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Abstract. It is proved that a closed r-form ω on a manifold M defines a cohomology (called
ω-coeffective) on M . A general algebraic machinery is developed to extract some topological
information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms,
fundamental 2-forms on almost contact manifolds, fundamental 3-forms on G2-manifolds and
fundamental 4-forms in quaternionic manifolds are discussed.

1. Introduction. As is well-known the existence of a particular geometric structure

on a manifold M imposes often some topological properties on it. For instance, if ω is

a symplectic form on a compact manifold M , then M has to be even dimensional, and

in addition its even Betti numbers do not vanish. Moreover, a symplectic form defines a

special subcomplex of the de Rham complex (Λ∗(M), d) of forms on M : it consists of those

forms α which are annihilated by ω, that is, α∧ ω = 0. Since ω is closed, we have in fact

a subcomplex of (Λ∗(M), d) whose cohomology is called coeffective. This cohomology

was introduced and studied by Bouché [6] and related with the truncated de Rham

cohomology by the class [ω]. For Kähler manifolds both cohomologies are isomorphic for

k 6= n, dim M = 2n, though in general they are different for non Kähler symplectic

manifolds [1, 14]. A Nomizu’s type theorem [28] was also proved in [13] and it was shown

in [15] that the coeffective cohomology of a symplectic manifold of finite type is finite, so

that we have introduced the coeffective numbers of the symplectic manifold and several
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inequalities relating them to the Betti numbers. Similar results were obtained in the

context of almost contact [10, 16] and quaternionic manifolds [17].

The above results lead us to consider the following problem. Let ω be a closed r-form

on a manifold M , and define the corresponding ω-coeffective cohomology. This can be

done since the closedness of ω implies that the operator Lω : α; α∧ ω and the exterior

derivative d commute, so we obtain a subcomplex (A∗ω(M), d) of the de Rham complex

of M , where Ak
ω(M) = ker {Lω : Λk(M) −→ Λk+r(M)}. The resulting cohomology

H∗ω(A(M)) is called the ω-coeffective cohomology. The point now is to relate it to the de

Rham cohomology, or, in general, to extract topological information from the existence

of that closed form ω. In some sense, we are studying the geometry provided by ω. We

will use a general technique which consists in considering the five-term exact sequences

associated with the long exact sequence induced by passing to cohomology from the exact

short sequence

0 −→ ker L −→ Λ∗(M) −→ ImL −→ 0.

However, to go further, we need some particular properties of the form. In this paper

we collect a list of results concerning 1-forms, symplectic forms and fundamental forms

on almost contact manifolds, G2-manifolds and quaternionic manifolds. A more complete

program in the Riemannian context will require the study of the fundamental forms

in other G-structures according to Berger’s list (see [2]). Another direction in a more

general context will be to consider the coeffective cohomology defined for multisymplectic

forms [8].

2. Coeffective cohomology. Let M be a real m-dimensional C∞ differentiable

manifold, X(M) the Lie algebra of C∞ vector fields on M and Λk(M) the space of

C∞ k-forms on M .

If d denotes the exterior derivative on M , then we have the de Rham differential

complex

· · · −→ Λk−1(M)
d−→ Λk(M)

d−→ Λk+1(M) −→ · · ·
whose cohomology H∗(M) is the de Rham cohomology of M .

Consider now a closed r-form ω on M , and define an operator

Lω : Λk(M) −→ Λk+r(M)

by

Lω(α) = α ∧ ω.
Then the space

Ak
ω(M) = ker {Lω : Λk(M) −→ Λk+r(M)}

is called the subspace of ω-coeffective forms on M . Since ω is closed, Lω and d commute,

which implies that

· · · −→ Ak−1
ω (M)

d−→ Ak
ω(M)

d−→ Ak+1
ω (M) −→ · · ·

is a differential subcomplex of the de Rham complex. Its cohomology Hk
ω(A(M)) is called

ω-coeffective cohomology of M . If this cohomology is finite, we define the coeffective

numbers (associated to ω) by ck(M,ω) = dim Hk
ω(A(M)).
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3. Exact sequences and coeffective cohomology. The aim of this section is to

relate the coeffective cohomology to the de Rham cohomology by means of a long exact

sequence in cohomology.

Consider the following natural short exact sequence for any degree k:

0 −→ kerLω = Ak
ω(M)

i−→ Λk(M)
Lω−→ Imk+r Lω −→ 0 (1)

Since Lω and d commute, (1) becomes a short exact sequence of differential complexes:

0 0 0x
x

x
· · · −→ Imk+r−1Lω

d−−−−−→ Imk+rLω
d−−−−−→ Imk+r+1Lω −→ · · ·x Lω

x Lω

x Lω

· · · −→ Λk−1(M)
d−−−−−→ Λk(M)

d−−−−−→ Λk+1(M) −→ · · ·x i

x i

x i

· · · −→ Ak−1
ω (M)

d−−−−−→ Ak
ω(M)

d−−−−−→ Ak+1
ω (M) −→ · · ·x

x
x

0 0 0

Therefore, we can consider the associated long exact sequence in cohomology:

· · · −→ Hk
ω(A(M))

H(i)−→ Hk(M)
H(Lω)−→ Hk+r(ImLω)

Ck+r−→ Hk+1
ω (A(M)) −→ · · · (2)

where H(i) and H(Lω) are the homomorphisms induced in cohomology by i and Lω,

respectively, and Ck+r is the connecting homomorphism defined in the following way: if

[α] ∈ Hk+r(ImLω), then Ck+r[α] = [dβ], for β ∈ Λk(M) such that Lωβ = α.

4. Closed 1-forms. Assume that ω is a closed 1-form without zeros. Therefore, we

have

H0
ω(A(M)) ∼= {0}.

Moreover, since α ∧ ω = 0 implies that α = β ∧ ω we deduce that

ker {Lω : Λk(M) −→ Λk+1(M)} = Im {Lω : Λk−1(M) −→ Λk(M)}

If M is of finite type, then the Betti numbers of M , bk(M) = dim Hk(M) are finite.

However, the coeffective cohomology groups are not finite dimensional in general. Indeed,

consider the 1-form ω = dx on R3 with standard coordinates x, y, z. A direct computation

shows that

H1
ω(A(R3)) ∼= C∞(R).
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Decompose the long exact sequence (2) in the following short exact sequences:

0→ ImH(i) = ker H(Lω)
i→ Hk(M)

H(Lω)→ ImH(Lω)→ 0 .

Then we deduce the formula:

dim ker H(Lω)− bk(M) + dim ImH(Lω) = 0. (3)

From (3) we obtain the following result.

Proposition 4.1. Let M be a differentiable manifold with a closed 1-form ω without

zeros. Assume that the ω-coeffective cohomology is finite. Then we have

bk(M) ≤ ck(M,ω) + ck+1(M,ω), for all k.

Problem 4.2. What are the coeffective numbers if ω satisfies some extra geometric

properties, for instance, ω is parallel with respect to a Riemannian metric?

5. Closed 2-forms: symplectic and almost contact manifolds

5.1. Symplectic manifolds. Let M be a 2n-dimensional symplectic manifold with sym-

plectic form ω. From Lepage’s decomposition [23] we deduce that Lω is injective for

k ≤ n− 1 and surjective for k ≥ n− 1. As a consequence we deduce that Ak
ω(M) = {0},

for k ≤ n− 1, and hence Hk
ω(A(M)) = {0}, for k ≤ n− 1. Also, we have Hk+2(ImLω) =

Hk+2(M), for k ≥ n.

Now, we decompose the long exact sequence (2) in 5-term exact sequences:

0→ ker H(i) = ImCk+1
i→ Hk

ω(A(M))
H(i)→ Hk(M)

H(Lω)→ Hk+2(M)
Ck+2→ ImCk+2 → 0

Theorem 5.1 [15]. Let M be a symplectic 2n-dimensional manifold of finite type.

Then the coeffective cohomology group Hk
ω(A(M)) has finite dimension, for k ≥ n + 1.

Furthermore,

bk(M)− bk+2(M) ≤ ck(M,ω) ≤ bk(M) + bk+1(M).

Remark 5.2. In general, the intermediate coeffective number cn(M,ω) is not finite.

A simple counterexample is the torus T2n = R2n/Z2n with its canonical Kähler form.

In [15] we have proved the following results.

Theorem 5.3.

(i) Let M be a compact Kähler manifold of dimension 2n. Then we have

ck(M,ω) = bk(M)− bk+2(M), k ≥ n+ 1, (4)

where ω is the Kähler form.

(ii) Let M be a (non-compact) exact symplectic manifold of dimension 2n and of finite

type. Then

ck(M,ω) = bk(M) + bk+1(M), for k ≥ n+ 1.

P r o o f. (i) follows since Ck+2 identically vanishes, by using the Lepage’s decompo-

sition for harmonic forms. To prove (ii) it is sufficient to notice that H(Lω) identically

vanishes.
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Since the Betti numbers are topological invariants for compact manifolds, the co-

effective cohomology groups are topological invariants for compact Kähler manifolds.

Moreover, they measure the jumps of the Betti numbers.

In [15] we have proved, using the Moser Stability Theorem [27, 26, 36], that the

coeffective cohomology does not depend on ω, but on the isotopy class of ω. We recall

that two symplectic forms ω0 and ω1 are said to be isotopic if they can be joined by

a continuous 1-parameter family of cohomologous symplectic structures ωt, 0 ≤ t ≤ 1.

Actually, we can prove something stronger, that is, the coeffective cohomology depends

only on the de Rham cohomology class of ω.

Proposition 5.4. Let (M,ω) be a symplectic manifold of finite type. Then the coef-

fective cohomology groups Hk
ω(A(M)) are invariants of the de Rham cohomology class of

ω, for k ≥ n+ 1.

P r o o f. We decompose the long exact sequence (2) in 5-term exact sequences,

0→ ker Ck+1 = ImH(Lk−1
ω )

i→ Hk+1(M)
Ck+1→ Hk

ω(A(M))

H(i)→ Hk(M)
H(Lω)→ ImH(Lk

ω)→ 0

for k ≥ n+ 1. Then, we have

ck(M,ω) = bk(M) + bk+1(M)− dim ImH(Lk−1
ω )− dim ImH(Lk

ω).

Corollary 5.5. If the mapping Lω is also surjective in cohomology , that is, the

mapping H(Lω) : Hk−1(M) −→ Hk+1(M) is surjective for k ≥ n+ 1, then

ck(M,ω) = bk(M)− bk+2(M),

and in such a case, bk(M) ≥ bk+2(M).

Corollary 5.6. ck(M,ω) ≥ bk+1(M)− bk−1(M), for k ≥ n+ 1.

As is well-known, a compact Kähler manifold is formal [11]. On the other hand, its

coeffective numbers are topological invariants and satisfy (4). Moreover, a compact Kähler

manifold satisfies the Hard Lefschetz theorem. Lupton and Oprea have suggested [24] the

following problem.

Problem 5.7. Let M be a compact symplectic manifold which is formal or satisfies

the Hard Lefschetz theorem. Is (4) satisfied then?

The answer to Problem 5.7 in the case of compact symplectic manifolds satisfying

the Hard Lefschetz theorem is affirmative. Concretely, for a compact symplectic manifold

(M2n, ω) satisfying the Hard Lefschetz theorem, that is,

H(Lω)r : Hn−r(M) −→ Hn+r(M)

is an isomorphism, we observe that the mapping H(Lω) : Hk−1(M) −→ Hk+1(M) is

surjective for k ≥ n+ 1, therefore, from Corollary 5.5 the equality (4) is satisfied.

Some evidence for Problem 5.7 (in the formal case) is given by the following results.

i) Complex projective spaces. As we know, CPn is formal [34]. On the other hand, the

cohomology ring of CPn is H ·(CPn) = R[y]/ < yn+1 >, where the degree of y is two.
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Then, for any symplectic structure ω, the mapping H(Lω) is always surjective. Therefore,

Corollary 5.5 implies (4).

ii) Compact locally symmetric spaces. A compact locally symmetric space is formal

[20, 34]. Moreover, we have the following.

Proposition 5.8. Let (M, g) be a compact Riemannian (locally) symmetric space

with harmonic symplectic structure. Then

ck(M,ω) = bk(M)− bk+2(M) for k ≥ n+ 1,

therefore, bk(M) ≥ bk+2(M).

P r o o f. Since the wedge product of harmonic forms is harmonic [20], using Hodge

theorem and the surjectivity of Lω, we obtain that the mapping H(Lω) is surjective, so

we conclude by Corollary 5.5.

We propose to study the equality (4) for the following formal spaces:

iii) homogeneous spaces of maximal rank [34],

iv) H-spaces (for example, Lie groups) [34].

Also, it is interesting the study of simply connected symplectic manifolds, which

is related to the Lupton-Oprea conjecture [25, 34]: any simply connected symplectic

manifold is formal.

Remark 5.9. Bouché [6] has considered the de Rham cohomology groups truncated

by the class of the symplectic form ω, that is,

H̃k(M) = {a ∈ Hk(M) | a ∧ [ω] = 0} = ker H(Lω).

For a compact Kähler manifold of dimension 2n, there exists an isomorphism

Hk(A(M)) ∼= H̃k(M), k ≥ n+ 1. (5)

Thus, Bouché [6] proposed the following problem: is the isomorphism (5) satisfied for any

compact symplectic manifold? We answered this question in the negative by constructing

a counterexample [1, 13]. A crucial point here was the proof of a Nomizu’s type theorem

[13] to compute the coeffective cohomology of a compact symplectic nilmanifold at its

Lie algebra level.

In relationship with Bouché’s problem we have the following result which is a direct

consequence of the long exact sequence in cohomology (2).

Proposition 5.10. Let (M,ω) be a symplectic manifold of dimension 2n and of finite

type. Then the following assertions are equivalent :

(i) Hk(A(M)) ∼= H̃k(M), for k ≥ n+ 1;

(ii) H(Lω) : Hk−1(M) −→ Hk+1(M) is surjective for k ≥ n+ 1.

Moreover , in such a case, the equality (4) is satisfied.

Remark 5.11. Although originally the coeffective cohomology was introduced for

symplectic structures, it can be also defined for locally conformal symplectic (l.c.s.) struc-

tures [35]. Moreover, in both cases, (Im·Lω, d) is a differential complex too. The difference



GEOMETRY OF A CLOSED FORM 161

between both situations is that for l.c.s. structures the short exact sequence (1) is not a

short exact sequence of differential complexes. We have proved the following result.

Proposition 5.12. Let (M, g, J) be an almost Hermitian manifold of dimension 2n

with Kähler form ω. If (Im Lω, d) is a differential complex , then M is symplectic or l.c.s.

Remark 5.13. For indefinite Kähler manifolds a coeffective Dolbeault cohomology

was introduced and discussed in [21].

5.2. Almost contact manifolds. An almost contact metric structure (φ, ξ, η, g) on a

(2n+1)-dimensional manifold M is given by a Riemannian metric g and an almost contact

structure (φ, ξ, η) such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ X(M).

The associated fundamental 2-form Φ is defined by

Φ(X,Y ) = g(φX, Y ), X, Y ∈ X(M).

It follows that Φn ∧ η 6= 0. If dΦ = dη = 0, it defines an almost cosymplectic structure,

and if Φ = dη, it defines a contact structure [3].

Let (φ, ξ, η, g) be an almost contact metric structure on a (2n+ 1)-dimensional man-

ifold M . It is called [3, 29]:

i) normal if [φ, φ] + 2dη ⊗ ξ = 0.

ii) cosymplectic if it is normal and almost cosymplectic,

iii) quasi-Sasakian if it is normal and Φ is closed,

iv) Sasakian if it is contact and normal.

It was shown in [9] that LΦ is injective for k ≤ n − 1, and surjective for k ≥ n.

Therefore, if Φ is closed, we deduce that Ak
Φ(M) = {0}, for k ≤ n − 1, and then

Hk
Φ(A(M)) = {0}, for k ≤ n− 1. Also, Hk+2(ImLΦ) = Hk+2(M), for k ≥ n+ 1.

Proposition 5.14. Let M be a (2n+ 1)-dimensional almost contact metric manifold

with closed fundamental 2-form Φ and of finite type. Then

(i) the coeffective numbers ck(M,Φ) are finite dimensional , for k ≥ n+ 2;

(ii) the coeffective cohomology groups are invariants of the de Rham cohomology class

of Φ, for degrees k ≥ n+ 2.

Theorem 5.15 [16].

(i) For an almost contact manifold of dimension 2n+ 1 with closed fundamental form,

say dΦ = 0, and of finite type, we have

bk(M)− bk+2(M) ≤ ck(M,Φ) ≤ bk(M) + bk+1(M), for k ≥ n+ 2.

(ii) If M is a compact cosymplectic manifold , then

ck(M,Φ) = bk(M)− bk+2(M), for k ≥ n+ 2. (6)

(iii) If M is contact , then

ck(M,Φ) = bk(M) + bk+1(M), for k ≥ n+ 2.
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(iv) Let M be a (non-compact) exact almost cosymplectic manifold of dimension 2n+1.

Then

ck(M,Φ) = bk(M) + bk+1(M), for k ≥ n+ 2.

Therefore, the coeffective cohomology groups are topological invariants for compact

cosymplectic manifolds. Moreover, since

bk(M) ≥ bk+2(M), k ≥ n+ 1,

for compact cosymplectic manifolds [10], then the coeffective numbers measure the jumps

of the Betti numbers.

Problem 5.16. Since a compact cosymplectic manifold is formal [9] and satisfies the

Hard Lefschetz theorem [9], we can ask again about the relation of the equality (6) to

the formality and the Hard Lefschetz theorem.

Remark 5.17. The relation between the coeffective cohomology and the truncated

de Rham cohomology was discussed in [10, 13].

6. Closed 3-forms: calibrated G2-manifolds. A G2-manifold is a 7-dimensional

Riemannian manifold with a 2-fold vector cross product [7]. Such a manifold M has a

nowhere vanishing differential 3-form ϕ, which is called the fundamental 3-form of M .

A G2-manifold M is said to be: calibrated if ϕ is closed (i.e. dϕ = 0), cocalibrated if ϕ is

coclosed (i.e. d ∗ ϕ = 0), nearly parallel if d ∗ ϕ = 0 and dϕ = k ∗ ϕ, where k ∈ R, and

parallel if ∇ϕ = 0 (i.e. dϕ = 0, d ∗ ϕ = 0).

Fernández and Gray [12] have proved that Λk(M) splits orthogonally into components

Λk
l (M) of dimension l, which are irreducible under the action of G2:

Λ1(M), Λ2(M) = Λ2
7(M)⊕ Λ2

14(M), Λ3(M) = Λ3
1(M)⊕ Λ3

7(M)⊕ Λ3
27(M),

and the others are obtained from these using the Hodge star operator ∗. These spaces

are:

Λ2
7(M) = {∗(α ∧ ∗ϕ) |α ∈ Λ1(M)},

Λ2
14(M) = {β ∈ Λ2(M) |β ∧ ∗ϕ = 0},

Λ3
1(M) = {fϕ | f ∈ C∞(M)},

Λ3
7(M) = {∗(α ∧ ϕ) |α ∈ Λ1(M)},

Λ3
27(M) = {γ ∈ Λ3(M) | γ ∧ ∗ϕ = γ ∧ ϕ = 0}.

For some classes of G2-manifolds one can define coeffective complexes (for example,

with respect to ϕ and ∗ϕ) and other related complexes [32, 31, 18, 19]. In this and the

following section we will recall some results on these complexes.

Now, let M be a calibrated G2-manifold. Then one can consider the coeffective com-

plex with respect to the closed 3-form ϕ. The spaces of ϕ-coeffective forms on M are:

Ai
ϕ(M) = {0}, i = 0, 1, 2 ,

A3
ϕ(M) = Λ3

1(M)⊕ Λ3
27(M),

A4
ϕ(M) = Λ4

7(M)⊕ Λ4
27(M) ,

Ai
ϕ(M) = Λi(M), i = 5, 6, 7.



GEOMETRY OF A CLOSED FORM 163

Also, we can consider the complementary complex (B(M),
∨
d), where

∨
d is the orthogonal

projection of d, so that we have the short exact sequence of differential complexes

0 −→ (A(M), d)
i−→ (Λ(M), d)

p−→ (B(M),
∨
d) −→ 0

where i and p denote the natural inclusion and the orthogonal projection, respectively.

Therefore we have also the long exact sequence in cohomology (for a more complete

description see [19]).

We have the following results.

Proposition 6.1 [19].

(i) The coeffective complex (A·ϕ(M), d) is elliptic in degree k (for k 6= 2);

(ii) the complementary complex (B·(M),
∨
d) is elliptic in degree k (for k 6= 3);

(iii) in the compact case, the cohomology groups of both complexes are finite dimensional

in the ellipticity degrees;

(iv) ci(M,ϕ) = 0 (i = 0, 1, 2, 3) and ci(M,ϕ) = bi(M) (i = 5, 6);

Theorem 6.2 [19]. If M is a compact parallel G2-manifold , then

c4(M,ϕ) = b4(M)− b7(M), c5(M,ϕ) = b5(M).

Remark 6.3. In general, for any G2-manifold the sequences (A·ϕ(M), d) and

(B·(M),
∨
d) are differential complexes if and only if M is a locally conformal calibrated

G2-manifold (see [19]).

7. Closed 4-forms: cocalibrated G2 and quaternionic manifolds

7.1. Cocalibrated G2-manifolds. Let M be a cocalibrated G2-manifold. Then one can

consider the coeffective complex with respect to the 4-form ∗ϕ. The spaces of (∗ϕ)-

coeffective forms are:

Ai
∗ϕ(M) = {0}, i = 0, 1 ,

A2
∗ϕ(M) = Λ2

14(M) ,

A3
∗ϕ(M) = Λ3

7(M)⊕ Λ3
27(M) ,

Ai
∗ϕ(M) = Λi(M), i = 4, 5, 6, 7.

The coeffective complex is the complementary of the differential complex defined by

S. Salamon [32] and whose ellipticity was studied by R. Reyes [31]:

0 −→ Λ0(M)
∨
D−→ Λ1(M)

∨
D−→ Λ2

7(M)
∨
D−→ Λ3

1(M) −→ 0

where the differential
∨
D is the orthogonal projection of d. Again, we can consider the

associated exact sequences (for a complete description see [18]).

We have the following results.

Proposition 7.1 [18].

(i) ci(M, ∗ϕ) = 0, (i = 0, 1) and ci(M, ∗ϕ) = bi(M), (i ≥ 4);
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(ii) if M is a compact nearly-parallel non-parallel G2-manifold , then c2(M, ∗ϕ) =

b2(M);

(iii) if M is a compact parallel G2-manifold we get c2(M, ∗ϕ)=b2(M)−b1(M), c3(M, ∗ϕ)

= b3(M)− b0(M) ≥ b1(M), and then

b2(M) ≥ b1(M), b3(M) ≥ b0(M) + b1(M).

Remark 7.2. The above complexes can even be defined for integrable G2-manifolds,

that is, locally conformal cocalibrated G2-manifolds (see [18]).

7.2. Quaternionic manifolds. A 4n-dimensional manifold M is said to be almost

quaternionic if there is a subbundle Q of EndTM such that for each x ∈ M there

is a neighborhood U over which Q|U has a basis J1, J2, J3 satisfying

J2
1 = J2

2 = −1 and J3 = J1J2 = −J2J1.

A Riemannian metric g on M is said to be compatible with Q if g(AX,AY ) = g(X,Y ),

for each X,Y ∈ TxM and A ∈ Qx such that A2 = −1. A compatible metric g can be

constructed from any Riemannian metric g′ by putting

g(X,Y ) =
1

4
(g′(X,Y ) + g′(J1X, J1Y ) + g′(J2X, J2Y ) + g′(J3X, J3Y )).

An almost quaternionic manifold with a compatible metric is called a quaternionic Her-

mitian manifold.

We may embed Q isometrically in Λ2T ∗M by mapping an element A ∈ Q to the

2-form ωA defined by

ωA(X,Y ) = g(X,AY ), forX,Y ∈ TxM.

This enables us to define a global, non-degenerate 4-form Ω, the fundamental 4-form

[22, 4], by

Ω = ωJ1 ∧ ωJ1 + ωJ2 ∧ ωJ2 + ωJ3 ∧ ωJ3 ,

where J1, J2, J3 is a local basis as above. A quaternionic Hermitian manifold M is said

to be:

i) quaternionic almost Kähler if dΩ = 0,

ii) quaternionic Kähler if ∇Ω = 0, where ∇ is the Levi-Civita connection.

In dimension 4 both conditions are trivially satisfied. Furthermore, for any dimension

4n, the condition ∇Ω = 0 implies the condition dΩ = 0, and Swann [33] has proved that

the converse also holds for dimension 4n ≥ 12.

A quaternionic Kähler manifold is said to be hyperkähler if the almost complex struc-

tures J1, J2, J3 are globally defined and

dωJ1
= dωJ2

= dωJ3
= 0.

Hitchin (see [33]) has shown that this implies that J1, J2, J3 are integrable, and hence

they define three Kähler structures on M . If M is a quaternionic Kähler manifold with

zero scalar curvature it can be shown that M is locally hyperkähler.

Let (M,Q, g) be a quaternionic almost Kähler manifold of dimension 4n with funda-

mental 4-form Ω.
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In [5, 17] it was shown that the mapping LΩ : Λk(M) −→ Λk+4(M) is injective for

k ≤ 2n − 2 and surjective for k ≥ 2n − 2. Moreover, its adjoint Λ with respect to the

Riemannian metric g is injective for k ≥ 2n + 2 and surjective for k ≤ 2n + 2. As a

consequence, we have Hk(A(M)) = {0}, for k ≤ 2n− 2.

Since LΩ(Λk(M)) = Λk+4(M), for k ≥ 2n− 2 we deduce that

Hk+4(ImL) = Hk+4(M),

for k ≥ 2n − 1. Then proceeding as in the precedent sections we obtain the following

result.

Proposition 7.3. Let M be a 4n-dimensional quaternionic almost Kähler manifold

of finite type. Then the coeffective numbers ck(M,Ω) are finite, for k ≥ 2n. Also, the

coeffective numbers are invariants of the de Rham cohomology class of Ω.

Moreover, we also deduce

Theorem 7.4.

(i) Let M be a 4n-dimensional quaternionic almost Kähler of finite type. Then

bk(M)− bk+4(M) ≤ ck(M,Ω) ≤ bk(M) + bk+3(M), for k ≥ 2n. (7)

(ii) If M is a compact quaternionic Kähler manifold , then

ck(M,Ω) = bk(M)− bk+4(M), for k ≥ 2n.

(iii) If M is a (non-compact) exact almost quaternionic Kähler manifold of finite type,

then

ck(M,Ω) = bk(M) + bk+3(M), for k ≥ 2n.

Therefore, the coeffective numbers are bounded by upper and lower limits depending

on the Betti numbers of the manifold. A first consequence of (7) is that ck(M,Ω) = bk(M),

for k = 4n− 2, 4n− 1 and 4n.

Remark 7.5. The relationship between the coeffective cohomology and the truncated

de Rham cohomology by the fundamental 4-form was discussed in [17].
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