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1. Introduction and statement of the results. Let f, g : Rn → Rp be two
continuous mappings. They are said to be topologically equivalent if there are homeomor-
phisms ρ : Rn → Rn and λ : Rp → Rp such that g = λ ◦ f ◦ ρ. A topological type of
mappings from Rn to Rp is an equivalence class for the topological equivalence.

T. Fukuda [9] proved the following result: given two positive integers n, k, the number
of topological types of polynomials Rn → R of degree ≤ k is finite. Khovanskii [11] and
others have shown that many finiteness results on polynomials of bounded degree can
also be obtained for polynomials with a bounded number of monomials (and no bound
on the degree). Here we present a version of the result of Fukuda for these “fewnomials”.

Theorem 1. Let n and k be two positive integers. Then the number of topological

types of polynomials Rn → R with at most k monomials is finite.

This theorem is in the same vein as the result of van den Dries about the topological
types of sets of zeros of fewnomials (two sets have the same topological type when they
are homeomorphic). This result says that, given n and k two positive integers, the number
of topological types of sets f−1(0) ⊂ Rn, where f : Rn → R is a polynomial with at most
k monomials, is finite. The result of van den Dries is a consequence of a generalization of
the theorem of semialgebraic triviality of Hardt to the context of o-minimal structures.
This generalization is in turn a consequence of the triangulability of definable sets in
o-minimal structures. For these results, and for an excellent presentation of o-minimal
structures, see the surveys [5] and [8], and look for the forthcoming [6]. We shall follow
exactly the same lines for the proof of Theorem 1. The proof of Fukuda’s theorem in [4]
follows this pattern in the semialgebraic case.
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We adopt the definitions and notations of [8]. We consider an o-minimal structure S
on a real closed field (R,+, ·). Recall that S is a sequence (Sn)n∈N such that for each
n ∈ N:

S1. Sn is a boolean algebra of subsets of Rn, with Rn ∈ Sn.

S2. Sn contains the diagonals {(x1, . . . , xn) ∈ Rn ; xi = xj} for 1 ≤ i < j ≤ n.
S3. If A ∈ Sn, then A×R and R ×A belong to Sn+1.
S4. If A ∈ Sn+1, then π(A) ∈ Sn, where π : Rn+1 → Rn is the projection on the space

of the first n coordinates.
S5. S3 contains the graphs of addition and multiplication.

A sequence S satisfying S1–S5 is called a structure on (R,+, ·). It is o-minimal if

S6. S1 consists exactly of the finite unions of intervals and points.

The elements of Sn are called the definable subsets of Rn. A mapping from a subset
of Rn to a subset of Rp is definable if its graph is in Sn+p.

The smallest structure on a real closed field R has the semialgebraic sets as definable
sets, and it is, of course, o-minimal. Another classical o-minimal structure is Ran, for
which the definable subsets of Rn are those which are subanalytic in the projective space
RPn. The geometric theory of o-minimal structures is thus a continuation of the pioneer
work of S.  Lojasiewicz in semialgebraic, semianalytic and subanalytic geometries. The
feasability of such a generalization relies on the results of Knight, Pillay and Steinhorn
[15], [12]. Concerning fewnomials, we shall be mainly interested in the o-minimal structure
Rexp, the smallest structure containing the graph of the exponential. The fact that it is
o-minimal is a fundamental result of Wilkie [19].

First, we prove that a definable function is triangulable. Note that we consider
o-minimal structures not only on the field of real numbers R, but also on other real
closed fields R. This will be useful.

Theorem 2. Let X be a closed and bounded definable subset of Rn and f : X → R
a definable continuous function. Then there exist a finite simplicial complex K in Rn+1

and a definable homeomorphism ρ : |K|R → X such that f ◦ ρ is linear on each simplex

of K.

Moreover, given finitely many definable subsets B1, . . . , Bk of X, we may choose the

triangulation ρ : |K|R → X so that each Bi is a union of images of open simplices of K.

A result related to triangulability was obtained by T. L. Loi [13]: any definable func-
tion has a stratification satisfying the af regularity condition. The proof of Theorem 2
is essentially the proof of M. Shiota for the triangulability of semialgebraic functions
(see [16]). We will give it in Section 2. The main new point is a lemma which is a kind
of “existence of good directions” (Lemma 5). The other parts of the proof are classi-
cal. Shiota has also given a theorem of triangulation of functions in the context of his
X -sets [17]. But his proof is not elementary, in the sense that it does not work for
o-minimal structures on general real closed fields. This makes it useless for our purpose.

In Section 3 we introduce real spectra for o-minimal structures. This tool can be
used to translate elementary results into results on definable families. This technique was
developed in the semialgebraic context in [3]. This is only a small part of the theory of
the real spectrum, and actually it is a reformulation of classical model-theoretic notions
and results.
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We apply this technique of translation in Section 4 to Theorem 2, and we obtain the
definable triviality of a definable family of functions over a finite definable partition of
the parameter space (Theorem 14). Finally, in Section 5, we come back to the finiteness
of topological types of fewnomials, using the definability of xy (x > 0) in Rexp. We give
a similar result for polynomials with bounded additive complexity.

2. Triangulation of definable functions. This section is devoted to the proof of
Theorem 2. Actually we will need a variant of this theorem.

Theorem 3. Let X be a closed and bounded definable subset of Rn and f : X → R
a definable continuous function. Then there exist a finite simplicial complex K in Qn+1

and definable homeomorphisms ρ : |K|R → X and τ : R → R such that τ ◦ f ◦ ρ is the

restriction to |K|R of the projection Rn+1 → R on the last factor.

Moreover, given finitely many definable subsets B1, . . . , Bk of X, we can choose the

triangulation ρ : |K|R → X so that each Bi is a union of images of open simplices of K.

We shall give only the proof of Theorem 3, since the proof of the other theorem is
essentially the same, but a little simpler. We may replace X with the graph A of f in
Rn×R, and the proof of Theorem 3 is reduced to the proof of the following triangulability
result.

Proposition 4. Let A be a closed and bounded definable subset of Rn × R and let

Bi, i = 1, . . . , k, be definable subsets of A. Let π : Rn × R → R be the projection on

the last factor. Then there exist a finite simplicial complex K in Qn × Q and definable

homeomorphisms τ : R → R and ϕ : |K|R → A such that τ ◦ π ◦ ϕ = π||K|R and each Bi

is a union of images by ϕ of open simplices of K.

P r o o f. We proceed by induction on n. The case of n = 0 is obvious. We can sub-
divide R with finitely many points x1 < . . . < xp such that A and the Bi are unions of
points xi and intervals ]xj , xj+1[. Then we choose a definable homeomorphism τ : R → R
such that τ(xi) ∈ Q for i = 1, . . . , p.

Given n > 0, assume that the proposition is proved for n − 1. Since every definable
set is a finite union of locally closed definable sets, we may assume that the Bi are locally
closed. Then we may replace Bi with its closure Bi and the difference Bi \Bi. Hence we
may assume that all the Bi are closed.

Let F0 be the boundary of A and Fi the boundary of Bi, for i = 1, . . . , k. Set F =⋃k
i=0 Fi. Then F is a closed and bounded definable set of dimension at most n. Denote

by C the finite set of points c ∈ R such that {x ∈ Rn ; (x, c) ∈ F} is of dimension n.
Let Gi, i = 0, . . . , k be the union of the closure of Fi \ (Rn × C) with the boundary of

Fi ∩ (Rn ×C). Set G =
⋃k

i=0 Gi. Each Gi is a closed and bounded definable set, and for
every t in R, the dimension of {x ∈ Rn ; (x, t) ∈ G} is strictly less than n.

Let p : Rn ×R → Rn−1×R be the projection defined by p(x1, x
′, t) = (x′, t). Assume

that p has the following property:

(Φ) ∀(x′, t) ∈ Rn−1 ×R,
(
p−1(x′, t) ∩G

)
is finite.

We apply the cylindrical cell decomposition to the projection p and to the definable
sets Gi. We get a finite partition of p(A) into definably connected definable subsets Xλ

of Rn−1 ×R, and definable continuous functions

ξλ,1 < . . . < ξλ,mλ
: Xλ −→ R,
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such that every graph of ξλ,µ is contained in some Gi and every Gi is a union of graphs of
ξλ,µ (here the graph of ξλ,µ should be regarded as the set of (ξλ,µ(x), x) for x ∈ Xλ). We
may moreover assume that the partition Xλ is compatible with the subsets Rn−1×{c} for
every c ∈ C. Applying the inductive assumption, we may assume that there is a simplicial
complex L in Qn−1 ×Q such that |L|R = p(A) and all Xλ are open simplices σλ of L.
Since all Gi are closed and bounded and according to the assumption that property (Φ)
holds for p, every function ξλ,µ may be continuously extended to the closed simplex σλ.
We denote the extension by ξλ,µ. Note that A and the Bi are disjoint unions of “thin”
cells (i.e. graphs of ξλ,µ) and “thick” cells (i.e. slices of the cylinders p−1(σλ) cut by the
graphs of two successive functions ξλ,µ and ξλ,µ+1. The closure C of a cell is a union of
cells.

b(D1)

b(D2)

b(D3)

b(D4)

b(D5)

•

•

•

b(C−)

b(C)

b(C+)

b(E)
•

D1 •

D2

D3 •

D4

D5 •

C−

C C+ E
•

P (C) C

Figure 1. The construction of K

From now on, the construction of the triangulation of A is more or less classical. We
will follow closely [10]. However we detail the construction for the convenience of the
reader and since one of the formulas of [10] has to be modified.

First we construct a simplicial complex K in Qn × Q such that the projection
p : Q×Qn−1×Q → Qn−1×Q induces a simplicial morphism from K to the barycentric
subdivision L′.

We denote by b(σ) the barycenter of the simplex σ of L. If C is a thin cell which
is the graph of ξµ : σ → R, we set b(C) = (µ, b(σ)). If C is a thick cell delimited by
the graphs of ξµ, ξµ+1 : σ → R, we set b(C) = (µ + 1

2 , b(σ)). Note that in both cases
b(C) has coordinates in Q. The closed simplices of K are the [b(C0), b(C1), . . . , b(Cp)] for
every sequence (C0, C1, . . . , Cp) of cells in A such that Ci ⊂ Ci+1 for i = 0, . . . , p− 1. We
denote by P (C) the polytope which is the union of all simplices [b(C0), b(C1), . . . , b(Cp)]
of K such that Cp is contained in the closure C.

Let C be a cell such that p(C) = σ. If C is a thin cell, then P (C) is the graph of a
function hC : σ → R linear on each simplex of the subdivision of σ. If C is a thick cell
bounded from above (resp. from below) by the thin cell C+ (resp. C−), we denote by
W (C) the polytope P (C)∩ p−1(σ \ σ). Note that P (C) is the cone with vertex b(C) and
base the union of P (C−) (the floor), P (C+) (the ceiling) and W (C) (the walls).

Now it suffices to construct a definable homeomorphism ϕ : |K|R → A such that
p ◦ ϕ = p and ϕ(P (C)) = C for every cell C. Note that, if C is a thin cell which is the
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graph of ξ : σ → R, we must have ϕ(hC(x), x) = (ξ(x), x) for every x ∈ σ. Let C be a
thick cell bounded from above (resp. from below) by the thin cell C+ (resp. C−) which
is the graph of ξ+ : σ → R (resp. ξ− : σ → R). Let θC : σ → R be the function which

maps z ∈ σ to the “height” of P (C) at the vertical of z, i.e. θC(z) = hC+(z) − hC−
(z).

We proceed by induction on the dimension of σ and assume that ϕ has already been
constructed on W (C). It is also defined on P (C−) ∪ P (C+) by the preceding remark.
To define ϕ inside P (C), we use its conic structure. Every point x inside P (C) can be
represented as x = (1 − r)b(C) + ry, where 0 ≤ r < 1 and y ∈ P (C−) ∪ P (C+) ∪W (C).
This representation is unique if x 6= b(C).

p(y)
•

p(x)
•

p(y)
•

p(x)
••b(σ) b(σ)•

•d− •
a−

b−

x

b+

a+

y
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b(C)

•

•

•

•

•

•

•

ϕ(d−)

ϕ(y)
ϕ(b−)

ϕ(a−)

ϕ(b(C))

ϕ(x)

ϕ(b+)

ϕ(a+)

ϕ(d+) •

•

• •

•

•

•

•

•

Figure 2. The construction of ϕ

First we consider the case where y ∈ P (C+) ∪ P (C−). This corresponds to the case
where x is in the segment [a−, b−] or in the segment [b+, a+] (see Figure 2). Then we take
for ϕ(x) the image of x by the affine map sending the segment [a−, a+] onto the segment
[ϕ(a−), ϕ(a+)]. If x = (x1, p(x)), the first coordinate of ϕ(x) is

x1 − hC−

(p(x))

θC(p(x))
ξ+(p(x)) +

hC+
(p(x)) − x1

θC(p(x))
ξ−(p(x)).

Next we consider the case where y ∈ W (C). This corresponds to the case where x is
in the segment [b−, b+] (see Figure 2). The images ϕ(b−) and ϕ(b+) have already been
defined. Then we take for ϕ(x) the point which divides the segment [ϕ(b−), ϕ(b+)] in the
same way as ϕ(y) divides the segment [ϕ(d−), ϕ(d+)]. The first coordinate of ϕ(x) is

rsθC(p(y)) + 1−r
2 θC(b(σ))

θC(p(x))
ξ+(p(x)) +

r(1 − s)θC(p(y)) + 1−r
2 θC(b(σ))

θC(p(x))
ξ−(p(x)),

where s ∈ [0, 1] is such that ϕ(y) = s(ξ+(p(y), p(y)) + (1 − s)(ξ−(p(y), p(y)). Note that s
is not well defined if and only if θC(p(y)) = 0. In this case the formula gives 1

2

(
ξ+(p(x))+

ξ−(p(x))
)
.

The geometric description should convince the reader that ϕ is a homeomorphism.

To complete the proof, we have to show that we may assume that p verifies (Φ). For
this we use the following lemma.
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Lemma 5. Let W ⊂ Rn × Rp (n ≥ 2) be a definable set. For s ∈ Rp, define Ws =
{y ∈ Rn ; (y, s) ∈ W}. Assume that for all s in Rp, dim(Ws) < n. Then there exists

a polynomial mapping v′ : R → Rn−1 of degree not greater than p such that, for all s
in Rp, the set of x1 ∈ R such that (x1, v

′(x1)) ∈ Ws is finite.

P r o o f. We proceed by induction on n. We begin with n = 2. Let V be a definable
subset of dimension 1 of R2. Then V is a disjoint union of finitely many points, vertical
open intervals and graphs of definable continuous functions ξi : Ii → R, where Ii is an
open interval. Consider such a function ξi. Let (fa)a∈Rp+1 be the family of polynomials
in one variable of degree not greater than p, parametrized by the (p + 1)-tuple of the
coefficients. Then the open definable set

{
x1 ∈ Ii ; ∃a ∈ Rp+1 ∃ǫ ∈ R

(
ǫ > 0 and ∀y ∈ Ii

(
|y − x1| < ǫ ⇒ fa(y) = ξi(y)

))}

is a finite union of disjoint open intervals contained in Ii, and for every such interval U
there is a unique polynomial fa such that fa|U = ξi|U . Hence there is a finite number of
polynomials fa such that the set of x1 ∈ R such that (x1, fa(x1)) ∈ V is infinite. From
this we deduce that, for all s ∈ Rp, there are finitely many a ∈ Rp+1 such that the set
Ba,s = {x1 ∈ R ; (x1, fa(x1)) ∈ Ws} is infinite. Therefore the set of a ∈ Rp+1 such that
there is s ∈ Rp such that Ba,s is infinite, is of dimension at most p. Hence there exists a
polynomial fa of degree not greater than p such that, for all s ∈ Rp, the set Ba,s is finite.

Given n > 2, assume the lemma is proved for n − 1. Let Z be the definable set of
(x1, u, s) ∈ R × Rn−2 × Rp such that {xn ∈ R ; (x1, u, xn, s) ∈ W} is infinite. For all
s ∈ Rp, the set Zs has dimension at most n− 2 and therefore we can apply the inductive
assumption. We obtain a polynomial mapping u : R → Rn−2 of degree at most p such
that, for all s ∈ Rp, the set of x1 ∈ R such that (x1, u(x1)) ∈ Zs is finite. Consider the
definable subset of R2 ×Rp

M = {(x1, xn, s) ∈ R2 ×Rp ; (x1, u(x1), xn, s) ∈ W}.
For all s ∈ Rp, the set Ms has dimension at most 1. Therefore, by the argument above,
there is a polynomial f of degree at most p such that for all s ∈ Rp the set of x1 ∈ R
such that (x1, f(x1)) ∈ Ms is finite. Set v′ = (u, f), and the proof is complete.

P r o o f o f P r o p o s i t i o n 4 (continued). Set

M = {(x1, v
′, x′, t) ∈ R ×Rn−1 ×Rn−1 ×R ; (x1, x

′ − v′, t) ∈ G}
M(x′,t) = {(x1, v

′) ∈ R×Rn−1 ; (x1, v
′, x′, t) ∈ M}.

Since, for all t in Rn, the dimension of {x ∈ Rn ; (c, t) ∈ G} is not greater than n, we
have, for all (x′, t) in Rn−1 × R, dim(M(x′,t)) < n. By Lemma 5, there is a polynomial
mapping v′ : R → Rn−1 such that the set of x1 in R such that (x1, v

′(x1)) ∈ M(x′,t) is
finite. Now set v(x1, x

′) = (x1, x
′ + v′(x1)). Then v is a polynomial automorphism of Rn,

and

∀(x′, t) ∈ Rn−1 ×R
(
p−1(x′, t) ∩ (v × IdR)(G)

)
is finite.

Therefore we may assume that p satisfies Φ.

3. Definable families and real spectrum. We introduce “ideal points” which will
be useful for the study of definable families. Let R̃p be the Stone space of the boolean
algebra Sp. The points of R̃p are the ultrafilters of Sp, and the topology of R̃p has a basis

of closed and open subsets consisting of the Ã = {α ∈ R̃p ; A ∈ α}, for A ∈ Sp. With
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this topology R̃p is compact, Hausdorff, totally disconnected. We shall call this topology
the constructible topology. There is another, coarser, topology on R̃p which has a basis of
open subsets consisting of the Ũ for U open definable subset of Rp. We shall not consider
this coarser topology in this paper. See [14] where this space is considered, together with

a structural sheaf. We may consider Rp as a subset of R̃p by identifying a point a ∈ Rp

with the principal ultrafilter of elements of Sp containing a.
Let us take an example. The intervals ]r,+∞[, for r ∈ R, generate an ultrafilter

of S1. We denote by +∞ this point of R̃. Two definable functions f1 and f2 defined
respectively on intervals ]r1,+∞[ and ]r2,+∞[ are said to have the same germ at +∞
if they coincide on an interval ]s,+∞[. The germs of definable functions at +∞ form
a field κ(+∞) (actually a Hardy field since every definable function is differentiable on
some interval ]r,+∞[). This field is important because it contains the information about
the asymptotic behavior of definable functions. In the case of the o-minimal structure
Ran, it is the field of convergent Puiseux series in 1/x, and the  Lojasiewicz exponents
can be seen in its valuation group Q. There is no such nice description for the o-minimal
structure Rexp, and the valuation group in this case is awfully complicated. See [7] for
the importance of the Hardy field κ(+∞) for o-minimal structures. Following the same

pattern, we now associate a field κ(α) with every α ∈ R̃p.
If S is a definable subset of Rp, denote by D(S) the ring of definable functions from

S to R. For α ∈ R̃p, define κ(α) as the inductive limit of the D(S) for S ∈ α. If f
is a definable function on S ∈ α, we denote by f(α) its image in κ(α). Note that if
α = a ∈ Rp, then κ(a) = R and f(a) ∈ R is the value of f at a.

Proposition 6. κ(α) is a real closed field.

P r o o f. We know that κ(α) is a ring. If f(α) is a nonzero element of κ(α), there is
S ∈ α such that either f > 0 on S or f < 0 on S. In both cases 1/f belongs to D(S). In
the first case

√
f ∈ D(S). Hence κ(α) is an ordered field in which every positive element

is a square. The fact that every polynomial of odd degree

X2k+1 + f2k(α)X2k + · · · + f0(α) ∈ κ(α)[X ]

has a root in κ(α) is a consequence of the following lemma, applied to

F = {(x, t) ∈ R× S ; x2k+1 + f2k(t)x2k + · · · + f0(t) = 0},
where S ∈ α is such that all fi are defined on S.

Lemma 7 (Definable choice [8]). Let F be a definable subset of R × Rp and assume

that there exists S ∈ Sp such that for all t ∈ S, there exists x ∈ R such that (x, t) ∈ F .

Then there exists f ∈ D(S) such that (f(t), t) ∈ F for all t ∈ S.

The ideal points α ∈ R̃p play the role of the generic points of algebraic geometry. For
the study of definable families of sets of functions, we shall use “generic fibers”. Consider
a definable family of subsets of Rn parametrized by Rp. This is simply a definable subset
F of Rn ×Rp.

Definition 8. If α ∈ R̃p, the fiber Fα at α of the definable family F ⊂ Rn × Rp is
the set of (f1(α), . . . , fn(α)) in κ(α)n such that there exists S ∈ α on which all fi are
defined and such that (f1(t), . . . , fn(t), t) ∈ F for all t ∈ S.

If A is a definable subset of Rn, the extension Aκ(α) of A to κ(α) is the fiber at α of
the constant family A×Rp.
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Of course, for an ordinary point t ∈ Rp we have Ft = {x ∈ Rn ; (x, t) ∈ F}.
As an immediate consequence of the definable choice, we obtain

Proposition 9. Let F,G ⊂ Rn × Rp be two definable families. If Fα = Gα, then

there is S ∈ α such that F ∩ (Rn × S) = G ∩ (Rn × S).

Now we formulate the main result about fibers at α. Actually, what is hidden here is
the model-theoretic construction of the definable ultrapower.

Theorem 10. Let Sn(κ(α)) be the set of fibers Fα of definable families F ⊂ Rn×Rp.

The sequence of Sn(κ(α)) for n ∈ N defines an o-minimal structure S(κ(α)) on the field

κ(α).

P r o o f. It is obvious that F 7→ Fα preserves the boolean operations. Hence we get
property S1 of o-minimal structures. Properties S2, S3 and S5 are also almost immediate.
Note that (F ×Rp G)α = Fα ×Gα, where F ⊂ Rn ×Rp and G ⊂ Rm ×Rp are definable
families and F ×Rp G their fiber product above Rp. Property S4 is a consequence of
the definable choice: if F ⊂ Rn+1 × Rp is a definable family, π : Rn+1 ×Rp → Rn ×Rp

the projection defined by π(x1, . . . , xn+1, t) = (x1, . . . , xn, t) and πα : κ(α)n+1 → κ(α)n

the projection on the space of the first n coordinates, then (π(F ))α = πα(Fα). Finally,
property S6 comes from the cylindrical cell decomposition: if F ⊂ R× Rp is a definable
family, then there are S ∈ α and definable functions f1 < . . . < fℓ : S → R such that
F ∩ R × S is a union of graphs of fi and slices of the cylinder R × S bounded by the
graphs of fi.

If F ⊂ Rn × Rp and G ⊂ Rk × Rp are two definable families, a definable family

of mappings from F to G is a definable mapping f : F → G such that the composite
mapping F → G → Rp is equal to the projection F → Rp. In other words, there exists a
definable mapping f : F → Rk such that f(x, t) = (f(x, t), t) for all (x, t) ∈ F . Set

Γ = {(x, y, t) ∈ Rn ×Rk ×Rp ; (x, t) ∈ F, y = f(x, t)}.
It is easily verified that Γα is the graph of a definable mapping fα : Fα → Gα which is
by definition the fiber of the family f at α.

If f : A → B is a definable mapping (for the o-minimal structure on R), we define its
extension fκ(α) : Aκ(α) → Bκ(α) as the fiber of the constant family f × Rp : A × Rp →
B ×Rp.

Proposition 11. For every definable mapping φ : Fα → Gα there exist S ∈ α and a

definable family of mappings f : F ∩ (Rn × S) → G ∩ (Rk × S) such that fα = φ. Two

definable families of mappings f, g : F → G have the same fiber at α if and only if there

exists S ∈ α such that f and g coincide in restriction to F ∩ (Rn × S).

We skip the proof which is straightforward. Note that taking the fiber at α preserves
the composition of families of morphisms. Hence a commutative diagram of definable
mappings for S(κ(α)) gives a commutative diagram of definable families of mappings
over some S ∈ α.

We have topological precisions concerning the relations between the fiber and the
family.

Proposition 12 ([5], [18]). Let U ⊂ F ⊂ Rn × Rp be two definable families of sets.

If the set of t ∈ Rp such that Ut is open in Ft belongs to α, then Uα is open in Fα. If Uα

is open in Fα, then there is S ∈ α such that U ∩ (Rn × S) is open in F ∩ (Rn × S).
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Let f : F → G be a definable family of mappings. If the set of t ∈ Rp such that ft is

continuous belongs to α, then fα is continuous. If fα is continuous, then there is S ∈ α
such that f |F∩(Rn×S) is continuous.

In particular a definable homeomorphism for S(κ(α)) gives a homeomorphism between
definable families over some S ∈ α.

4. Definable trivialization of definable families of functions. We study in this
section definable families of functions from Rn to R. It will be more convenient to consider
a definable family of functions from Rn to R as a definable function f : Rn × S → R,
where S is a definable subset of Rp. With the conventions of the preceding section, this
corresponds to the definable family of mappings Rn × S → R × S defined by (x, t) 7→
(f(x, t), t).

Definition 13. A definable family of functions f : Rn × S → R is definably trivial

if there are definable mappings λ : Rn × S → Rn and ρ : R × S → R and a definable
function φ : Rn → R such that

1. the mapping Rn × S → Rn × S sending (x, t) to (λ(x, t), t) is a homeomorphism,
2. the mapping R× S → R× S sending (y, t) to (ρ(y, t), t) is a homeomorphism,
3. φ ◦ λ = ρ ◦ f .

It is obvious that, if a definable family of functions f : Rn×S → R is definably trivial,
then all the functions ft for t ∈ S have the same topological type. Moreover, for every
t, u ∈ S there is a commutative diagram

Rn ft−−−−→ R
y

y
Rn fu−−−−→ R

,

where the vertical arrows are definable homeomorphisms. We say that ft and fu have the
same definable topological type.

Theorem 14 (Definable triviality of definable families of functions). Let f :Rn×S →
R be a definable family of functions, where S is a definable subset of Rp. Then there exist

a definable finite partition S =
⋃k

i=1 Si such that, for i = 1, . . . , k, the restricted family

f |Rn×Si
is definably trivial.

P r o o f. Take α ∈ S̃. We have a fiber fα : κ(α)n → κ(α) which is a definable function.
Let h : ]−1, 1[R → R be the definable homeomorphism defined by h(x) = x/(1− x2).

Set

Γ =
{(

x1, . . . , xn, (hκ(α))
−1(f(hκ(α)(x1), . . . , hκ(α)(xn))

)
; (x1, . . . , xn) ∈ ]−1, 1[nκ(α)

}
.

Let Ξ be the closure of Γ in κ(α)n+1 and πκ(α) : κ(α)n+1 → κ(α) the projection on
the last coordinate. Since Ξ is closed and bounded, we can triangulate πκ(α)|Ξ. Applying
Proposition 4, we get a finite simplicial complex K in Qn ×Q and definable homeomor-
phisms τ : κ(α) → κ(α) and ϕ : |K|κ(α) → Ξ such that τ ◦ πκ(α) ◦ ϕ = πκ(α)||K|κ(α)

and
Γ = ϕ(Vκ(α)), where V is a union of open simplices of K. Moreover we may assume that
πκ(α)(Vκ(α)) ⊂ ]−1, 1[κ(α), τ(−1) = −1 and τ(1) = 1.
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Let ρ : Vκ(α) → κ(α)n be the definable homeomorphism defined by

ρ−1(x1, . . . , xn) = ϕ−1(h−1
κ(α)(x1), . . . , h−1

κ(α)(xn), h−1
κ(α)(fα(x1, . . . , xn)))

and λ = hκ(α) ◦ τ : ]−1, 1[κ(α) → κ(α). We have a commutative diagram of definable

mappings for the o-minimal structure over κ(α)

Vκ(α)

πκ(α)−−−−→ ]−1, 1[κ(α)

ρ

y
y λ

κ(α)n
fα−−−−→ κ(α)

.

From this and the results of Section 3 we deduce that there is a definable subset Sα of S
such that Sα ∈ α and a diagram of definable mappings commutative over Sα

V × Sα πR×Sα

−−−−−→ ]−1, 1[R × Sα

y
y

Rn × Sα (f,p)−−−−−→ R× Sα

,

where the vertical arrows are homeomorphisms and p : Rn × Sα → Sα is the projection.
This shows that the family f is definably trivial in restriction to Rn×Sα. The S̃α cover S̃.
Since S̃ is compact, we can extract a finite definable cover S̃1, . . . , S̃k and we may assume
that the Si form a partition of S. The family f is definably trivial over each Si.

5. Application to fewnomials and polynomials of bounded additive com-

plexity. To apply Theorem 14 to fewnomials, we have to include the fewnomials with at
most k monomials in a definable family of functions for some o-minimal structure on the
reals. Of course, the convenient o-minimal structure is Rexp. In this structure we have the
definable power function (x, λ) 7→ xλ = exp(λ log(x)) defined on {x ∈ R ; x > 0} × R.
We extend this power function to two definable functions Mǫ : R2 → R for ǫ = 0, 1,
defined by

Mǫ(x, λ) =





xλ if x > 0,
0 if x = 0 and λ 6= 0,
1 if x = 0 and λ = 0,
(−1)ǫ |x|λ if x < 0.

Now consider the family of all functions Rn → R

(x1, . . . , xn) 7→
k∑

i=1

(
ai

n∏

j=1

Mǫi,j(xj , λi,j)

)
.

This is a definable family of functions parametrized by the ((ai), (λi,j), (ǫi,j)) ∈ Rk ×
Rkn × {0, 1}kn. In this family we have all the polynomials in n variables with at most
k monomials. Hence we obtain a result which is a little stronger than Theorem 1: the
polynomials in n variables with at most k monomials have a finite number of definable
topological types.

We can generalize this result to polynomials of bounded additive complexity. Recall
from [1] that a polynomial f ∈ R[x1, . . . , xn] has additive complexity not greater than k if
there is a sequence (g1, . . . , gk, gk+1 = f) of polynomials in R[x1, . . . , xn] such that each gi
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is the sum of a constant and a monomial in x1, . . . , xn, g1, . . . , gi−1 with coefficient 1. The
additive complexity behaves well with respect to a linear change of variables, while the
number of monomials does not.

We consider the functions which send (x1, . . . , xn) ∈ Rn to the y ∈ R such that there
exists (xn+1, . . . , xn+k) ∈ Rk with

xn+i = ai +

n+i−1∏

j=1

Mǫi,j(xj , λi,j) for i = 1, . . . , k,

y = ak+1 +

n+k∏

j=1

Mǫk+1,j
(xj , λk+1,j).

These functions form a definable family for Rexp, parametrized by the
(
(ai), (λi,j), (ǫi,j)

)
∈ Rk+1 ×R(k+1)(2n+k)/2 × {0, 1}(k+1)(2n+k)/2.

Obviously this family contains all polynomials Rn → R with additive complexity at
most k. Applying Theorem 14, we obtain:

Theorem 15. The polynomials Rn → R with additive complexity at most k have a

finite number of definable topological types.

The method of proof gives no answer to the problem of effectively bounding the
number of topological types in terms of the additive complexity and the number of
variables. For such a bound with respect to the degree, see [2].
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