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Abstract. The paper establishes the basic algebraic theory for the Gevrey rings. We prove
the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division
theorem for them. We introduce a family of norms and we look at them as a family of analytic
functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic
properties of this rings.

Introduction. The Gevrey series appeared as formal solutions of partial differen-

tial equations of second order ([G]). In 1903 Maillet ([Mi]) proved that the formal so-

lutions of ordinary differential equations with polynomial coefficients are of this type.

Afterwards, Malgrange ([Ml]) and J. Cano ([Ca]) generalized this result to ordinary

differential equations with analytic and Gevrey coefficients respectively. But for partial

differential equations the analogous result is not yet achieved for any partial differential

equation with polynomial coefficients; nevertheless there are some important results: see

Ouchi ([O]).

The semianalytic geometry with Gevrey conditions to the border is studied in the

article of Tougeron [T]. He generalized the basic theorems of the semianalytic geometry

to this case.

As far as we know, a study of the algebraic properties of this series has not yet been

done. This work shows the basic algebraic properties of these rings. In particular, they are

noetherian and henselian. The basic tools we use here are the pseudo-Banach structure

they have, and the formal Borel transform. This transform changes the Gevrey series by
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a germ of analytic function at 0. We introduce a family of norms that are the restrictions

of the absolute Borel transform to the semialgebraic (0,∞)n∩{x1 = . . . = xn}. We prove

the Artin approximation property for them, but we do not touch the approximation “to

the smallest term” (see [Z4]) since it is more analytic in nature.

We give a Gevrey version of the Weierstrass-Hironaka division theorem: the division

by a finite family f1, . . . , fr of Gevrey’s series. In general, when the data are of Gevrey’s

order s, the quotient and the remainder are not of the same order, as we can see in the

following counter-example.

Let g =
∑∞
n,m=1 n!m!xnym and f = −y2 −

∑∞
n=1 x

n. Then g = qf + r, where q =∑
α,β∈N qαβx

αyβ is the solution of the infinite system

q0β = (β + 2)!

qαβ = α!(β + 2)! +

α−1∑
σ=0

qσ,β+2, α > 1.

The Gevrey order of q is at least (2, 1), but f and g are Gevrey’s series of order (1, 1).

Nevertheless there are some special cases where you can divide without increasing the

Gevrey order (see Remark 4.3). The Gevrey order of the quotients and the remainder we

give here improve the result obtained by the author in her Ph.D. Thesis ([Z3], 1994).

The Weierstrass division theorem has also been studied by Chaumat and Chollet

([CC1]). They only considered the case of the division by one Gevrey’s series. They gave

the preparation theorem in ultradifferentiable classes in [CC2].

1. Preliminaries. Denote by K the field of real numbers, R, or the field of complex

numbers, C. Let n be a positive integer greater than one. We will use the following

multiindex notation.

Let α = (α1, . . . , αn) ∈ Nn, then

|α| = α1 + . . .+ αn.

We put xα = xα1
1 · · ·xαnn with x = (x1, . . . , xn) ∈ Kn, and if s = (s1, . . . , sn) ∈ [0,∞)n,

α!s = α1!s1 · · ·αn!sn .

If ` ∈ [0,∞) we put ` = (`, . . . , `). Now, for α = (α1, . . . , αn) and β = (β1, . . . , βn) in

[0,∞)n, we put α 6 β (resp. α < β) if and only if βj−αj is a non-negative (resp. positive)

real number for each j = 1, . . . , n.

Let X = (X1, . . . , Xn) be a vector of independent variables over K, and f =
∑
fαX

α

a formal power series over K, that is, an element of the ring K[[X]]. We denote by ord0(f)

the integer

ord0(f) = min{|α| : fα 6= 0}.
The ring of convergent power series over K (in the variables X) is denoted by K{X}.
Moreover, whenever we have a polynomial in a new variable Z with coefficients in a power

series ring (e.g. F ∈ K[[X]][Z]), we emphasize this fact using the “;” sign (e.g. F (X;Z)).

For a square matrix A, κ(A; z) is its characteristic polynomial in the variable z. The ring

of p× q matrices with entries in a given ring R is denoted by Mp,q(R). If P (z) and Q(z)

are two polynomials with coefficients in R, then Resz(P,Q) is the resultant of P and Q.
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The set K[[X]]s is the subring of K[[X]] defined as follows:

f =
∑
α∈Nn

fαX
α ∈ K[[X]]s ⇐⇒ f =

∑
α∈Nn

fα
α!s

Xα ∈ K{X}.

This ring is called the Gevrey formal power series ring of order s. An element of this ring

is a Gevrey formal power series of order s. A formal power series f ∈ K[[X]] is called of

Gevrey type if there exists an s ∈ [0,∞)n such that f ∈ K[[X]]s. Then the vector s is

called its Gevrey order. Observe that whenever s 6 t we have

K[[X]]s ⊂ K[[X]]t.

Hence, you have a filtration indexed by the semigroup S = [0,∞)n. Therefore, we see

that the convergent power series are in
⋂

s∈S\{0}
K[[X]]s, but these rings are not equal.

For instance, when n = 1, the series
∑
m!1/ ln(lnm)Xm is not convergent, but belongs to⋂

s>0
K[[X]]s. Let

K[[X]]s,+ =
⋂
r>s

K[[X]]r.

If W1, . . . ,Wd are independent variables over K (distinct from the Xi), and t ∈ [0,∞)d,

we put

(K[[W ]]t) [[X]]s,+ =
⋂
r>s

K[[W , X]](t,r)

for s in [0,∞)n.

Let s = (s1, . . . , sn) ∈ [0,∞)n and ρ ∈ (0,∞). Define

||f ||s,ρ =
∑
α∈Nn

|fα|
α!s

ρα for f =
∑
α∈Nn

fαX
α ∈ K[[X]],

where ρα = ρ|α|, and

E(s)
ρ = {f ∈ K[[X]] : ||f ||s,ρ is finite} .

It is easy to see that ||·||s,ρ is a norm. The K-algebras E
(s)
ρ are Banach algebras. Moreover,

if ρ′ > ρ then E
(s)
ρ′ ⊂ E

(s)
ρ . Hence the inductive limit

G(s) = lim−→
ρ→∞

E(s)
ρ

is a complete topological vector space with the inductive limit topology. Then we have

morphisms (of topological vector spaces) iρ : E
(s)
ρ −→ G(s) for each ρ > 0. The algebra

G(s) is a pseudo-Banach algebra whose bound structure is given by the unit balls of the

algebras E
(s)
ρ (see [ADM]). Hence, we obtain(1)

Proposition 1.1. The space G(s) is isomorphic to K[[X]]s as K-algebras, but not as

topological vector spaces.

(1) Because K[[X]]s is not complete for the (X1, . . . , Xn)-adic topology.
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2. The formal Borel transform in Gevrey’s series rings. Fix n ∈ N, n > 1,

and s = (s1, . . . , sn) ∈ [0,∞)n. Given a Gevrey series

f(X) =
∑
α∈Nn

fαX
α ∈ G(s), with f(0) = 0,

we define its formal Borel transform of level s by the formula

B̂sf(ξ) =
∑
α∈Nn

fα
α!s

ξα.

For the unit 1 of G(s) we put B̂s1 = δ, where δ is the Dirac distribution. Then we have

defined a map (of vector spaces over K) B̂s : G(s) −→ K{X} that is surjective. We put

|B̂s|f(ξ) =
∑
α∈Nn

|fα|
α!s

ξα.

and call it the absolute Borel transform of level s.

Property 2.1 (the evaluation property). Let Y = (Y1, . . . , Yn), X = (X1, . . . , Xm)

be variables over K, and s = (s1, . . . , sn) ∈ [0,∞)n, τj = (τj1, . . . , τjm) ∈ [0,∞)m for

j = 1, . . . , n. Let s∗ = max{s1, . . . , sn}. If F (Y ) is in the ring K[[Y ]]s and fj(X) in

K[[X]]τj , then, whenever f1(0) = . . . = fn(0) = 0, the composition F ◦ (f1, . . . , fn) is in

K[[X]]r for r = (r1, . . . , rm) with rj = max{τ1j , . . . , τnj , s∗}.

P r o o f. Let δ > 0 be such that the series |B̂τj |fj are convergent in (−δ, δ) × m
. . . ×

(−δ, δ). Take ε > 0 such that |B̂s|F is convergent in (−ε, ε)× n
. . .× (−ε, ε). The analytic

functions

ϕj : (0, δ) 3 x 7−→ |B̂τj |fj(x, . . . , x) = ||fj ||τj ,x ∈ R

can be factorized as ϕj(x) = xβj(x) in (0, δ), where the βj are positive increasing real

analytic functions.

Choose δ′ < δ and put Kj = βj(δ
′), 1 6 j 6 n. Taking δ1 < δ′ such that δ1Kj < ε for

j = 1, . . . , n, we obtain the inequalities

(i) ϕj(x) < ε in (0, δ1).

Hence
(
|B̂s|F

)
(ϕ1(x), . . . , ϕn(x)) is finite for x ∈ (0, δ1).

Let r ∈ [0,∞)m be as in the statement. Assume the inequality

(ii)
∣∣B̂r∣∣ (F ◦ (f1, . . . , fn)) 6

∣∣B̂sF ∣∣ ◦ (|B̂τ1 |f1, . . . , |B̂τn |fn)
in the interval Q = (0, δ1)× m

. . .× (0, δ1). Then, if x ∈ Q ∩ {x1 = . . . = xn}, we get

‖F ◦ (f1, . . . , fn)‖r,x 6
(
|B̂s|F

)
(ϕ1(x), . . . , ϕn(x)) .

This inequality and (i) imply that F ◦(f1, . . . , fn) ∈ G(r), as was claimed in the statement.

In order to prove (ii), we proceed as follows. Put

F (Y ) =
∑
i∈Nn

FiY
i and fj(X) =

∑
α∈Nm

ajαX
α, 1 6 j 6 n.
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For t = 0, 1, . . . , and j = 1, 2, . . . , n, we have the formal power series expansion

(fj)
t

=
∑
β∈Nm

c
(t)
jβX

β where c
(t)
jβ =

∑
(α1,...,αt)∈(Nm)t

α1+...+αt=β

ajα1 · · · ajαt .

Hence, the formal power series∑
i=(i1,...,in)∈Nn

Fi
∑
β∈Nm

( ∑
(β1,...,βn)∈(Nm)n

β1+...+βn=β

c
(i1)
1β1
· · · c(in)nβn

)
Xβ

is the formal power series expansion of F ◦ (f1, . . . , fn). Let s∗ = max{s1, . . . , sn} and

r = (r1, . . . , rm) ∈ [0,∞)m be such that rj = max{τ1j , . . . , τnj , s∗}, 1 6 j 6 m. Set

d
(t)
jβ =

∑
(α1,...,αt)∈(Nm)t

α1+...+αt=β

|ajα1 |
α1!τj

· · · |ajαt |
αt!τj

,

then for j = 1, . . . , n and t ∈ N we have(
|B̂τj |fj

)t
=
∑
β∈Nm

d
(t)
jβX

β .

It is easy to prove the inequalities

|c(t)jβ |
β!r

6
d
(t)
jβ

t!|r|
6
d
(t)
jβ

t!s∗
.

In consequence,

|B̂r| (F ◦ (f1, . . . , fn)) (x) 6
∑
i∈Nn

|Fi|
i!s

∑
β∈Nm

∑
β1+...+βn=β

d
(i1)
1β1
· · · d(in)nβn

xβ

= |B̂s|F ◦
(
|B̂τ1 |f1, . . . , |B̂τn |fn

)
(x)

for x ∈ Q.

R e m a r k 2.2. Let λ1, . . . , λn ∈ K \ 0. Then f(Y1, . . . , Yn) and f(λ1Y1, . . . , λnYn)

have the same Gevrey order.

3. The Hensel lemma for the Gevrey rings

Lemma 3.1 (the Hensel lemma for the Gevrey rings). Let f(X; z) ∈ G(s)[z] be a monic

polynomial in the variable z such that f(0; z) = a(z)b(z) with gcd(a(z), b(z)) = 1. Then

there exist P (X; z) and Q(X; z) in G(s)[z] such that f = PQ and

P (0; z) = a(z), degz P = degz a = p,

Q(0; z) = b(z), degz Q = degz b = q.

It is well known (see [N], page 104) that there exist P and Q with coefficients in

K[[X]] such that f = PQ and

P (0; z) = a(z), degz P = degz a = p,

Q(0; z) = b(z), degz Q = degz b = q.
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The only difficulty is to prove that the divergent coefficients of P and Q are in fact of

Gevrey’s order s. For that we recall the proof of the Hensel lemma for matrices introduced

by P. M. Cohn (see [Co], or [Z2]).

Put

f(X; z) = a0(X) + a1(X)z + . . .+ ad−1(X)zd−1 + zd.

We can assume that a(z) = zp (because you can argue to induction on d). The companion

matrix of f can be written as

M =

(
A1 A2

A3 A4

)
∈Md,d(G

(s))

where

A1 =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 . . . . . . 1 0

 ∈Mp,p(G
(s)), A3 =


0 . . . 0 1
0 . . . 0 0
... . . .

...
...

0 . . . 0 0

 ,

A2 =

 0 . . . 0 −a0
... . . .

...
...

0 . . . 0 −ap−1

 , A4 =

 0 . . . 0 −ap
... . . .

...
...

0 . . . 0 −ad−1

 ∈Mq,q(G
(s)).

We will construct a matrix X such that

(∗)
(
I −X
0 I

)
M

(
I X
0 I

)
=

(
A1 −XA3 0

A3 A3X +A4

)
.

For that, define a sequence of matrices Xr ∈Mp,q(K[[X]]):

(i)

{
X0 = 0

XrA4 −A1Xr = A2 −Xr−1A3Xr−1, r > 1.

Now, consider the resultant u = Resz(κ(A1, z), κ(A4, z)), then choose two polynomials:

L(z) of degree 6 q − 1 and N(z) of degree 6 p − 1, such that u = L(z)κ(A1, z) +

N(z)κ(A4, z) ([BR], page 28). The polynomial

H(z) =
1

u
L(z)κ(A1, z) = αpz

p + . . .+ αd−1z
d−1

assumes the value 0 at A1 and 1 at A4. Hence, the matrix

Xr = αpC +

d−1∑
j=p+1

αj
∑
i+l=j

Ai1CA
l
4,

where C = A2−Xr−1A3Xr−1, is the solution of (i). Let m be the maximal ideal of K[[X]].

The limit X of the sequence {Xr}—for the m-adic topology in K[[X]]— verifies (∗). Then

(−1)df is the product of the characteristic polynomials of A1 −XA3 and A3X +A4.

In order to prove that the coefficients of X are in some E
(s)
ε we will use the following

result.
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Lemma 3.2. Let X, y, z be independent variables over the field K, and p, q ∈ N be such

that pq 6= 0. Denote by F the fraction field of the polynomial ring K[y]. Set R = F[[X]].

Consider the monic polynomials

P (z) = c0 + c1z + . . .+ cq−1z
q−1 + zq ∈ K[[X]][z],

P̃ (z) =
c0
yq

+
c1
yq−1

z + . . .+
cq−1
y

zq−1 + zq ∈ R[z]

with c0 6= 0. Let L,N ∈ K[[X]][z] (resp. L̃, Ñ ∈ R[z]) be such that Resz(z
p, P (z)) =

L(z)zp + N(z)P (z) (resp. Resz(z
p, P̃ (z)) = L̃(z)zp + Ñ(z)P̃ (z)) and degz L 6 q − 1,

degz N 6 p− 1 (resp. degz L̃ 6 q − 1, degz Ñ 6 p− 1). Set

L(z) = ν0 + ν1z + . . .+ νq−1z
q−1 ∈ K[[X]][z],

L̃(z) = ν̃0 + ν̃1z + . . .+ ν̃q−1z
q−1 ∈ R[z].

Then ν̃j = νjy
j+p−pq for j = 0, 1, . . . , q − 1.

P r o o f. Consider the extension of the identity over R to the polynomial ring R[z]

given by π(z) = yz. Then

Resz(z
p, P ) = π(L)ypzp + π(N)yqP̃ (z).

Since(2) Resz(z
p, P ) = ypq Resz(z

p, P̃ ), we have

Resz(z
p, P ) = ypqL̃(z)zp + ypqÑ(z)P̃ (z).

Consequently, L̃ = yp−pqπ(L), and that implies the statement.

Now consider ρ ∈ (0, 1) such that the resultant u is a unit in E
(s)
ρ and the coefficients

of L and N are in E
(s)
ρ . Fix a0, . . . , ad−1 in E

(s)
ρ such that iρ(aj) = aj (if it is impossible,

take a smaller radius ρ at the beginning).

Take the real analytic functions

ϕj(x) = |B̂s|aj(x, . . . , x), 0 6 j 6 d− 1,

ξ`(x) = |B̂s|α`(x, . . . , x), p 6 ` 6 d− 1.

Let ρ′ ∈ (0, ρ). For each j ∈ {0, . . . , p− 1} the function ϕj can be factorized as ϕj(x) =

xβj(x) in [−ρ′, ρ′], where βj is a positive increasing real analytic function. Let

τ = max{ξ`(ρ′) : 1 6 ` 6 t} ∪ {ϕj(ρ′) : p 6 j 6 d− 1} > 0.

Let y be a new variable over K. Consider the monic polynomial

gy(X; z) =
1

yd
f(X; yz) ∈ R[z],

where R is as in Lemma 3.2. The algorithm (i) can be performed for gy. We have now

A′2 =

 0 . . . 0 −a0/yd
... . . .

...
...

0 . . . 0 −ap−1/yd−p+1

 , A′4 =

 0 . . . 0 −ap/yd−p
... . . .

...
...

0 . . . 0 −ad−1/y

 ,

(2) See [BR], page 29.
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and A1, A3 as before. Then there exist two new polynomials L̃y and Ñ ∈ R[z] such

that ũ = Resz(κ(A1, z), κ(A′4, z)) = L̃(z)κ(A1, z) + Ñ(z)κ(A′4, z) and degz L̃y 6 q − 1,

degz Ñ 6 p− 1. Set

H̃y(z) =
1

ũ
L̃y(z)κ(A1, z) = α̃p(X, y)zp + . . .+ α̃d−1(X, y)zd−1.

Lemma 3.2 for P (z) = κ(A4, z) and P̃ (z) = κ(A′4, z) implies the equalities

α̃j(X, y) =
ν̃j−p
ũ

= yj
νj−p
u

= yjαj(X), p 6 j 6 d− 1,

since u = ypqũ. The sequence of matrices X̃r(y) given inductively by the iteration

X̃0(y) = 0

X̃r(y)A′4 −A1X̃r(y) = A′2 − X̃r−1(y)A3X̃r−1(y), r > 1,

is the sequence

X̃r(y) = α̃p(X, y)C̃ +

d−1∑
j=p+1

α̃j(X, y)
∑
i+l=j

Ai1C̃(A′4)l,

where C̃ = A′2 − X̃r−1(y)A3X̃r−1(y). Now consider Z̃r(y) = X̃r(y) − X̃r−1(y). Then we

have the equalities

Z̃r(y)A′4 −A1Z̃r(y) = D̃

and

Z̃r(y) = α̃p(X, y)D̃ +

d−1∑
j=p+1

α̃j(X, y)
∑
i+l=j

Ai1D̃(A′4)l,

where D̃ = −X̃r−1(y)A3Z̃r−1(y)− Z̃r(y)A3X̃r−1(y). Set

w(t) = 1 +

d−1∑
j=p+1

j∑
l=0

(τ/t)l for t ∈ (0,∞).

Let λ ∈ (1,∞) be such that W = τλd−1w(λ) > e. Now, put y = λ in the previous

construction, that is, consider:

g(X, z) = gλ(X, z), α̃j = α̃j(X,λ), j = p, . . . , d− 1,

H̃(z) = H̃λ(z), X̃r = X̃r(λ), Z̃r = Z̃r(λ).

Let us take the polynomial with analytic coefficients

Γ(t, z) = ||α̃p||s,t +

d−1∑
j=p+1

||α̃j ||s,t
j∑
l=0

zl for t ∈ (0, ρ′).

Let W̃ > W be such that 4W̃ 3 < exp(W̃ ). Take ρ′′ ∈ (0, ρ′) and put

c = max{β0(ρ′′)λ−d, . . . , βp−1(ρ′′)λ−d+p−1}.

Now choose ε ∈ (0, ρ′′) such that εW̃ exp(W̃ ) < 1 and δ ∈ (0, ρ′′) with δc < ε. Then

||A′2||s,δ 6 δc < ε.
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The iteration

u0 = 0

ur = I(ur−1), r > 1,

for I(t) = W̃ (ε+ x2), gives us a sequence of non-negative real numbers {ur} such that

||X̃r||s,δ 6 ur 6 ξ0

where ξ0 satisfies I(ξ0) = ξ0 and 1/(2W̃ 2) > ξ0. Therefore

||Z̃r||s,δ 6
1

W̃
||Z̃r−1||s,δ .

So, in particular

lim
r−→∞

||Z̃r||s,δ = 0.

The sequence {X̃r} has the limit
∑∞
r=1 Z̃r in the ring of p × q matrices with entries

in E
(s)
δ , therefore, also in Mp,q(G

(s)). In consequence g can be factorized as g(X; z) =

G1(X; z)G2(X; z) where Gj ∈ G(s)[z] and j = 1, 2. Then

P (X; z) = λpG1(X; z/λ) and Q(X; z) = λqG2(X; z/λ)

are in G(s)[z], as we have stated in Lemma 3.1.

4. The division theorems. Let Z = (Z1, . . . , Zc) and W = (W1, . . . ,Wd) be two

vectors of variables over K. Given a formal power series

f(W,Z) =
∑
A∈Nc

fA(W )ZA =
∑

(A,B)∈Nc×Nd
fABW

BZA,

we define the sets of exponents

Exp(f) =
{

(A,B) ∈ Nc × Nd : fAB 6= 0
}
,

ExpZ(f) = {A ∈ Nc : fA(W ) 6= 0} .
In order to prove the Weierstrass-Hironaka theorem we will use the following lemma.

Lemma 4.1. Let a > 0, h > 0 and ` > 1. The function

ϕ`,a,h : [0,∞) 3 x 7−→ (x+ `)a

hx
∈ R

has an absolute maximum mh such that ϕ`,a,h(mh) > 1. Moreover , when h > h′ we have

ϕ`,a,h′(mh) 6
Q`,a,h′

ha
,

where Q`,a,h′ is a constant depending only on `, a and h′.

Let t = (t1, . . . , td) ∈ [0,∞)d and s = (s1, . . . , sc) ∈ [0,∞)c. We put (t, s) =

(t1, . . . , td, s1, . . . , sc) ∈ [0,∞)c+d. If µ = (µ1, . . . , µc) ∈ [0,∞)c, then 〈µ, s〉 =
∑c
j=1 µjsj .

Theorem 4.2 (the Weierstrass-Hironaka division theorem for Gevrey’s rings). Let

r ∈ N \ 0 and A0 = (0, . . . , 0), A1, . . . , Ar ∈ Nc. Consider some non-units f1, . . . , fr ∈
K[[W,Z]](t,s) such that for any k ∈ {1, . . . , r} we have

(a) The pair (Ak, 0) is an element of Exp(fk).

(b) If (U, 0) ∈ Exp(fk) then |U | > |Ak|.
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Take a finite partition {P1, . . . ,Pr} of Nc, such that Pk ⊂ Ak + Nc, and Ak ∈ Pk or

Pk = ∅ for k = 1, . . . , r. If Aiq is the q-th component of Ai, we define

µq = max{Aiq : 1 6 i 6 r}

where q ∈ {1, . . . , c}, and µ = (µ1, . . . , µc) ∈ Nc. Let t′ = (t1 + 〈µ, s〉, . . . , td + 〈µ, s〉) and

s′ = (|s|, . . . , |s|) ∈ [0,∞)c. Then for each g ∈ K[[W,Z]](t,s) there exist h0, h1, . . . , hr in

K[[W,Z]](t′,s′) such that

(1) g = h1f1 + . . .+ hrfr + h0;

(2) ExpZ(hkZ
Ak) ⊂ Pk, 0 6 k 6 r;

(3) ord0(hk) > ord0(g)− ord0(fk), 1 6 k 6 r.

Moreover , the hj’s are the unique formal power series satisfying (1), (2) and (3).

P r o o f. Write

fk =
∑

(U,V )∈Nc×Nd
fk,U,VW

V ZU where fk,U,V ∈ K,

g =
∑

(U,V )∈Nc×Nd
gUVW

V ZU .

We can suppose that fk,Ak,0 = 1 and g, fk are in E
(t,s)
1/ρ for some ρ < 1 and all

k ∈ {1, . . . , r} (by Remark 2.2). Therefore, there exists δ > 0 such that

|gUV |
U !sV !t

6 δρ|U |+|V | and
|fkUV |
U !sV !t

6 δρ|U |+|V |

for k = 1, . . . , r and (U, V ) ∈ Nc × Nd. It is well known (see [AHV]) that there exist

r + 1 elements h0, h1, . . . , hr in the formal power series ring K[[W,Z]] satisfying (1), (2)

and (3). We can construct them as follows. Put

Pk = fk − ZAk =
∑

(A,B)∈Nc×Nd
Fk,A,BW

BZA.

Then we expand g as the finite sum:

g =

r∑
k=1

h
(0)
k ZAk + h

(0)
0 =

r∑
k=1

fkh
(0)
k + h

(0)
0 −

r∑
k=1

Pkh
(0)
k ,

where ExpZ(h
(0)
k ZAk) ⊂ Pk. Analogously, we write

−
r∑

k=1

Pkh
(0)
k =

r∑
k=1

h
(1)
k ZAk + h

(1)
0 =

r∑
k=1

fkh
(1)
k + h

(1)
0 −

r∑
k=1

Pkh
(1)
k ,

where ExpZ(h
(1)
k ZAk) ⊂ Pk. Consequently,

g =

r∑
i=1

fk(h
(0)
k + h

(1)
k ) + (h

(0)
0 + h

(1)
0 )−

r∑
k=1

Pkh
(1)
k .

This algorithm gives us the required formal power series

hk =

∞∑
j=0

h
(j)
k , 0 6 k 6 r,
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and the order conditions

(νkj) ord0(h
(j)
k zAk) > |Ak|+ j

(see [AHV] for the details). Now, each h
(j)
k can be expanded as

h
(j)
k =

∑
(A,B)∈Nc×Nd

H
(j)
kABW

BZA for some H
(j)
kAB ∈ K.

Moreover, we have the inductive formula.

For j = 0 and k = 0, . . . , r,

H
(0)
kAB =

{
gA+Ak,B if A+Ak ∈ Pk
0 otherwise.

For j > 0 and k = 0, . . . , r,

H
(j)
kAB =


−

r∑
i=1

∑
U1+U2=A+Ak
V1+V2=D

FiU1V1
H

(j−1)
iU2V2

if A+Ak ∈ Pk

0 otherwise.

If N = max{Aiq : 0 6 i 6 r, 1 6 q 6 c}, then we choose

(1) a real number K satisfying K > 2rδ
∏r
i=1Ai!

s/(1− ρ)c and greater than each of

the numbers 2, 2 max{|gAk,0| : k = 1, . . . , r} and

δ
∏

{(i,q):sqAiq 6=0}

ϕiq(miq),

where ϕiq is the function from Lemma 4.1 for a = sqAiq, ` = Aiq and h = N , and miq is

its maximum;

(2) a real number T greater than max{N, (rδ/2)1/c, (2rδQ′/(1− ρ)c)
1/σ}, where σ =

min{〈A1, s〉, . . . , 〈Ar, s〉} > 0 and

Q′ = max

{ ∏
{q:sqAiq 6=0}

QAiq,sqAiq,N : i = 1, . . . , r

}
where QAiq,sqAiq,N is the constant from Lemma 4.1 for a = sqAiq, ` = Aiq and h′ = N ;

(3) a real number R > 1 + T c(1+|µ|)

(1−ρ)d .

We will prove the following inequalities by induction:

(∗)
∣∣H(j)

iCD

∣∣ 6 KT c|C|R|D|D!t
c∏
q=1

(
|C|+ µq|D|

)
!sq

for i = 0, . . . , r, j ∈ N and (C,D) ∈ Nc × Nd. Observe that this implies the theorem(3).

In fact, for t′ = (t1 + 〈µ, s〉, . . . , tc + 〈µ, s〉) and s′ = (|s|, . . . , |s|) ∈ [0,∞)d, the se-

ries |B̂(t′,s′)|h
(j)
i defines a real analytic function on (−ε, ε) × c+d

. . . × (−ε, ε), whenever

(3) Because the number (|C|+ µ1|D|)!s1 · · · (|C|+ µc|D|)!sc is smaller than or equal to

dd〈s,µ〉C!s
′
D!〈s,µ〉 c|s| |C|N 〈s,µ〉|D|.
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ε < min{1/T c, 1/R}. Then the real analytic functions of one variable

ξij(x) = |B̂(t′,s′)|h
(j)
i (x, . . . , x) for |x| < ε,

can be factorized as ξij(x) = xjβij(x), by the order conditions (νij). The functions βij are

positive and strictly increasing in (0, ε). Moreover, the inequalities (∗) imply that there

exists a constant(4) E > 0 such that βij(x) 6 Ex−j in (0, ε). Hence for i = 0, . . . , r and

j ∈ N we get

||h(j)i ||(t′,s′),x = ξij(x) 6 xjβij(ε) 6 E
(x
ε

)j
, when x ∈ (0, ε).

Consequently hi =
∑∞
j=0 h

(j)
i ∈ G(t′,s′), as we have quoted in the theorem.

In order to prove the inequalities (∗), we distinguish two cases. If j = 0 and |D| 6= 0,

we have the bounds∣∣H(0)
iCD

∣∣ 6 δD!t
c∏
q=1

(Cq +Aiq)!
sq 6 KT c|C|R|D|D!t

c∏
q=1

(|C|+ µq|D|)!sq .

Moreover, it is easy to see that∣∣H(0)
0C0

∣∣ 6 KT c|C|
c∏
q=1

|C|!sq and
∣∣H(0)

i00

∣∣ 6 K.

In order to achieve the desired inequality for |H(0)
iC0| we observe that∣∣H(0)

iC0

∣∣ 6 δ

( ∏
16q6c
sqAiq 6=0

TCq

)( ∏
16q6c
sqAiq 6=0

(Cq +Aiq)!
sq

TCq

)( ∏
16q6c
Aiq=0

Cq!
sq

)

6 δT c|C|

( ∏
16q6c
sqAiq 6=0

ϕiq(miq)

)
C!s 6 K|C|!|s|T c|C|.

If j > 0, set

S1 =

r∑
k=1

∑
06U6C+Ak
06V6D,V 6=0

|FkUV | ·
∣∣H(j−1)

k,C+Ak−U,D−V
∣∣,

S2 =

r∑
k=1

∑
06U6C+Ak
|U |>|Ak|

|FkU0| ·
∣∣H(j−1)

k,C+Ak−U,D
∣∣.

Hence, if we have bounds for S1 and S2, so we have for |H(j)
iCD|. By the induction hypoth-

esis

S1 6 δKD!tT c|C|R|D|
c∏
q=1

(|C|+ µq|D|)!sq
r∑

k=1

T c|Ak|
∑

06U6C+Ak
06V6D ,V 6=0

( ρ
T

)|U | ρ|V |
R

.

(4) Observe that it is independent of i and j.
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Therefore, as ρ < 1 and T > ρ, we get the inequality

S1 6 KT c|C|R|D|
δr

(T − ρ)c
· T

c(1+|µ|)

R(1− ρ)d
D!t

c∏
q=1

(|C|+ µq|D|)!sq .

Consequently, S1 6 KT c|C|R|D|D!t
∏c
q=1(|C|+µq|D|)!sq/2. The expression S2 is bounded

by

δKD!tR|D|T c|C|
r∑

k=1

∑
06W6C+Ak
|W |<|C|

ρ|C+Ak−W |
c∏
q=1

(Cq +Akq −Wq)!
sq (|W |+ µq|D|)!sq

T |C−W |
.

When sqAkq > 0, Lemma 4.1 implies the inequality

(Cq +Akq −Wq)!
sq (|W |+ µq|D|)!sq

T |C−W |
6
QAkq,Akqsq,N

T sqAkq
|C −W |!sq (|W |+ µq|D|)!sq .

Hence, S2 6 KT c|C|R|D|D!t
∏c
q=1(|C|+ µq|D|)!sq/2, and we get our statement (∗).

R e m a r k 4.3. There are some special cases where we can divide without changing

the Gevrey ring. For instance:

(1) Case s = 0 ∈ Kc. Observe that this improves the result obtained by applying the

henselian Weierstrass division theorem to this case (see [H], page 72), since the ring B =

K[[W ]]t is henselian and the henselianization of the local ring B[Z](W,Z) is K[[W,Z]](t,0).

(2) Case when g and the fj are in (K[[W ]]t,+)[[Z]]0,+.

The division and preparation theorems for the Gevrey rings can be obtained as corol-

laries(5).

Theorem 4.4 (the division theorem for Gevrey’s rings). Let s = (s1, . . . , sn) ∈ [0,∞)n

and d ∈ N, d 6= 0. Let a formal power series

f =

∞∑
j=0

Fj(X1, . . . , Xn−1)Xj
n ∈ K[[X1, . . . , Xn]]s

satisfy Fj(0, . . . , 0) = 0 for 0 6 j 6 d − 1, and Fd(0, . . . , 0) 6= 0. Let ŝ′ = (s1 + dsn, . . .

. . . , sn−1 + dsn) and s′ = (ŝ′, sn). Then for each g ∈ K[[X1, . . . , Xn]]s there exist q ∈
K[[X1, . . . , Xn]]s′ and r ∈ K[[X1, . . . , Xn−1]]

ŝ′
[Xn] such that

g = qf + r and degXn r 6 d− 1.

Recall that a formal power series f(X1, . . . , Xn) ∈ K[[X1, . . . , Xn]] is Xn-regular of

order d if the order of f(0, . . . , 0, Xn) ∈ K[[Xn]] is d for the valuation given by the

maximal ideal of K[[Xn]]. Moreover, we say that f is Xn-regular, if it is Xn-regular of

order ord0 f .

(5) See [Z2] for a simpler proof.
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Theorem 4.5 (the preparation theorem for Gevrey’s rings). Let f ∈ K[[X1, . . . , Xn]]s
for some s = (s1, . . . , sn) ∈ [0,∞)n, and d = ord0(f). If f is Xn-regular , then there exist

a unit u ∈ K[[X1, . . . , Xn]]s′ and a1, . . . , ad−1 in K[[X1, . . . , Xn−1]]
ŝ′

such that

f = u ·
(
Xd
n +

d∑
j=0

ajX
j
n

)

where ŝ′ = (s1 + dsn, . . . , sn−1 + dsn) and s′ = (ŝ′, sn).

Now, fix independent variables X1, . . . , Xn over K, and consider the ring

G =
⋃
s>0

G(s) .

We call it the Gevrey ring (of dimension n). In fact, G is a local regular ring of dimension n

and it is also a henselian unique factorization domain. The normalization theorem can be

proved for G analogously to the case of the convergent power series rings ([N]). Moreover

it is an excellent ring (see [Mt], page 291). So, it has the approximation property, by [R],

that is:

Theorem 4.6. Given a finite family of polynomials Pi(Y1, . . . , Ym) in G[Y1, . . . , Ym],

for i = 1, . . . , r, and a formal solution (ŷ1, . . . , ŷm) in K[[X1, . . . , Xn]]m of the system

(∗) Pi(Y1, . . . , Ym) = 0, i = 1, . . . , r,

there exists a solution (y1, . . . , ym) of (∗) in Gm.

Similarly to the convergent power series rings, we have in G a theorem of implicit

series and a theorem of inverse series. More precisely, we have the following results:

Theorem 4.7 (the implicit series theorem). Let n, m be two positive integers, and

X1, . . . , Xn, Z1, . . . , Zm independent variables over K. Given s = (s1, . . . , sn+m) in

[0,∞)n+m, we put r = max{si : 1 6 i 6 n+m}. Let

fj(X1, . . . , Xn, Z1, . . . , Zm) ∈ K[[X1, . . . , Xn, Z1, . . . , Zm]]s for j = 1, . . . , n,

with det
( ∂fi
∂Xj

(0)
)
i,j
6= 0 and fj(0) = 0. Then there exist ξ1, . . . , ξn in K[[Z1, . . . , Zm]]2nr

such that

fj(ξ1, . . . , ξn, Z1, . . . , Zm) = 0 for j = 1, . . . , n.

P r o o f. For n = 1 the statement is an easy consequence of the division theorem

(Thm. 4.4). We can suppose that ∂fn
∂Xn

(0) 6= 0, and then we have the equalities

fn = u ·
(
Xn − ξ(X1, . . . , Xn−1, Z)

)
,

fj = qjfn + rj(X1, . . . , Xn−1, Z) for j = 1, . . . , n− 1,
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with ξ, rj in K[[X1, . . . , Xn−1]]2r. Moreover, we get

∂fn
∂Xn

(0) 6= 0,

∂fj
∂Xn

(0) = qj(0)
∂fn
∂Xn

(0) for j = 1, . . . , n− 1 ,

∂fj
∂Xk

(0) = qj(0)
∂fn
∂Xk

(0) +
∂rj
∂Xk

(0) for j = 1, . . . , n− 1 .

The matrix
( ∂rj
∂Xk

(0)
)
j,k

is invertible. Hence, by induction, there exist ξ1, . . . , ξn−1 in

K[[Z]]2n−1r such that rj(ξ1, . . . , ξn−1, Z) = 0. Now put ξn = ξ(ξ1, . . . , ξn−1, Z). This is an

element of K[[Z]]2n−1r, by the evaluation property. So, ξ1, . . . , ξn are the required series.

Lemma 4.8. Let X1, . . . , Xn, Z1, . . . , Zn be independent variables over K, and G the

Gevrey ring of dimension n in the variables Xj. Let f1, . . . , fn ∈ K[[X1, . . . , Xn]](s1,...,sn)
be such that the determinant det

(
∂fi
∂Xj

(0)
)
6= 0. Put r = max{s1, . . . , sn}. Then there

exist ξ1, . . . , ξn in K[[Z]]2nr such that fj(ξ1, . . . , ξn) = Zj for j = 1, . . . , n.

P r o o f. Take gj = fj − Zj and apply the implicit series theorem.

We have the following corollary to the previous lemma:

Theorem 4.9 (the inverse series theorem). Let f1, . . . , fn ∈ K[[X1, . . . , Xn]](s1,...,sn)
be such that det( ∂fi∂Xj

(0)) 6= 0. Put r = max{s1, . . . , sn}. Then there exist ξ1, . . . , ξn in

K[[Z]]2nr such that fj(ξ1, . . . , ξn) = Xj for j = 1, . . . , n.
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