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Abstract. In this paper we study the degeneration of both the cohomology and the coho-
motopy Frölicher spectral sequences in a special class of complex manifolds, namely the class
of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy
spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex
structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not
collapse even at the second term.

1. Introduction. For a compact nilmanifold (i.e. a homogeneous space of the form

Γ\G, where G is a simply-connected nilpotent Lie group and Γ a lattice of G of maximal

rank) the problem of determining its de Rham cohomology was completely solved by
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Nomizu [23] in 1954. The Chevalley–Eilenberg complex (Λ∗g∗, d) associated with the Lie

algebra g of G is canonically identified to the left invariant differential forms on G, and

then there is a canonical morphism of differential graded algebras

ρ: (Λ∗g∗, d) −→ (Λ∗(Γ\G), d),

where (Λ∗(Γ\G), d) denotes the de Rham complex of Γ\G. Nomizu proved that ρ induces

an isomorphism at the cohomology level. Since the Lie algebra g is nilpotent, (Λ∗g∗, d)

is a minimal model for the de Rham complex of the nilmanifold Γ\G.

This result has led to the construction of compact manifolds possessing interest-

ing properties. In fact, since the minimal model (Λ∗g∗, d) is formal if and only if g is

Abelian [16], a well known result of Deligne, Griffiths, Morgan and Sullivan [12] implies

that Γ\G has no Kähler structure unless it is a torus (see also [6, 18, 19]). However, many

compact nilmanifolds have symplectic structures [7, 28].

In the study of some problems in complex manifold theory it is extremely useful to

know a minimal model, in the sense of [22], for the Dolbeault complex of the manifold. In

this paper we show such a model for a special class of compact complex manifolds, namely

the class of compact nilmanifolds with nilpotent complex structure. As an application we

study both the cohomotopy and the cohomology Frölicher spectral sequences for such

manifolds.

In order to introduce that special class of complex manifolds, we first remind that

on some compact (even dimensional) nilmanifolds Γ\G it is possible to define a complex

structure in the following way: if the Lie group G has a left invariant complex structure

J then Γ\G inherits a complex structure by passing J to the quotient. Such a complex

manifold will be called a compact complex nilmanifold.

In particular, if G is a complex Lie group then Γ\G is a compact complex parallelizable

nilmanifold in the sense of Wang [30], that is, there are n holomorphic 1-forms on Γ\G
(n being the complex dimension of G) which are linearly independent at each point.

But, as it is shown in Section 4, some compact complex nilmanifolds admit a complex

structure of a special type, which we call nilpotent, that it is not complex parallelizable.

In other words, there is an intermediate class of complex manifolds between the class of

compact complex nilmanifolds and the class of those which are complex parallelizable. We

shall refer to a manifold of this intermediate type as a compact nilmanifold with nilpotent

complex structure. In Section 4 we discuss the strictness of the inclusion relations among

these three classes of complex nilmanifolds (see Proposition 4.6 and Proposition 4.7).

For the Dolbeault cohomology of a compact complex nilmanifold, a result similar

to Nomizu’s theorem has been obtained by Sakane [26] only for the particular case of

compact complex parallelizable nilmanifolds. In [10] such result has been extended to

any compact nilmanifold with nilpotent complex structure Γ\G: there is a canonical

isomorphism

Hp,q

∂
(Γ\G) ∼= Hp,q

∂
(gC), (1)

which reduces the computation of the Dolbeault cohomology of Γ\G to calculation at

the Lie algebra level g of G. Moreover, the differential bigraded algebra (Λ∗,∗(gC), ∂) of

complex valued left invariant differential forms on G is a minimal model for the Dolbeault
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complex (Λ∗,∗(Γ\G), ∂) of Γ\G. However, to our knowledge it is still unknown if (1) holds

for arbitrary compact complex nilmanifolds.

For complex manifolds M , Neisendorfer and Taylor [22] have defined “complex homo-

topy groups” in terms of the Dolbeault complex of M ; moreover, the classical Frölicher

spectral sequence [14] has a complex homotopy analogue (see Section 3). In Section 4

we compute these complex homotopy invariants for compact nilmanifolds with nilpo-

tent complex structure, and we prove that the cohomotopy spectral sequence is always

degenerate for such manifolds.

In contrast, the cohomology Frölicher spectral sequence {Er} of a compact complex

parallelizable nilmanifold, not a torus, satisfies E1 6∼= E2
∼= E∞ (see Corollary 4.15).

Moreover, there are nilpotent complex structures on compact nilmanifolds for which the

sequence {Er} does not collapse even at E2 [8, 9, 11].

In Section 5 we construct a family of compact nilmanifolds with nilpotent complex

structure MABC (depending on three rational parameters A,B,C), which can be seen

as a generalization of the well known Kodaira–Thurston manifold KT . More precisely,

each MABC can be described as the total space of a holomorphic principal torus bundle

over KT . Since KT has complex dimension 2, its associated Frölicher spectral sequence

collapses at E1 [4, 17]. However, many complex manifolds MABC have E2 6∼= E∞ (see

Theorem 5.4). Since dimCMABC = 3 for any A,B,C, then the manifolds MABC have

the lowest possible complex dimension for which one can obtain E2 6∼= E∞.

The Kodaira–Thurston manifold has no Kähler structure; however, it is symplec-

tic [28] and has indefinite Kähler structures [1]. In Theorem 5.3 we prove that there are

complex manifolds MABC having no indefinite Kähler metric compatible with its complex

structure. Even more, some of them have no symplectic structure.

Acknowledgments. This work has been partially supported by DGICYT (Spain),

Projects PB94-0633-C02-01 and PB94-0633-C02-02, and by U.P.V. Project 127.310–EC

248/96.

2. Cohomology Frölicher spectral sequence. Let M be a complex manifold. The

algebra Λ∗C(M) of complex valued differential forms on M admits a natural bigraduation

Λ∗C(M) =
⊕
p,q≥0

Λp,q(M),

where Λp,q(M) denotes the space of forms of type (p, q) on M . The exterior differential

d : Λ∗C(M) −→ Λ∗+1
C (M) decomposes as d = ∂ + ∂, where

∂ : Λp,q(M) −→ Λp+1,q(M) , ∂ : Λp,q(M) −→ Λp,q+1(M) .

Since M is a complex manifold, from d2 = 0 it follows that ∂2 = ∂∂ + ∂∂ = ∂
2

= 0.

The complex (Λ∗,∗(M), ∂) is known as the Dolbeault complex of M , and its cohomology

groups, denoted by Hp,q

∂
(M), are called Dolbeault cohomology groups of M .

Since ∂∂ = −∂∂ we have also a double complex (Λ∗,∗(M), ∂, ∂) associated with any

complex manifold M . The Frölicher spectral sequence {Er(M)}r≥1 of M is the spectral

sequence obtained when the double complex (Λ∗,∗(M), ∂, ∂) is derived in vertical direc-

tions ∂. (Notice that one can also derive this double complex in horizontal directions ∂;
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however, the terms of the spectral sequence obtained in this way are isomorphic to the

terms Ep,qr by complex conjugation.) The sequence {Er(M)}r≥1 satisfies [14]:

Ep,q1 (M) ∼= Hp,q

∂
(M), (2)

for any p, q, and

GrHk(M) ∼=
⊕
p+q=k

Ep,q∞ (M), (3)

for any k, where H∗(M) denotes the de Rham cohomology of M .

We remark that this sequence can also be seen as the spectral sequence obtained when

one considers on Λ∗C(M) the decreasing filtration

T r(Λ∗C(M)) =
⊕
p≥r

Λp,∗(M) = {α =
∑

αp,q ∈ Λ∗C(M) | αp,q = 0 for p < r}. (4)

Notice that, since d = ∂ + ∂, this filtration is compatible with d, i.e. d(T r) ⊂ T r.
The terms Ep,qr (M) can be interpreted as quotients Xp,q

r (M)/Y p,qr (M), where

Xp,q
r (M) in some sense lies between the ∂-closed and the d-closed (p, q)-forms, and

Y p,qr (M) lies between the ∂-exact and the d-exact (p, q)-forms. More precisely:

Theorem 2.1 [9]. Let M be a complex manifold. Then

Ep,qr (M) ∼=
Xp,q
r (M)

Y p,qr (M)
,

where

Xp,q
1 (M) = {α ∈ Λp,q(M) | ∂α = 0}, Y p,q1 (M) = ∂(Λp,q−1(M)),

and for r ≥ 2

Xp,q
r (M) = {αp,q ∈ Λp,q(M) | ∂αp,q = 0 and there exist

αp+i,q−i ∈ Λp+i,q−i(M) such that

∂αp+i−1,q−i+1 + ∂αp+i,q−i = 0, 1 ≤ i ≤ r − 1},

Y p,qr (M) = { ∂βp−1,q + ∂βp,q−1 ∈ Λp,q(M) | there exist

βp−i,q+i−1 ∈ Λp−i,q+i−1(M), 2 ≤ i ≤ r − 1,

satisfying ∂βp−i,q+i−1 + ∂βp−i+1,q+i−2 = 0,

∂βp−r+1,q+r−2 = 0}.

Moreover , let dr : Ep,qr (M) −→ Ep+r,q−r+1
r (M) be the homomorphism given by

dr[αp,q] = [∂αp+r−1,q−r+1],

for [αp,q] ∈ Ep,qr (M). Then the sequence of homomorphisms

· · · −→ Ep−r,q+r−1r (M)
dr−→ Ep,qr (M)

dr−→ Ep+r,q−r+1
r (M) −→ · · · (5)

satisfies d2r = 0, and the terms Ep,qr+1(M) are isomorphic to the cohomology groups of (5).

From (2) and (3) it follows that the Frölicher spectral sequence relates invariants of

the complex structure of M to topological invariants of the manifold. Then, by Hodge

theory we have that E1
∼= E∞ for any compact Kähler manifold. In [4, 17] it is proved

that a compact complex surface has also degenerate Frölicher spectral sequence.
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3. Cohomotopy Frölicher spectral sequence. In this section we outline briefly

some results of the Dolbeault homotopy theory developed by Neisendorfer and Taylor

in [22]. Roughly speaking this theory is a version of Sullivan’s theory for complex mani-

folds.

In order to introduce the Dolbeault cohomotopy groups of a complex manifold M (of

complex dimension n), we first remind that a C-differential graded algebra, C-DGA, is

a commutative graded algebra A =
⊕

k≥0Ak over C with a differential d of degree +1

which is a derivation, i.e. d(a · b) = da · b+ (−1)ka ·db (a ∈ Ak), and satisfies that d2 = 0.

All the algebras considered here are required to be augmented over C, that is, (A, d)

is endowed with a homomorphism α:A −→ C such that kerα consists of all the elements

of positive degree in A.

Definition 3.1. A differential bigraded algebra, DBA, is a C-DGA (A, ∂) where the

algebra A =
⊕

k≥0(
⊕

p+q=kAp,q) is bigraded and the differential ∂ has type (0, 1).

We have the category of DBA’s by requiring the morphisms between DBA’s to be

bidegree preserving algebra maps which commute with the differentials ∂.

A DBA is called a bidifferential bigraded algebra, BBA, if it is equipped with another

differential ∂ of type (1, 0), which is also a derivation and satisfies ∂∂ = −∂∂. The coho-

mology of a BBA (A, ∂, ∂) is defined always with respect to the differential ∂. Morphisms

between BBA’s are morphisms between the underlying DBA’s which commute with ∂.

Let I(A) be the indecomposables of a C-DGA (DBA or BBA) A, that is, if A(A)

denotes the kernel of the augmentation, I(A) is the cokernel of A(A)⊗A(A) −→ A(A).

Then I(A) is a graded (bigraded) vector space with a differential.

Examples. Let M be a complex manifold of dimension n. As it is shown in Section 2,

Λ∗C(M) =
⊕

k≥0 ΛkC(M), where ΛkC(M) =
⊕

p+q=k Λp,q(M). Therefore, the de Rham

complex (Λ∗C(M), d) is a C-DGA, the Dolbeault complex (Λ∗,∗(M), ∂) is a DBA and the

double complex (Λ∗,∗(M), ∂, ∂) is a BBA, where d = ∂ + ∂ is the usual decomposition of

the exterior differential d on M . Λ∗,∗(M) is augmented by choosing a point p in M and

evaluating the C∞ complex valued functions on M at p.

A DBA (A, ∂A) is a model for the Dolbeault complex (Λ∗,∗(M), ∂) of M if there

exists a morphism ρ: (A, ∂A) −→ (Λ∗,∗(M), ∂) inducing an isomorphism on cohomology.

A model for the de Rham complex (Λ∗C(M), d) of M is defined similarly, but for the

double complex (Λ∗,∗(M), ∂, ∂) the morphism ρ is required to be a morphism of BBA’s

inducing an isomorphism only in ∂-cohomology.

Instead of Sullivan’s minimal models, the authors of [22] use the more functorial

version of rational homotopy theory developed by Bousfield and Gugenheim in [5], and

introduce the notion of cofibrant model for a DBA. They define a cofibrant DBA as a

DBA A satisfying that: given any surjective morphism of DBA’s g:B −→ C which induces

an isomorphism on cohomology, and given any morphism f :A −→ C, then there exists

h:A −→ B such that g◦h = f .

By definition, a cofibrant model for the Dolbeault complex (Λ∗,∗(M), ∂) of a complex

manifold M is a model A which is also a cofibrant DBA. Similar definitions are given for

cofibrant models for the de Rham complex and for the double complex of M .
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Definition 3.2. The Dolbeault cohomotopy groups of M are the groups π∗,∗(M)

defined as follows: if A is a cofibrant model for the Dolbeault complex of M then

π∗,∗(M) = H∗,∗(I(A)), where I(A) denotes the indecomposables of the DBA A.

Remark 3.3. In [22] it is proved that π∗,∗(M) is well defined and functorial. Since

Λ∗,∗(M) as an augmented algebra depends on the base point p, the complex homotopy

groups also depend on the choice of p. However, if M has no nonconstant holomorphic

functions, i.e. H0,0(M) = C, then π∗,∗(M) depends on the base point only up to isomor-

phism. Since in this paper we deal with compact nilmanifolds, which are connected, this

is our case.

The de Rham cohomotopy groups of M , π∗(M), are the groups π∗(M) = H∗(I(A)),

where I(A) denotes the indecomposables of a cofibrant model A for (Λ∗(M), d). For cer-

tain complex manifolds M a spectral sequence, similar to the classical Frölicher sequence,

relates the Dolbeault cohomotopy of M to the de Rham cohomotopy of the manifold.

Theorem 3.4 [22]. Let M be a connected complex manifold with no nonconstant

holomorphic functions. There exists a spectral sequence {Fr(M)} whose term F1(M) is

{πp,q(M)} and which abuts to {πp+q(M)}.

Outline of proof. Let ρ: (A, ∂A, ∂A) −→ (Λ∗,∗(M), ∂, ∂) be a cofibrant model for the

double complex of M . As in (4), define a filtration on A by T r(A) = ⊕p≥rAp,∗, which is

compatible with the differential dA = ∂A+ ∂A on A. The morphism ρ maps the spectral

sequence for A to the classical Frölicher spectral sequence. Since A is also a DBA model

(when we forget the differential ∂A), this map is an isomorphism on the terms E1, and

therefore H∗(A, dA) is isomorphic to H∗(M). This means that A is a DGA model for

(Λ∗(M), d).

The filtration {T r(A)} on A induces a filtration on I(A) compatible with the differ-

ential induced by dA. The first term F1 of the associated sequence is by Definition 3.2

the Dolbeault cohomotopy of M , and since (A, dA) is a model for the de Rham com-

plex (Λ∗(M), d) of M , then the spectral sequence abuts to the de Rham cohomotopy

H∗(I(A)).

Finally we remark that the cohomotopy spectral sequence satisfies F1
∼= F∞ for any

compact Kähler manifold; however, there are complex manifolds for which this sequence

does not degenerate at F1-level [22].

4. Spectral sequences of compact nilmanifolds with nilpotent complex

structure. Let J be a left invariant complex structure on a real s-step nilpotent Lie

group G. Associated with such a complex structure J there exists an ascending series

{al(J)}l≥0 for the Lie algebra g of G, whose terms al(J) are J-invariant ideals in g [10].

This series is defined inductively as follows:

a0(J) = {0} , al(J) = {X ∈ g | [X, g] ⊆ al−1(J) and [JX, g] ⊆ al−1(J)} , l ≥ 1.

We remark that the series {al(J)}l≥0 depends on the complex structure J considered

on the Lie group: in fact, in [10] it is constructed a nilpotent Lie group G admitting two

left invariant complex structures J1 and J2 for which al(J1) 6= al(J2) for all l > 0.
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The ascending series {al(J)}l≥0 can stop without reaching the Lie algebra g, that is,

it may occur that al(J) = at(J) 6= g for all l ≥ t. This motivates the following:

Definition 4.1. A left invariant complex structure J on G is called nilpotent if there

is a positive integer t for which at(J) = g.

This definition includes the complex structures of complex Lie groups as a particular

case.

Proposition 4.2. The canonical complex structure of a complex Lie group is nilpo-

tent.

P r o o f. Denote by J the canonical complex structure of a complex Lie group G.

Since the Lie algebra g is complex, any ideal of g is invariant under J and, in particular,

J(gl) = gl for l ≥ 0, where {gl}l≥0 is the usual ascending central series of g. This implies

that al(J) = gl for all l ≥ 0, that is, both series coincide in this case. In particular, if

the Lie group is s-step nilpotent then as(J) = gs = g and the complex structure J is

nilpotent.

Next we show a characterization of nilpotent complex structures in terms of the

structure equations of the Lie group.

Theorem 4.3 [10]. Let G be a nilpotent Lie group of real dimension 2n. A left in-

variant complex structure J on G is nilpotent if and only if there exists an ordered basis

{ωi, ωi; 1 ≤ i ≤ n} of left invariant complex 1-forms satisfying

dωi =
∑
j<k<i

Aijk ωj ∧ ωk +
∑
j,k<i

Bijk ωj ∧ ωk , 1 ≤ i ≤ n , (6)

where the coefficients Aijk, Bijk are complex numbers. Here each ωi is of type (1, 0) with

respect to J , and then ωi has type (0, 1).

This result allows us to construct in a very simple way nilpotent Lie groups endowed

with a nilpotent complex structure. In fact:

Corollary 4.4. The structure equations (6) with the coefficients chosen so that d2 =

0 define a nilpotent Lie group G with a nilpotent left invariant complex structure.

Definition 4.5. A compact nilmanifold with nilpotent complex structure is a complex

manifold of the form Γ\G whose complex structure is inherited from a nilpotent left

invariant complex structure on G by passing to the quotient.

From Proposition 4.2 it follows that the class of compact complex parallelizable nil-

manifolds is contained in the class of compact nilmanifolds with nilpotent complex struc-

ture. This inclusion is strict for each (even) real dimension ≥ 4 (in dimension 2 the tori are

the only compact nilmanifolds) because the compact complex parallelizable nilmanifolds

are precisely those for which all the coefficients Bijk in (6) vanish.

Next we analyse the inclusion relation between the class of compact complex nilman-

ifolds and the class of those nilmanifolds having a nilpotent complex structure.

First we remind that, apart from tori, the only compact complex nilmanifolds of real

dimension ≤ 4 are Kodaira–Thurston manifolds KT [13]. Moreover, in [2] it is proved
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that for any complex structure on KT coming from a left invariant one, there exists a

basis {ω1, ω2, ω̄1, ω̄2} satisfying

dω1 = 0, dω2 = ω1 ∧ ω̄1.

Now Theorem 4.3 implies that the complex structure is nilpotent. Therefore, we have:

Proposition 4.6. In real dimension ≤ 4, the class of compact complex nilmanifolds

coincide with the class of compact nilmanifolds with nilpotent complex structure.

To show that this result does not hold for each even dimension ≥ 6, let us consider

the nilpotent Lie group [3]

G =




1 −2x2 −2x1 2(x21 + x22) x6

1 0 −2x2 x5
1 −2x1 x4

1 x3
1

 | x1, . . . , x6 ∈ R

 .

Let Γ be the subgroup of G consisting of those matrices whose entries x1, . . . , x6 are

integers. Then L6 = Γ\G is a compact nilmanifold of real dimension 6.

The functions x1, . . . , x6 are natural coordinates in G, and the forms

dx1, dx2, dx3, dx4 + 2x1dx3, dx5 + 2x2dx3, dx6 + 2x2dx5 + 2x1dx4 + 2(x21 + x22)dx3

constitute a basis for the left invariant 1-forms on G. Then, they descend to 1-forms

α1, . . . , α6 on L6 satisfying 
dα1 = dα2 = dα3 = 0,

dα4 = 2α1 ∧ α3,

dα5 = 2α2 ∧ α3,

dα6 = 2α1 ∧ α4 + 2α2 ∧ α5.

Let {X1, . . . , X6} be the basis of vector fields on G dual to the basis {α1, . . . , α6}. The

left invariant almost complex structure J defined by

JX1 = X2, JX3 = X6, JX4 = X5,

is integrable on G. A basis {ωi, ωi ; 1 ≤ i ≤ 3} for the left invariant complex 1-forms is

given by

ω1 = α1 +
√
−1α2, ω2 = α3 +

√
−1α6, ω3 = α4 +

√
−1α5.

In terms of this basis, the structure equations of G are expressed by
dω1 = 0,

dω2 =
√
−1 (ω1 ∧ ω3 − ω3 ∧ ω1),

dω3 = ω1 ∧ ω2 + ω1 ∧ ω2.

Moreover, there does not exist an ordered basis for the left invariant complex 1-forms on G

such that the differential of a generator is expressed in terms of the preceding generators.

In fact, it is easy to see that al(J) = 0 for all l ≥ 0, and therefore J is nonnilpotent; now

Theorem 4.3 implies the nonexistence of such an ordered basis.



DOLBEAULT HOMOTOPY THEORY 145

Moreover, since a1(J) ⊆ g1 = {X6} for any left invariant complex structure J on G,

where g1 is the center of the Lie algebra of G, then {al(J)}l≥0 always stops at the step

t = 0. Therefore, L6 is a compact complex nilmanifold admitting no nilpotent complex

structure.

Denote by {Y1, . . . , Y2r} a basis for the left invariant vector fields on R2r (r ≥ 1).

Then, the left invariant almost complex structure Jr given by

JrX1 = X2, JrX3 = X6, JrX4 = X5, Jr Y2i−1 = Y2i,

for 1 ≤ i ≤ r, is integrable on the Lie group G×R2r. Moreover, the sequence {al(Jr)}l≥0
satisfies

al(Jr) = a1(Jr) = {Y1, . . . , Y2r},

for all l ≥ 1. Since this term does not coincide with the Lie algebra of G × R2r, we

have that Jr is non nilpotent. Therefore, for any r ≥ 1, L6 × T2r is a compact complex

nilmanifold whose complex structure is nonnilpotent. Then, we conclude:

Proposition 4.7. For any (even) real dimension ≥ 6, the class of compact nilmani-

folds with nilpotent complex structure is contained strictly in the class of compact complex

nilmanifolds.

4.1. A minimal model for the Dolbeault complex of a compact nilmanifold with nilpo-

tent complex structure. Let G be a nilpotent Lie group with a left invariant almost com-

plex structure J . The complexification of the Lie algebra g of G can be decomposed

as

gC = g1,0 ⊕ g0,1,

where g1,0 = {X ∈ gC | JX =
√
−1X} and g0,1 = {X ∈ gC | JX = −

√
−1X}.

Analogously, (g∗)C = g1,0 ⊕ g0,1, where g1,0 = {α ∈ (g∗)C | J∗α =
√
−1α} and g0,1 =

{α ∈ (g∗)C | J∗α = −
√
−1α}, where J∗α(X) = α(JX). Since (gC)∗ ∼= (g∗)C, there

exists a natural bigraduation induced by J on the exterior algebra Λ∗(gC)∗:

Λ∗(gC)∗ =
⊕
p,q≥0

Λp,q(gC)∗,

where Λp,q(gC)∗ = Λp(g1,0)⊗ Λq(g0,1).

Let us suppose that the almost complex structure J is integrable; then the Chevalley–

Eilenberg differential d : Λ∗(gC)∗ −→ Λ∗+1(gC)∗, extended to Λ∗(gC)∗ in a natural way,

admits a decomposition as d = ∂ + ∂ where

∂ : Λp,q(gC)∗ −→ Λp+1,q(gC)∗, ∂ : Λp,q(gC)∗ −→ Λp,q+1(gC)∗,

and ∂2 = ∂∂ + ∂∂ = ∂
2

= 0. Therefore, (Λ∗,∗(gC)∗, ∂) is a DBA.

We remind that a DBA (A∗,∗, ∂) is said to be minimal if A∗,∗ is free as an algebra

and ∂ is decomposable.

Proposition 4.8. Let g be the Lie algebra of a Lie group G endowed with a nilpotent

complex structure J . Then (Λ∗,∗(gC)∗, ∂) is a minimal DBA.
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P r o o f. Since Λ∗,∗(gC)∗ is an exterior algebra, it is obviously free. Suppose that

dimRG = 2n and denote

Λ∗,∗(gC)∗ ≡ Λ∗,∗(x11,0, x
1
0,1, . . . , x

n
1,0, x

n
0,1),

where the generators have total degree 1 and bidegree as indexed.

Since J is nilpotent, from Theorem 4.3 it follows the existence of an ordered set of

generators {x11,0, x10,1, . . . , xn1,0, xn0,1} with respect to which the differential ∂ is given by

∂xi1,0 =
∑
j,k<i

Bijk x
j
1,0 · xk0,1 , ∂xi0,1 =

∑
j<k<i

Āijk x
j
0,1 · xk0,1 , (7)

for 1 ≤ i ≤ n. Therefore, ∂ is decomposable and (Λ∗,∗(gC)∗, ∂) is minimal.

The DBA (Λ∗,∗(gC)∗, ∂) is canonically identified to the DBA of complex valued left

invariant forms on the Lie group G. Let us suppose that G has a discrete subgroup Γ such

that Γ\G is a compact nilmanifold, and consider on Γ\G the complex structure coming

from J . Since each left invariant form α on G descends to a form on the quotient Γ\G
whose differential satisfies on Γ\G the same relations as dα does on G, then there exists

a canonical morphism of DBA’s

ρ: (Λ∗,∗(gC)∗, ∂) −→ (Λ∗,∗(Γ\G), ∂). (8)

Theorem 4.9 [10]. Let Γ\G be a compact nilmanifold endowed with a nilpotent com-

plex structure. Then, the morphism (8) induces an isomorphism on cohomology.

From Proposition 4.8 we conclude:

Corollary 4.10. Under the conditions of the above theorem, (Λ∗,∗(gC)∗, ∂) is a min-

imal model for the Dolbeault complex of Γ\G.

Corollary 4.11 (Sakane’s Theorem). Let Γ\G be a compact complex parallelizable

nilmanifold. Then there is a canonical isomorphism

Hp,q

∂
(Γ\G) ∼= Λp(g1,0)⊗Hq(g0,1),

where Hq(g0,1) denotes the cohomology of g0,1.

P r o o f. Since the Lie algebra g of G is complex, then all the coefficients Bijk in

the equations (6) vanish. Then, Proposition 4.8 and Theorem 4.9 imply that a minimal

model for the Dolbeault complex of Γ\G is the DBA (Λ∗,∗(xi1,0, x
i
0,1), 1 ≤ i ≤ n, ∂) with

differential ∂ given by

∂xi1,0 = 0 , ∂xi0,1 =
∑
j<k<i

Āijk x
j
0,1 · xk0,1 ,

for 1 ≤ i ≤ n. Hence

Hp,q

∂
(Γ\G) ∼= Λp(x11,0, . . . , x

n
1,0)⊗Hq(Λ∗(x10,1, . . . , x

n
0,1)),

where Hq(Λ∗(x10,1, . . . , x
n
0,1)) denotes the cohomology of the DGA (Λ∗(x10,1, . . . , x

n
0,1), ∂).

4.2. Cohomology Frölicher spectral sequence of compact nilmanifolds with nilpotent

complex structure. From now on, Γ\G denotes a compact nilmanifold endowed with a

nilpotent complex structure J . Next we show that the computation of any term Ep,qr (Γ\G)
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in the cohomology Frölicher spectral sequence of such a complex manifold Γ\G is reduced

to calculation at the Lie algebra level of G.

It is clear that the morphism ρ given by (8) also commutes with the differential ∂;

therefore, ρ is a morphism between the BBA (Λ∗,∗(gC)∗, ∂, ∂) and the double complex

(Λ∗,∗(Γ\G), ∂, ∂) of Γ\G.

Theorem 4.12 [11]. In the conditions of Theorem 4.9, let {Er(gC)}r≥1 denote the

spectral sequence obtained by derivation of the BBA (Λ∗,∗(gC)∗, ∂, ∂) in vertical direction.

Then, for r ≥ 1 and for any p, q, there is a canonical isomorphism

Ep,qr (Γ\G) ∼= Ep,qr (gC).

Moreover , if d̃r denote the homomorphisms corresponding to (5) at the Lie algebra level ,

then (Er(g
C), d̃r) is a bigraded model for (Er(Γ\G), dr), r ≥ 1.

As a consequence of this result, in the following proposition we exhibit many examples

of compact complex manifolds for which E1 6∼= E∞.

Proposition 4.13. Let Γ\G be a compact complex parallelizable nilmanifold not a

complex torus. Then E1,0
1 (Γ\G) 6∼= E1,0

2 (Γ\G).

P r o o f. Since Γ\G is complex parallelizable then there are n (holomorphic) 1-forms

ω1, . . . , ωn on Γ\G satisfying dωi =
∑

j<k<i

Aijk ωj ∧ ωk, for 1 ≤ i ≤ n. Since Γ\G is not

a torus, then there exists at least one nonzero coefficient Aijk. Then the corresponding

ωi is a nonclosed holomorphic 1-form, that is, ∂ωi = 0 and ∂ωi 6= 0 is a form of type

(2,0). From Theorem 4.12 and using the characterization given in Theorem 2.1 for the

particular case (p, q) = (1, 0), we conclude that [ωi] 6= 0 in H1,0

∂
(Γ\G), but ωi does not

define a class in E1,0
2 (Γ\G) because ∂ωi is not ∂-exact, i.e. ωi 6∈ X1,0

2 (gC).

The simplest example of a manifold in the conditions of Proposition 4.13 is the well

known Iwasawa manifold I3 = Γ\H, defined as the quotient of the complex Heisenberg

group by the Gaussian integers. However, this manifold satisfies E2(I3) ∼= E∞(I3) [15].

More generally:

Proposition 4.14 [8]. Let Γ\G be a compact complex parallelizable nilmanifold.

Then

Ep,q2 (Γ\G) ∼= Ep,q∞ (Γ\G),

for all p and q.

P r o o f. From Corollary 4.11 we have that

Ep,q1 (Γ\G) ∼= Λp(g1,0)⊗Hq(g0,1).

Now we use (5) at the Lie algebra level. Since g is a complex Lie algebra, the homo-

morphism d̃1 = ∂ maps any element in Hq(g0,1) to zero, and d̃1(α) = ∂α = dα for any

α ∈ Λp(g1,0). Therefore, from Theorem 4.12 it follows that

Ep,q2 (Γ\G) ∼= Ep,q2 (gC) ∼= Hp(g1,0)⊗Hq(g0,1).

Since for any class [αp,q] ∈ Ep,q2 (gC) there is a representative satisfying ∂αp,q = ∂αp,q = 0,

it is clear that the homomorphism d̃r is identically zero for r ≥ 2, which implies, using
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again Theorem 4.12, that

Ep,q∞ (Γ\G) ∼= Ep,q∞ (gC) ∼= Ep,q2 (gC) ∼= Ep,q2 (Γ\G).

From Proposition 4.13 and Proposition 4.14 we have:

Corollary 4.15. Let Γ\G be a compact complex parallelizable nilmanifold not a

complex torus. Then E1(Γ\G) 6∼= E2(Γ\G) ∼= E∞(Γ\G).

Remark 4.16. From the proof in Proposition 4.14 we see that the difference between

the terms E1 and E2 comes from the nonclosed holomorphic forms.

4.3. Cohomotopy Frölicher spectral sequence of compact nilmanifolds with nilpotent

complex structure. Let {Fr(M)} denote the cohomotopy spectral sequence of a complex

manifold M given in Section 3.

Theorem 4.17. Let Γ\G be a compact nilmanifold endowed with a nilpotent complex

structure. Then, the sequence {Fr(Γ\G)}r≥1 always collapses at the first level.

P r o o f. From Theorem 4.9 we have that A = Λ∗,∗(x11,0, x
1
0,1, . . . , x

n
1,0, x

n
0,1) with dif-

ferential ∂A given by (7) is a DBA model for the Dolbeault complex (Λ∗,∗(Γ\G), ∂)

of Γ\G. Then, the indecomposables I(A) of A constitute the bigraded vector space

generated by {x11,0, x10,1, . . . , xn1,0, xn0,1}, and the differential induced by ∂A on I(A) is

identically zero. Then H1,0(I(A)) = 〈x11,0, . . . , xn1,0 〉, H0,1(I(A)) = 〈x10,1, . . . , xn0,1 〉, and

Hp,q(I(A)) = {0} if p+ q ≥ 2.

On the other hand, we know that A = Λ∗(x11,0, x
1
0,1, . . . , x

n
1,0, x

n
0,1) with differential

dA given by

dA(xi1,0) =
∑
j<k<i

Aijk x
j
1,0 · xk1,0 +

∑
j,k<i

Bijk x
j
1,0 · xk0,1 ,

dA(xi0,1) =
∑
j,k<i

B̄ijk x
j
0,1 · xk1,0 +

∑
j<k<i

Āijk x
j
0,1 · xk0,1 ,

for 1 ≤ i ≤ n, is a DGA model for the de Rham complex of Γ\G. Then we have

that the space of indecomposables I(A) of A is the graded vector space generated by

x11,0, x
1
0,1, . . . , x

n
1,0, x

n
0,1 (of total degree 1). Then the differential on I(A) induced by

dA is identically zero, which implies that H1(I(A)) = 〈x11,0, x10,1, . . . , xn1,0, xn0,1 〉 and

Hk(I(A)) = {0} for k ≥ 2.

Since (A, ∂A) and (A, dA) are minimal, from Theorem 3.4 and taking into account

Definition 3.2, we conclude that the cohomotopy spectral sequence of Γ\G satisfies

F1(Γ\G) ∼= F∞(Γ\G).

5. Frölicher spectral sequence in dimension 3. In this section we analyse the

behaviour of the cohomology Frölicher spectral sequence {Er} in complex dimension 3,

that is the lowest possible dimension in which one can have E1 6∼= E∞ [4, 17]. Moreover,

in this dimension there exist compact complex manifolds for which the sequence {Er}
does not collapse even at E2, answering (in the lowest possible dimension) a question

posed by Griffiths and Harris in ([15], page 444).
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In view of Corollary 4.15, to construct nilmanifolds with E2 6∼= E∞ it is necessary to

consider at least nilpotent complex structures on compact nilmanifolds. For each triple

(A,B,C) of rational numbers, let GABC be the simply-connected nilpotent Lie group of

complex matrices of the form

1 −A2 z̄ −Bz −B2 z
2 Cz̄ −Az C

2 z̄
2 −Azz̄ w

1 0 0 0 2z z2

1 z 0 0 v̄

1 0 0 z̄

1 z̄ v

1 z

1


, (9)

where z, v, w ∈ C. (Remark that the Lie group GABC is not a complex Lie group.) Let

z, v, w : GABC −→ C be the natural complex coordinate functions on GABC . Then, an

easy computation shows that in terms of dz, dv, dw and their conjugates, a basis for the

left invariant complex 1-forms of type (1,0) on GABC is given by

ω1 = dz, ω2 = dv − z̄dz, ω3 = dw +Azdv +Bz(dv̄ − z

2
dz̄)− Cz̄(dv − z̄

2
dz).

Now, with respect to this basis it is clear that the structure equations are:
dω1 = 0,

dω2 = ω1 ∧ ω1,

dω3 = Aω1 ∧ ω2 +B ω1 ∧ ω2 + C ω2 ∧ ω1.

(10)

Therefore, from Theorem 4.3 we have that GABC is a nilpotent Lie group endowed with

a nilpotent complex structure for any (A,B,C) ∈ Q3.

Since A, B and C are rationals, {Re(ωi), Im(ωi); 1 ≤ i ≤ 3} constitutes a basis of

left invariant real 1-forms on the Lie group such that the coefficients in the structure

equations are all rational numbers. Then a well known result by Mal’cev [20] asserts the

existence of a lattice ΓABC of GABC of maximal rank for each (A,B,C) ∈ Q3. Moreover,

we can take ΓABC as the subgroup of GABC consisting of those matrices (9) whose entries

{z, v, w} are Gaussian integers. Then MABC = ΓABC\GABC is a compact nilmanifold

with nilpotent complex structure. Therefore, we have:

Proposition 5.1. The equations (10) define a 3-parametric family of compact nil-

manifolds with nilpotent complex structure MABC = ΓABC\GABC , of complex dimen-

sion 3.

Each MABC can be seen as a generalization of the well known Kodaira–Thurston

manifold KT , which is the simplest example of compact nilmanifold with nilpotent com-

plex structure that is real parallelizable but not complex parallelizable. Let G be the

simply-connected nilpotent Lie group of complex matrices of the form 1 z̄ v

1 z

1

 , (11)
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where z, v ∈ C. In terms of dz and dv we have that

ω1 = dz, ω2 = dv − z̄dz,

constitute a basis for the left invariant (1,0)–forms on G, with respect to which the

structure equations are:

dω1 = 0, dω2 = ω1 ∧ ω1.

The Kodaira–Thurston manifold KT is the compact nilmanifold with nilpotent complex

structure obtained as KT = Γ\G, where Γ is the subgroup of G consisting of those

matrices (11) whose entries {z, v} are Gaussian integers.

Proposition 5.2. Each MABC is the total space of a holomorphic principal bundle

T1 ↪→MABC −→ KT with structure group the complex torus T1.

P r o o f. From (9) and (11) it follows that, at the level of Lie groups, GABC can be

described as the total space of a holomorphic principal bundle

C ↪→ GABC
π−→ G (12)

with Abelian structure group C. In fact, the projection π : GABC −→ G is given by

π(z, v, w) = (z, v) and the right actionGABC×C −→ GABC by ((z, v, w), t) 7→ (z, v, w+t).

Let ΓABC be a lattice of GABC of maximal rank. Then by passing to the quotient

in (12) we get the desired description of MABC .

The Kodaira–Thurston manifold KT was the first known example of a compact sym-

plectic manifold, which is also complex, with no positive definite Kähler metric [7, 17, 28].

Moreover, KT has indefinite Kähler metrics compatible with its natural complex struc-

ture [1]. Next we analyse the existence of indefinite Kähler structures, as well as of

symplectic structures, on each manifold MABC .

In the particular case A = B = C = 0, the corresponding complex manifold M000 is

the product KT × T1. It is easy to check that

ds2 = ω1#ω2 + ω2#ω1 + ω3#ω3,

where # denotes the symmetric product, is an indefinite Kähler metric compatible with

the complex structure of KT ×T1, and the corresponding Kähler form is the symplectic

form

F =
√
−1 (ω1 ∧ ω2 + ω2 ∧ ω1 + ω3 ∧ ω3).

Theorem 5.3. Let us suppose (A,B,C) ∈ Q3 − {(0, 0, 0)}.

(i) If A + B = 0 then, the manifold MABC has no symplectic structure if and only if

C = 0.

(ii) The complex manifold MABC has no (compatible) indefinite Kähler metric if and

only if A+B = 0.

P r o o f. To prove (i), let us suppose first that C 6= 0. Then γ =
√
−1 (−ω1∧ω3+C ω2∧

ω2 +ω1 ∧ω3) is a real closed 2–form satisfying γ3 = −6C ω1 ∧ω2 ∧ω3 ∧ω1 ∧ω2 ∧ω3 6= 0.

Then, it is a symplectic form.

On the other hand, if A+B = C = 0 then it is easy to see that

H2(MABC) = 〈 [ω1 ∧ ω2], [ω1 ∧ ω3], [ω1 ∧ ω3 + ω3 ∧ ω1], [ω1 ∧ ω2], [ω1 ∧ ω3] 〉.
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Therefore, for any closed 2-form γ the class [γ] inH2(MABC) must be a linear combination

of the five classes above. A direct computation shows that [γ]3 is always zero. Thus, there

is no symplectic structure on the manifold.

To prove (ii) we first remark that given a compatible indefinite Kähler structure on

a complex manifold M , the corresponding Kähler form F is a real closed form of type

(1,1) with respect to the complex structure of M . Then F defines a class [F ] in H1,1

∂
(M)

such that [F ]n is a nonzero class in Hn,n

∂
(M), n being the complex dimension of M .

Let us suppose that A + B = 0. From (i) it follows that if C = 0 then there is no

symplectic structure on MABC ; therefore, there cannot be an indefinite Kähler metric

compatible with the complex structure of MABC . Let us suppose then that the parameter

C 6= 0. Since the complex structure of MABC is nilpotent, from the equations (10) and

Theorem 4.9 we get

H1,1

∂
(MABC) = 〈 [ω1 ∧ ω2], [ω1 ∧ ω3 + ω3 ∧ ω1], [ω1 ∧ ω3 +Aω2 ∧ ω2] 〉.

Then, for any cohomology class [F ] in H1,1

∂
(MABC) there are complex numbers λ, µ, ν

such that

[F ] = λ [ω1 ∧ ω2] + µ [ω1 ∧ ω3 + ω3 ∧ ω1] + ν [ω1 ∧ ω3 +Aω2 ∧ ω2]. (13)

If F is the corresponding Kähler form of a compatible indefinite Kähler metric on MABC

then F = F , which implies that [F ]− [F ] is zero in H1,1

∂
(MABC). From (13) we have

[F ]− [F ] = [λω1 ∧ ω2 + λω2 ∧ ω1 + (µ+ µ+ ν)ω1 ∧ ω3

+(µ+ µ+ ν)ω3 ∧ ω1 +A(ν + ν)ω2 ∧ ω2 ].
(14)

Denote by α the (1,1)-form on the right hand side of (14). Since α ∈ Λ1,1(gCABC)∗, gABC
being the Lie algebra of GABC , from Theorem 4.9 we have that [F ] − [F ] is zero in

H1,1

∂
(MABC) if and only if α ∈ ∂(Λ1,0(gCABC)∗). But from equations (10) for B = −A we

have that ∂(Λ1,0(gCABC)∗) = 〈ω1 ∧ ω1, −Aω1 ∧ ω2 +C ω2 ∧ ω1 〉. Therefore, we conclude

that F = F implies in particular that λ, µ and ν must satisfy

µ+ µ+ ν = µ+ µ+ ν = A(ν + ν) = 0. (15)

On the other hand, a simple calculation using (13) shows that

[F ]3 = [6µν(µ+ ν)Aω1 ∧ ω2 ∧ ω3 ∧ ω1 ∧ ω2 ∧ ω3].

Therefore, if A = 0 then [F ]3 = 0. Let us suppose A 6= 0; then from equations (15) it

follows that ν = 0, which implies again [F ]3 = 0. Thus, [F ]3 is always zero if A+B = 0,

that is, there is no compatible indefinite Kähler metric on the complex manifolds MABC

with A+B = 0.

To prove the reciprocity, let us suppose that A+B 6= 0. Then,

ds2 = ω1#ω3 + (A+B)ω2#ω2 + ω3#ω1

is an indefinite Kähler metric on MABC and the corresponding Kähler form is the sym-

plectic form F =
√
−1 (ω1 ∧ ω3 + (A+B)ω2 ∧ ω2 + ω3 ∧ ω1).

SinceKT has complex dimension 2, its associated Frölicher spectral sequence collapses

at E1. However, there are many complex manifolds MABC even with E2 6∼= E∞. In fact,
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in the following theorem we exhibit the behaviour of the Frölicher spectral sequence for

each manifold MABC .

Theorem 5.4. Let MABC be a compact complex manifold defined by (10). Then,

E2(MABC) 6∼= E∞(MABC) if and only if C 6= 0 and C2 6= (B −A)2.

Moreover , if E2(MABC) 6∼= E∞(MABC) then

E1(MABC) 6∼= E2(MABC) if and only if A = 0.

We omit here the proof of this result, which reduces to a long, but easy calculation

using Theorem 4.12 (in [9, 11] a detailed proof of Theorem 5.4 can be found). However,

we remark that the algebraic conditions appearing in Theorem 5.4 have a topological

meaning. In fact, if C 6= 0 and C2 6= (B−A)2 then it is easy to prove that H1(MABC) =

〈 [ω1], [ω1], [ω2 +ω2] 〉, that is, MABC has first Betti number b1(MABC) = 3, which is the

lowest possible b1 for a nilmanifold defined by (10). This implies that the dimension of

the de Rham cohomology E∞(MABC) of MABC is small, which provides an explanation

of the behaviour of the sequence {Er} for such manifolds.

Moreover, if the relations C 6= 0 and C2 6= (B − A)2 are satisfied then, A = 0 if

and only if ω3 is a ∂-closed form, which is equivalent to say that the Hodge number

h0,1(MABC) = dimH0,1

∂
(MABC) is maximum (i.e. h0,1(MABC) = 3). This implies that

the dimension of the Dolbeault cohomology E1(MABC) of MABC is large, which explains

that E1 6∼= E2 6∼= E∞ for such manifolds.

In the following table we illustrate the dimension of each term in the sequence

{Er(MABC)}r≥1, for some particular manifolds MABC in the family defined by (10):

parameters A,B,C dimE1 dimE2 dimE3 sequence {Er}

A = 0 ; C 6= 0,±B 32 28 24 E1 6∼=E2 6∼=E3
∼=E∞

A 6= 0 ; B 6= 0, A ; C = 0 36 24 24 E1 6∼=E2
∼=E∞

A,B,C 6=0
C2 6=(B−A)2 28 28 24 E1

∼=E2 6∼=E3
∼=E∞

C2 =(B−A)2 28 28 28 E1
∼=E∞

From Theorem 5.3 we have:

(i) If A+B = 0 in the above table, then MABC belongs to the class of compact complex

manifolds with no (compatible) indefinite Kähler metric.

(ii) If A + B 6= 0 in the above table, then MABC belongs to the class of compact

indefinite Kähler manifolds.

As we see in the table, in these two special subclasses of compact complex manifolds

one can find nilmanifolds MABC for which the sequence {Er} satisfies any of the four pos-

sible behaviours in dimension 3. In this sense, we conclude that (in complex dimension 3)

the nonexistence, as well as the existence, of a compatible indefinite Kähler metric (not
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positive definite, of course) on the complex manifold has no influence on the behaviour

of the Frölicher spectral sequence.
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terms in the Frölicher spectral sequence, Diff. Geom. Appl. 7 (1997), 75–84.

[10] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Compact nilmanifolds with

nilpotent complex structure: Dolbeault cohomology , preprint 1997.

[11] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Frölicher spectral sequence of
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