(M), ps(M) and e(M) will stand for the

characteristic classes of the tangent bundle of M . We will also use the Steenrod operations

Sqi : Hn(X;Z2)→ Hn+i(X;Z2) and P i3 : Hn(X;Z3)→ Hn+4i(X;Z3).

Under ”spin vector bundles” we understand vector bundles which admit a spin struc-

ture, i.e. vector bundles ζ satisfying w1(ζ) = w2(ζ) = 0. Similarly, a smooth manifold M

with w1(M) = w2(M) = 0 will be called a spin manifold. Our theorems will be formu-

lated for spin vector bundles and this is the reason why (following [T3] and [Q]) we shall

introduce further characteristic classes

q1(ζ) ∈ H4(M ;Z), q2(ζ) ∈ H8(M ;Z), and ε(ζ) ∈ H8(M ;Z2)

sometimes called spin characteristic classes of a spin vector bundle ζ over M . We get them

often by a mere algebraic manipulation with the Pontrjagin classes (which of course would

not be possible if the bundle ζ were not a spin bundle). Since the base M of the vector

bundle ζ is an oriented 8-dimensional closed connected manifold, the spin characteristic
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classes q1(ζ), q2(ζ) and ε(ζ) can be defined uniquely (see [CV2]) and under the additional

assumption that H4(M ;Z) has no element of order 4 they are uniquely determined by

the equations

p1(ζ) = 2q1(ζ), ρ2q1(ζ) = w4(ζ),

p2(ζ) = q21(ζ) + 2e(ζ) + 4q2(ζ), ε(ζ) = ρ2q2(ζ),

where ρ2 denotes the reduction mod 2. (The introduction of these classes is a little more

complicated if the base of the vector bundle ζ is a CW-complex. See [T3] and [CV2].)

The letters q1, q2, e and ws will be used for the characteristic classes of the universal

8-dimensional spin vector bundle over the classifying space BSpin(8). Finally, let us

recall that every 3-dimensional spin vector bundle η over a CW-complex X has the first

Pontrjagin class of the form

p1(η) = 4a

for some a ∈ H4(X;Z). It is easily seen from the relation

(2) ρ4p1(ζ) = Pw2(ζ) + i∗w4(ζ)

where ρ4 is reduction mod 4, P : H2k(X;Z2)→ H4k(X;Z4) is the Pontrjagin square and

i : Z2 → Z4 is a monomorphism.

First, we state the theorem on the existence of 2-dimensional subbundles which is the

application of Theorem 0.4 from [CS] to dimension 8. See also [CV2].

Theorem 3.1. Let M be a closed connected smooth spin manifold of dimension 8

and let ζ be an 8-dimensional spin vector bundle over M . Then in ζ there exists a 2-

dimensional subbundle whose Euler class is u if and only if there is v ∈ H6(M ;Z) such

that

(i) ρ2v = w6(ζ) + w4(ζ)ρ2u+ ρ2u
3 and uv = e(ζ),

(ii) {q1(M)q1(ζ)− q21(ζ)− 2q2(ζ)}[M ] ≡ 0 mod 4.

Remark 3.2. In terms of the Pontrjagin classes and the Euler class, the latter condi-

tion can be expressed

{2p1(M)p1(ζ)− p21(ζ)− 4p2(ζ) + 8e(ζ)}[M ] ≡ 0 mod 32.

In order to establish the existence of an Sp(2)-structure, we shall need a result on

the existence of 3 linearly independent sections. Applying Theorem 0.4 from [CS] to the

dimension 8 we get

Theorem 3.3 ([CV3], Corollary 5.3). Let ζ be an 8-dimensional spin vector bundle

over a closed connected smooth spin manifold M of the same dimension. Then ζ has three

linearly independent sections if and only if

(1) w6(ζ) = 0,

(2) e(ζ) = 0,

(3) {q1(M)q1(ζ)− q21(ζ)− 2q2(ζ)}[M ] ≡ 0 mod 8.

Further applications of [CS] and [Du] provide necessary and sufficient conditions for

a given 3-dimensional spin vector bundle η to be a subbundle of a given 8-dimensional

spin vector bundle ζ over a closed connected spin manifold M .
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To solve the problem of the existence of Sp(2) ·Sp(1)-structures we would need to an-

swer the question whether a given 8-dimensional spin vector bundle has a 3-dimensional

(not necessarily spin) subbundle. However, we are not able to describe the characteristic

classes of all 3-dimensional vector bundles over a given manifold M of dimension 8. In

Theorem 3.4 we describe only the cohomology classes which can appear as characteristic

classes of a 3-dimensional spin vector bundle. Consequently, we are not able to answer

the question above in full generality. In Theorem 3.6 we get only necessary and suffi-

cient conditions for a given 8-dimensional vector bundle to have a 3-dimensional spin

subbundle.

Before we state these results, we shall introduce higher order cohomology operations

which appear in Theorem 3.4.

Let X be an 8-dimensional CW-complex. On H4(X;Z) we have

Sq2 ◦ Sq2ρ2 = 0.

We denote by Σ the secondary operation associated with this relation. Σ is defined on

the subgroup

Def(Σ, X) = {x ∈ H4(X;Z);Sq2ρ2x = 0}

and has values in the factor group of H7(X;Z2) by the subgroup

Indet(Σ, X) = Sq2H5(X;Z2),

and we again consider the values of Σ as the corresponding cosets.

Let Φ be the tertiary cohomology operation associated with the relation

i∗Sq
2 ◦ Σ = 0

in dimension 4, and uniquely determined by the properties

Φ(r) = 0 and Φ(2r) = −ρ4r2

where r ∈ H4(BSpin(3);Z) and 4r is the first Pontrjagin class of the universal 3-dimen-

sional spin vector bundle over BSpin(3). The operation Φ is defined on Def(Φ, X) = {x ∈
H4(X;Z); Sq2ρ2x = 0,Σ(x) 3 0} and its indeterminacy is given by a certain secondary

cohomology operation. More details can be found in [CV4].

Using the Postnikov–Moore decomposition and the operations above we obtain the

following description of characteristic classes of 3-dimensional spin vector bundles over

8-complexes.

Theorem 3.4 ([CV4], Theorem 3.10). Let X be an 8-dimensional CW-complex , and

let a ∈ H4(X;Z). Then there exists a 3-dimensional spin vector bundle η over X with

p1(η) = 4a if and only if the following conditions are satisfied :

(i) Sq2ρ2a = 0,

(ii) 0 ∈ Σ(a),

(iii) P 1
3 ρ3a+ ρ3a

2 = 0,

(iv) 0 ∈ Φ(a).

The operations Σ and Φ can be computed on closed spin manifolds in a similar way

as Ω. (See [CV4], Section 5.)
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Theorem 3.5. Let M be a closed connected smooth spin manifold of dimension 8.

Then

Σ(z) = Sq2H5(M ;Z2)

for every z ∈ Def(Σ,M), Indet(Φ,M) = 0 and

Φ(z) = ρ4
1

2
{zq1(M)− z2}.

for every z ∈ Def(Φ,M).

This assertion implies that 0 ∈ Σ(z).

The Postnikov–Moore decomposition and the previous results give

Theorem 3.6 ([CV4], Theorem 6.1). Let ζ be an 8-dimensional spin vector bundle

over a closed connected smooth spin 8-manifold M and let R ∈ H4(M ;Z). Then ζ has

an oriented 3-dimensional spin subbundle η with p1(η) = 4R if and only if

(i) Sq2ρ2R = 0,

(ii) P 1
3 ρ3R+ ρ3R

2 = 0,

(iii) {Rq1(M)−R2}[M ] ≡ 0 mod 8,

(iv) w6(ζ) = 0,

(v) e(ζ) = 0,

(vi) {q21(ζ)− q1(M)q1(ζ) + 2q2(ζ) + 2R2 + 2Rq1(ζ) + 2Rq1(M)}[M ] ≡ 0 mod 8.

Theorem 3.1, Theorem 3.3 and Theorem 3.6 will be used directly in the next sections

when we will treat U(4), Sp(2) and Sp(2) · Sp(1)-structures. However, the methods

developed for the derivation of the results above can be applied to the problem of existence

of 4 linearly independent sections and 4-dimensional subbundles in 8-dimensional spin

vector bundles over 8-dimensional closed spin manifolds.

Theorem 3.7 ([CV6], Corollary 4.2). Let ζ be an 8-dimensional spin vector bundle

over a closed connected smooth spin 8-manifold M . Then ζ has 4 linearly independent

sections if and only if there is S ∈ H4(M ;Z) and the following conditions are satisfied :

(1) w6(ζ) = 0, Sq2ρ2S = 0,

(2) e(ζ) = 0,

(3) 4p2(ζ)− p21(ζ) = 16S2 − 8p1(ζ)S,

(4) {2p1(M)p1(ζ)− p21(ζ)− 4p2(ζ)}[M ] ≡ 0 mod 64,

(5) {p1(M)S − 2S2}[M ] ≡ 0 mod 16,

(6) P 1
3 ρ3S + ρ3S

2 = 0.

Theorem 3.8 ([CV6], Theorem 4.4). Let M be a closed connected smooth spin man-

ifold of dimension 8 such that H4(M ;Z) has no element of order 4. Let ζ be an 8-

dimensional spin vector bundle over M . Then ζ is the sum of two 4-dimensional spin

vector bundles if and only if there are S1, S2, Q1, Q2 ∈ H4(M ;Z) and the following

conditions are satisfied for n = 1, 2:

(1) p1(ζ) = 2(Q1 +Q2),

(2) e(ζ) = (2S1 −Q1)(2S2 −Q2),

(3) p2(ζ) = (2S1 −Q1)2 + (2S2 −Q2)2 + 4Q1Q2,
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(4) Sq2ρ2Qn = Sq2ρ2Sn = 0,

(5) {Snp1(M)− 2S2
n}[M ] ≡ 0 mod 16,

(6) {4S2
n − 4QnSn}[M ] ≡ {Qnp1(M)− 2Q2

n}[M ] mod 16,

(7) P 1
3 ρ3Qn + ρ3Q

2
n = ρ3(S2

n −QnSn),

(8) P 1
3 ρ3Sn + ρ3S

2
n = 0.

For proofs, further consequences and applications we refer the reader to the paper

[CV6].

4. Existence of U(4) and Sp(2)-structures. In this section we will apply Theorem

2.2 and the results from the previous section to obtain necessary and sufficient conditions

for the existence of a U(4)-structure and an Sp(2)-structure in an oriented 8-dimensional

spin vector bundle ξ over an 8-manifold.

First we need to compute the characteristic classes of the vector bundle π∗(κλ)∗ξ̄

from the characteristic classes of ξ. Denote the selfmaps of the classifying space BSpin(8)

induced by the automorphisms κ and λ of Spin(8) by the same letters.

Lemma 4.1. For κ : BSpin(8)→ BSpin(8) and λ : BSpin(8)→ BSpin(8) we have

κ∗(q1) = q1,

κ∗(q2) = q2 + e,

κ∗(e) = −e,

λ∗(q1) = q1,

λ∗(q2) = −e− q2,
λ∗(e) = q2.

The proof is based on the fact that characteristic classes can be expressed as polyno-

mials in a dual basis of the Cartan subalgebra of so(8) (see [BH]) and on the way how κ

and λ act on simple roots. For details see [GG] or [CV3].

Theorem 4.2. Let ξ be an 8-dimensional spin vector bundle over a closed connected

smooth spin manifold M of dimension 8. Then in ξ there exists a complex vector bundle

structure if and only if there are u ∈ H2(M ;Z) and v ∈ H6(M ;Z) such that

(i) ρ2v = w6(ξ) + w4(ξ)ρ2u+ ρ2u
3 and 16uv = −4p2(ξ) + p21(ξ) + 8e(ξ),

(ii) {p21(ξ)− p1(ξ)p1(M) + 8e(ξ)}[M ] ≡ 0 mod 16.

P r o o f. Let us choose ξ̄ ∈ [M,BSpin(8)] such that π∗ξ̄ = ξ ∈ [M,BSO(8)], and

consider the bundle ζ = π∗(κλ)∗ξ̄ ∈ [M,BSO(8)]. According to Theorem 2.2, the vector

bundle ξ has a U(4)-structure if and only if the vector bundle ζ has an oriented 2-

dimensional subbundle.

By virtue of Lemma 4.1 we have λ∗κ∗(q1) = q1, which implies λ∗κ∗(w4) = λ∗κ∗ρ2(q1)

= ρ2(q1) = w4. Further, λ∗κ∗(w6) = λ∗κ∗Sq2(w4) = Sq2(w4) = w6. Consequently, we

get

q1(ζ) = q1(ξ), w4(ζ) = w4(ξ), w6(ζ) = w6(ξ).

Similarly, we have λ∗κ∗(q2) = −e and λ∗κ∗(e) = −q2, which implies

q2(ζ) = −e(ξ), e(ζ) = −q2(ξ).

Expressing the characteristic classes of ζ in the conditions (i) and (ii) of Theorem 3.1

in terms of the characteristic classes of ξ, we obtain the two conditions of the theorem.

We can also see that the proof does not depend on the choice of the spin structure ξ̄.
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In [T1] explicit necessary and sufficient conditions for the existence of a complex

structure are given only for 8-dimensional vector bundles ξ satisfying the conditions

δw2(ξ) = 0, w4(ξ) = w4(M).

In [CV1] we have classified oriented 8-dimensional vector bundles over CW-complexes

of the same dimension (which satisfy some mild conditions on cohomology) in terms of

characteristic classes. Now Theorem 4.2 enables us to decide which of these vector bundles

over spin manifolds with w2 = 0 have a complex structure. We will show it on the example

of G4,2(C).

Example 4.3. We shall consider the complex Grassmann manifold G4,2(C). Let us

recall that H∗(G4,2(C);Z) ∼= Z[x1, x2]/(x31−2x1x2, x
2
2−x21x2). The isomorphism is given

by x1 7→ c1, x2 7→ c2, where c1 and c2 are the Chern classes of the canonical complex

vector bundle γ2 over G4,2(C). A standard computation shows that

c1(M) = 4c1, c2(M) = 7c21, c3(M) = 12c1c2, c4(M) = 6c21c2,

p1(M) = 2c21, p2(M) = 14c21c2, e(M) = 6c21c2,

where M = G4,2(C). We can immediately see that G4,2(C) is a spin manifold.

Let ξ be a spin vector bundle over G4,2(C) (i.e. w2(ξ) = 0). According to [CV1] ξ is

uniquely determined by the following characteristic classes

p1(ξ) = 2ac21 + 2bc2, p2(ξ) = Cc21c2, e(ξ) = Dc21c2.

Further, let us write

u = kc1 ∈ H2(G4,2(C);Z), v = lc1c2 ∈ H6(G4,2(C);Z).

Easy computation shows that the conditions (i) and (ii) of Theorem 4.2 have the form

(i) l ≡ (k + 1)b mod 2, 4kl = −C + 2a2 + 2ab+ b2 + 2D,

(ii) 2a2 + 2ab+ b2 − 2a− b− 2D ≡ 0 mod 4.

After some simplification of (i) we can conclude that on a vector bundle ξ over G4,2(C)

there exists a complex vector bundle structure if and only if

8|(−C + 2a2 + 2ab+ b2 + 2D),(4.4)

2a2 + 2ab+ b2 − 2a− b− 2D ≡ 0 mod 4.(4.5)

This example also enables us to test our theorem. Taking ξ = T (G4,2(C)), the tangent

bundle of G4,2(C), we can easily find that the conditions of Theorem 4.2 are satisfied.

This corresponds to the fact that G4,2(C) is a complex manifold.

The main result concerning the existence of an Sp(2)-structure is the following:

Theorem 4.6. Let ξ be an oriented 8-dimensional vector bundle over a closed con-

nected smooth spin manifold M of the same dimension. Then ξ has an Sp(2)-structure

if and only if

(1) w2(ξ) = w6(ξ) = 0,

(2) {4p2(ξ)− p21(ξ)− 8e(ξ)}[M ] = 0,

(3) {p1(M)p1(ξ)− p21(ξ) + 8e(ξ)}[M ] ≡ 0 mod 32.
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P r o o f. According to Theorem 2.2 a vector bundle ξ has an Sp(2)-structure if and

only if it has a spinor structure ξ̄ and the vector bundle ζ = π∗(κλ)∗(ξ̄) has three linearly

independent sections. The characteristic classes of ζ have been computed in the proof of

Theorem 4.2. So we can apply directly Theorem 3.3. Hence using the definitions of q1
and q2, the conditions of Theorem 3.3 for ζ read as conditions (1) – (3) of this Theorem

for ξ.

As a consequence for the tangent bundles we get

Corollary 4.7. A closed connected smooth manifold M of dimension 8 has an Sp(2)-

structure if and only if

(i) w2(M) = w6(M) = 0,

(ii) {4p2(M)− p21(M)− 8e(M)}[M ] = 0,

(iii) e(M)[M ] ≡ 0 mod 4.

Since Sp(2) ↪→ U(4) there is a natural question when a complex structure can be

reduced to an Sp(2)-structure. This is the answer.

Corollary 4.8. Let ξ be a complex vector bundle of complex dimension 4 over a closed

connected complex spin manifold M of the same dimension. Then ξ has Sp(2)-structure

with given underlying complex structure if and only if

(i) c1(ξ) = c3(ξ) = 0,

(ii) {2c2(M)c2(ξ)− 2c22(ξ)− c21(M)c2(ξ) + 4c4(ξ)}[M ] ≡ 0 mod 16.

The proof is not an immediate consequence of Theorem 4.6 and needs some extra

effort. See [CV3], Corollary 5.6.

Example 4.9. We will proceed with Example 4.3 and determine which 8-dimensional

spin vector bundles over G4,2(C) have an Sp(2)-structure. Consider again a vector bundle

ξ the characteristic classes of which are described in the same way as in Example 4.3.

Moreover, we have

w6(ξ) = Sq2ρ2(ac21 + bc2) = ρ2bc1c2.

Hence, according to Theorem 4.6, necessary and sufficient conditions for the existence of

an Sp(2)-structure in ξ are

b ≡ 0 mod 2,(4.10)

C = 2a2 + 2ab+ b2 + 2D,(4.11)

2a2 + 2ab+ b2 − 2a− b− 2D ≡ 0 mod 8.(4.12)

Notice that (4.11) and (4.12) imply conditions (4.4) and (4.5) for the existence of a

complex structure. Testing the tangent bundle of G4,2(C), we verify immediately that it

satisfies (4.10) and (4.11) but not (4.12). So G4,2(C) does not admit an Sp(2)-structure.

Further examples will be examined in the next section jointly with examples of Sp(2) ·
Sp(1)-structures.

5. Existence of Sp(2) ·Sp(1)-structure. Dealing with Sp(2) ·Sp(1)-structures, the

starting point of our considerations is again Theorem 2.2 which converts the problem of
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the existence of an Sp(2) · Sp(1)-structure in a vector bundle ξ to the problem of the

existence of a 3-dimensional subbundle in the vector bundle ζ = π∗(κλ)∗ξ̄. However, the

situation here is more difficult than in the cases of U(4) and Sp(2)-structures.

The difficulties consist in the fact that we are not able to answer the question whether

a given 8-dimensional spin vector bundle over M has a 3-dimensional oriented subbundle,

we know only whether it has a 3-dimensional spin subbundle (Theorem 3.6).

This is the reason why our conditions for manifolds with H2(M ;Z2) 6= 0 are only

sufficient ones.

Theorem 5.1. Let ξ be an oriented 8-dimensional vector bundle over a closed con-

nected smooth spin manifold M . If there is R ∈ H4(M ;Z) such that the conditions

(1) Sq2ρ2R = 0,

(2) {Rp1(M)− 2R2}[M ] ≡ 0 mod 16,

(3) w2(ξ) = 0,

(4) w6(ξ) = 0,

(5) 4p2(ξ)− p21(ξ)− 8e(ξ) = 0,

(6) {p21(ξ)− p1(M)p1(ξ)− 8e(ξ) + 8R2 + 4Rp1(ξ) + 4Rp1(M)}[M ] ≡ 0 mod 32

are satisfied , then the structure group of ξ can be reduced to Sp(2) · Sp(1).

If H2(M ;Z2) = 0, then all the previous conditions are also necessary. The conditions

(3 ) and (5 ) are necessary even if H2(M ;Z2) 6= 0.

P r o o f. Using Theorem 2.2 and Lemma 4.1, it is sufficient to prove that the conditions

of this Theorem for a vector bundle ξ imply that ξ has a spinor structure ξ̄ and that the

conditions in Theorem 3.6 for the vector bundle ζ = π∗(κλ)∗ξ̄ are satisfied for some R̄.

The condition (i) is the same as (1). (iii) is equivalent to (2). Since q1(ζ) = q1(ξ), (iv)

is equivalent to (4). (5) means q2(ξ) = 0, which reads as (v) of Theorem 3.6. Rewriting

(6) in terms of ζ, we get (vi).

It remains the condition (ii) of Theorem 3.6. It need not be satisfied for a given R

but it is certainly satisfied for R̄ = −15R. Moreover, if R satisfies the conditions (i), (iii)

and (vi) of Theorem 3.6, then R̄ satisfies them as well since

−15 ≡ (−15)2 ≡ 1 mod 16.

This completes the proof.

In the case when the tangent bundle of a manifold admits an Sp(2) · Sp(1)-structure,

we speak about an almost quaternionic structure. The application of Theorem 5.1 to the

tangent bundles yields

Corollary 5.2. Let M be an oriented closed connected smooth manifold of dimension

8. If

(a) w2(M) = 0,

(b) w6(M) = 0,

(c) 4p2(M)− p21(M)− 8e(M) = 0,

and there is R ∈ H4(M ;Z) such that

(d) Sq2ρ2R = 0,
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(e) {Rp1(M)− 2R2}[M ] ≡ 0 mod 16,

(f) {R2 +Rp1(M)− e(M)}[M ] ≡ 0 mod 4,

then M has an almost quaternionic structure. Conditions (a) and (c) are always necessary

for the existence of this structure while the remaining ones are necessary if H2(M ;Z2)

= 0.

We can give also nontrivial sufficient conditions for the existence of an almost quater-

nionic structure only in terms of characteristic classes without any reference to an element

R ∈ H4(M ;Z).

Corollary 5.3. Let M be an oriented closed connected smooth manifold of dimension

8. If

(A) w2(M) = 0,

(B) w6(M) = 0,

(C) 4p2(M)− p21(M)− 8e(M) = 0,

(D) {kp21(M) + 4e(M)}[M ] ≡ 0 mod 16, for k = 0 or 1,

then M has an almost quaternionic structure.

P r o o f. It is sufficient to show that the assumptions of Corollary 5.3 imply the as-

sumptions of Corollary 5.2 for R = 0 or R = q1(M).

Notice that if the assumptions of Corollary 5.3 are satisfied with k = 0 then, according

to Corollary 4.7, the manifold M admits even an Sp(2)-structure.

Example 5.4. We return to the complex Grassmann manifold G4,2(C). It is known

to be a quaternion-Kähler manifold, so it must have an almost quaternionic structure. It

is easy to verify that the conditions of Corollary 5.3 are satisfied.

Further, let us consider again an arbitrary 8-dimensional spin vector bundle ξ over

G4,2(C) with the characteristic classes described in Example 4.3. An arbitrary element

R ∈ H4(G4,2(C);Z) has a form

R = Ac21 +Bc2.

Condition (3) of Theorem 5.1 is satisfied, the other conditions (after minor simplification)

read successively as

B ≡ 0 mod 2,

2aA+ bA+ aB + bB − 2A2 − 2AB −B2 ≡ 0 mod 8,

b ≡ 0 mod 2,

C = 2a2 + 2ab+ b2 + 2D,

2a2 + 2ab+ b2 − 2a− b− 2D + 4aA+ 2bA+ 2aB + 2B ≡ 0 mod 8.

The investigation of these conditions leads to the following result: An 8-dimensional spin

vector bundle ξ over G4,2(C) admits an Sp(2) ·Sp(1)-structure if and only if the following

conditions are satisfied:

(1) C = 2a2 + 2ab+ b2 + 2D,

(2) 2|D and 4|b,
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(3) if a ≡ 1 mod 4 then b+ 2D ≡ 4 mod 8,

(4) if a ≡ 2 mod 4 or a ≡ 3 mod 4 then b+ 2D ≡ 0 mod 8.

Example 5.5. The quaternionic projective space HP 2 is also a quaternion-Kähler

manifold. We will show that all the assumptions of Corollary 5.3 are satisfied. It can be

seen from the following characteristic classes computed in [BH]:

p1(HP 2) = 2u, p2(HP 2) = 7u2, e(HP 2) = 3u2

where u ∈ H4(HP 2;Z) and H∗(HP 2;Z) = Z[u]/〈u3〉. On the other hand, it does not

admit an Sp(2)-structure, since (iii) of Corollary 4.7 is not satisfied. (It has not even

almost complex structure, see [Hi].)

Example 5.6. G2/SO(4) is the third 8-dimensional homogeneous space which is a

quaternion-Kähler manifold. So it has an almost quaternionic structure. But in [BH] it

is proved that w6(G2/SO(4)) 6= 0, which shows that the condition (b) in Corollary 5.2

is not necessary. According to Corollary 4.7, the same condition causes that G2/SO(4)

does not admit an Sp(2)-structure.

Example 5.7. Complex 4-dimensional projective surfaces

Vd = {(z0, z1, . . . , z5) ∈ CP 5; zd0 + zd1 + . . .+ zd5 = 0}
considered as closed oriented smooth manifolds of real dimension 8 do not carry an

Sp(2)-structure. The equation

{4p2(Vd)− p21(Vd)− 8e(Vd)}[Vd] = d(d− 2)(d− 6)(−5d2 + 8d− 8) = 0

(condition (ii) in Corollary 4.7) has in positive integers the only solutions d = 2 and

d = 6. But for both these d

e(Vd)[Vd] ≡ 2 mod 4.

As for almost quaternionic structures, Vd satisfies the necessary condition (C) of

Corollary 5.3 given by the equation above only if d = 2, 6. Since V2 = G4,2(C), we will

deal only with d = 6. We get

p1(V6) = −30c2, p2(V6) = 1095c4, e(V6) = 435c4, c1(V6) = 0, c3(V6) = −70c3,

where c ∈ H2(V6;Z) and c4[V6] = 6. Hence all the assumptions of Corollary 5.3 are

satisfied and V6 has an almost quaternionic structure.
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