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1. Introduction. The Hirzebruch-Riemann-Roch theorem (HRR) for vector bundles
on a non-singular complex variety was generalized by Grothendieck (GRR) and further
extended to singular varieties by Baum, Fulton and MacPherson (BFM-RR). The HRR
says, symbolically speaking, that χ = T , where χ denotes the Euler-Poincaré characteris-
tic of the bundle and T denotes its Todd characteristic. Hirzebruch generalized these two
characteristics to χy and Ty, introducing a parameter y, and he showed that χy = Ty. In
this paper we give a “BFM-RR version” of this generalized HRR.

2. Riemann-Roch theorems. In this section we briefly recall the above-mentioned
three Riemann-Roch theorems in a historical order.

LetX be a non-singular complex projective variety and E a holomorphic vector bundle
over X. Let χ(X,E) =

∑∞
i=0(−1)i dimCH

i(X; Ω(E)) be the Euler-Poincaré characteris-
tic, where Ω(E) is the coherent sheaf of germs of sections of E. J.-P. Serre conjectured
and F. Hirzebruch solved that this Euler number can be expressed in terms of Chern
classes of E and the tangent bundle TX . Namely, the following theorem is a celebrated
theorem, usually called the Hirzebruch-Riemann-Roch theorem:

Theorem 1 (HRR).

χ(X,E) = T (X,E).

Here T (X,E) :=
∫
X

td(TX) ch(E) ∩ [X] is called the T -characteristic ([Hi-1]), where
ch(E) is the total Chern character of E and td(TX) is the total Todd class of the tangent
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bundle TX of X. For the sake of later use, we recall that for a complex vector bundle V
ch(V ) and td(V ) are defined as follows:

ch(V ) =

rankV∑
i=1

eαi

and

td(V ) =

rankV∏
i=1

αi
1− e−αi

where αi’s are the Chern roots of V .
As a reference for a more detailed historical aspect of HRR, see Hirzebruch’s arti-

cle [Hi-2].
Grothendieck (cf. [BS]) generalized HRR for non-singular quasi-projective algebraic

varieties over any field and proper morphisms with Chow cohomology ring theory instead
of ordinary cohomology theory. For the complex case we can still take the ordinary coho-
mology theory (or the homology theory by the Poincaré duality). Here we stick ourselves
to complex projective algebraic varieties for the sake of simplicity. For a variety X, let
K0(X) denote the Grothendieck group of algebraic coherent sheaves on X and for a
morphism f : X → Y the pushforward f! : K0(X)→ K0(Y ) is defined by

f!(F) :=

∞∑
i=0

(−1)iRif∗F ,

where Rif∗F is (the class of) the higher direct image sheaf of F . Then K0 is a covariant
functor with the above pushforward (see [Gr] and [Man]). Then Grothendieck showed the
existence of a natural transformation from the covariant functor K0 to the Q-homology
covariant functor H∗( ;Q) (see [BS]), which is called the Grothendieck-Riemann-Roch
theorem:

Theorem 2 (GRR). Let the transformation τ : K0( ) → H∗( ;Q) be defined by
τ(F) = td(X) ch(F)∩ [X] for any smooth variety X. Then τ is actually natural, i.e., for
any morphism f : X → Y the following diagram commutes:

K0(X)

f!

��

τ // H∗(X;Q)

f∗

��
K0(Y )

τ
// H∗(Y ;Q)

i.e.,

td(TY ) ch(f!F) ∩ [Y ] = f∗(td(TX) ch(F) ∩ [X]).

Clearly HRR is induced from GRR by considering a map from X to a point.

R e m a r k 1. The target of the transformation of the original GRR is the cohomology
H∗( ;Q) with the Gysin homomorphism, instead of the homology H∗( ;Q). But, by the
definition of the Gysin homomorphism the original GRR can be put in as above.

Baum, Fulton and MacPherson [BFM] have extended GRR to singular varieties,
by introducing the so-called localized Chern character chMX (F) of a coherent sheaf F
with X embedded into a non-singular quasi-projective variety M , as a substitute of
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ch(F ) ∩ [X] in the above GRR. Let X be a compact complex subspace of a complex
manifold M and let E• be a complex of topological vector bundles on M which is exact
off X. Then the localized Chern character chMX (E•) is defined as follows (for more details
see [BFM]). Let d(E•) ∈ K0(M,M − X) be the difference-bundle of the complex E• ,
ch : K0(M,M −X)→ H∗(M,M−X;Q) the Chern character and L : K0(M,M−X)→
H∗(X;Q) the Lefschetz duality isomorphism. Then chMX (E•) is defined to be the value
of d(E•) by the composite L ◦ ch , i.e., chMX (E•) := L ◦ ch(d(E•)). For a coherent sheaf F
on X, the localized Chern character chMX (F) is defined by: chMX (F) := chMX (E•), where
E• is a resolution of the coherent sheaf iM∗F with iM : X → M being the embedding
of X into smooth M . Note that if X is smooth chXX(F) = ch(F ) ∩ [X]. In [BFM] Baum,
Fulton and MacPherson showed the following theorem:

Theorem 3 (BFM-RR).

(i) τ(F) := td(i∗MTM ) ∩ chMX (F) is independent of the embedding iM : X →M .

(ii) Let the transformation τ : K0( ) → H∗( ;Q) be defined by τ(F) = td(i∗MTM ) ∩
chMX (F) for any variety X. Then τ is actually natural, i.e., for any morphism f : X → Y
the following diagram commutes:

K0(X)

f!

��

τ // H∗(X;Q)

f∗

��
K0(Y )

τ
// H∗(Y ;Q)

i.e., for any embeddings iM : X →M and iN : Y → N

td(i∗NTN ) ∩ chNY (f!F) = f∗(td(i∗MTM ) ∩ chMX (F)).

When X and Y are smooth, it is clear that BFM-RR becomes GRR.

Summing up we have the following relationships between these three Riemann-Roch’s:

HRR GRR
“mapping to a point”oo BFM-RR

“smooth”oo

Here the first arrow means that if we consider GRR for a map from a variety to a
point, then we get HRR, and the second arrow means that if we restrict BFM-RR to the
category of smooth varieties, then we get GRR.

3. Hirzebruch characteristics. In Hirzebruch’s book [Hi-1, §12.1 and §15.5] he has
generalized the characteristics χ(X,E) and T (X,E) to the so-called χy-characteristic
χy(X,E) and Ty-characteristic Ty(X,E) as follows, using a parameter y (see also [HBJ,
Chapter 5]).

Definition 1.

χy(X,E) : =

∞∑
p=0

( ∞∑
q=0

(−1)q dimCH
q(X,Ω(E)⊗ ΛPT∨X)

)
yp

=

∞∑
p=0

χ(X,E ⊗ ΛPT∨X)yp
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where T∨X is the dual of the tangent bundle TX , i.e., the cotangent bundle of X.

Ty(X,E) : =

∫
X

t̃d(y)(TX) ch(1+y)(E) ∩ [X],

t̃d(y)(TX) : =

dimX∏
i=1

( αi(1 + y)

1− e−αi(1+y)
− αiy

)
,

ch(1+y)(E) : =

rankE∑
j=1

eβj(1+y),

where αi’s are the Chern roots of TX and βj ’s are the Chern roots of E.

With the above definition Hirzebruch [Hi-1, §21.3] showed the following generalized
Hirzebruch-Riemann-Roch (abbr. g-HRR):

Theorem 4 (g-HRR).

χy(X,E) = Ty(X,E).

Note that when y = 0 we get the original HRR.

R e m a r k 2. The modified Todd class t̃d(y)(TX) defined above unifies the following
three important characteristic cohomology classes:

(y = −1): ˜td(−1)(TX) = c(TX), the total Chern class,

(y = 0): t̃d(0)(TX) = td(TX), the total Todd class,

(y = 1): t̃d(1)(TX) = L(TX), the total Thom-Hirzebruch L-class.

In particular, for E = the trivial line bundle, for these special values y = −1, 0, 1, the
g-HRR reads as follows, which are well-known facts:

(y = −1): topological Euler-Poincaré characteristic e(X) =
∫
X
c(TX) ∩ [X],

(y = 0): arithmetic genus χ(X) =
∫
X

td(TX) ∩ [X],

(y = 1): signature σ(X) =
∫
X
L(TX) ∩ [X].

There is another simpler version of modified Todd class parametrized by y, which is
sort of a “Todd version” of the Chern polynomial ct =

∑∞
i=0 t

ici with c =
∑∞
i=0 ci the

total Chern class.

Definition 2 (“Todd polynomial”). For a variable q and a complex vector bundle V

td(q)(V ) :=
∞∑
i=0

qi tdi(V ) =
rankV∏
p=1

qγp
1− e−qγp

where γp’s are the Chern roots of V .

There is a fundamental relationship between these two types of “parametrized” Todd
classes:

Proposition 5 ([Y-2, Lemma (2.3.7)]). For any virtual bundle V

t̃d(y)(V ) = (1 + y)− rankV
( ∞∑
p=0

ch(1+y)(Λ
pV ∨)yp

)
td(1+y)(V ),
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or, if we use the Grothendieck λ-ring structure, λy(V ) :=
∑∞
p=0[ΛpV ]yp, then the equality

becomes

t̃d(y)(V ) = (1 + y)− rankV ch(1+y)(λy(V ∨)) td(1+y)(V ).

Then, since ch(1+y)(E) ch(1+y)(λyT
∨
X) = ch(1+y)(E ⊗ λyT∨X), the generalized Hirze-

bruch-Riemann-Roch can be rewritten as follows:

Corollary 6.

χ(X,E ⊗ λyT∨X) = (1 + y)− dimX

∫
X

td(1+y)(TX) ch(1+y)(E ⊗ λyT∨X) ∩ [X].

We will see later that this simple observation is quite significant.

R e m a r k 3. As long as we are just concerned with expressing χy(X,E) in terms
of characteristic classes of E and TX and the parameter y, the following formula is also
perfectly all right, for example.

χy(X,E) =
∑
p

χ(X,E ⊗ ΛpT∨X)yp

=
∑
p

∫
X

(td(TX) ch(E ⊗ ΛpT∨X) ∩ [X])yp

=

∫
X

td(TX) ch(E ⊗ ΛpT∨X) ∩ [X]

=

∫
X

td(TX) ch(λyT
∨
X) ch(E) ∩ [X].

Here we set

t̂d(y)(TX) := td(TX) ch(λyT
∨
X) =

dimX∏
i=1

αi
1− e−αi

dimX∏
i=1

(1 + ye−αi)

=

dimX∏
i=1

αi(1 + ye−αi)

1− e−αi

=

dimX∏
i=1

(αi(1 + y)

1− e−αi
− αiy

)
.

However, unlike the modified Todd class t̃d(y)(TX), this class t̂d(y)(TX) does not give rise
to the Chern class when y = −1 nor the Thom-Hirzebruch class when y = 1, although it
of course gives rise to the Todd class when y = 0. Indeed, when y = −1 we have

̂td(−1)(TX) =

dimX∏
i=1

αi = cn(X), the top Chern class,

and when y = 1 we have

t̂d(1)(TX) =
dimX∏
i=1

αi
1 + eαi

1− e−αi
=

dimX∏
i=1

αi

tanh( 1
2αi)

6=
dimX∏
i=1

αi
tanh(αi)

= L(TX).
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So the significance of HRR is that it unifies the formulae about the three important

genera and also that the modified Todd class t̃d(y)(TX) unifies the three corresponding
characteristic classes.

4. A generalized Baum-Fulton-MacPherson’s Riemann-Roch. In this section
we shall get a “BFM-RR version” of the generalized Hirzebruch-Riemann-Roch in a
similar manner to that of the construction of BFM-RR.

It seems quite natural to speculate that when one tries to get a “BFM-RR version” of
g-HRR, simply thinking, if one replaces td(i∗MTM )∩chMX (F) in BFM-RR by the following
ingredient

t̃d(y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F)

then it might work perfectly, just as in the case of BFM-RR. Here ch(1+y)
M
X

(F) should

be similar to chMX (F). As a candidate for ch(1+y)
M
X

(F), we recall a definition and results
from our previous paper [Y-1].

In [Y-1] we give modified (or “twisted”) versions of chMX (E•) and chMX (F) as follows:
ch(q)

M
X

(E•) is defined by simply replacing the Chern character ch by the “Chern character

polynomial” ch(q) =
∑∞
i=0 q

i chi in the construction of chMX (E•).

Definition 3 (“twisted” localized Chern character).

ch(q)
M
X

(F) := qdimX−dimMch(q)
M
X

(E•).

In particular, when X is smooth, then ch(q)
X
X

(F) = ch(q)(F) ∩ [X].

Theorem 7 ([Y-1, Proposition (3.9)]). The homology class

τ(q)(F) := td(q)(i
∗
MTM ) ∩ ch(q)

M
X

(F)

is independent of the embedding iM : X →M .

Thus we get the following

Proposition 8. The homology class t̃d(y)(i
∗
MTM )∩ch(1+y)

M
X

(F) depends on the em-
beddings of X into smooth varieties M .

P r o o f. Using the formula in Proposition 5, we can get the following equality:

t̃d(y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F)

= (1 + y)− dimM ch(1+y)

(
λy(i∗MT

∨
M )
)

td(1+y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F).

Here, thanks to Theorem 7 above, td(1+y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F) is independent of the

embeddings of X into smooth varieties M , but (1 + y)− dimM ch(1+y)(λyi
∗
MT

∨
M ) does

depend on the embeddings. Thus the homology class t̃d(y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F) does
depend on the embeddings of X into smooth varieties.

In spite of this unpleasant dependence, however, we still want to use this homology
class, which is quite natural and similar to the definition of Baum-Fulton-MacPherson’s
Todd class. For the sake of simplicity we introduce the following notation:

Definition 4.
τBFM
(q) (F) := td(q)(i

∗
MTM ) ∩ ch(q)

M
X

(F)

is called the parametrized Baum-Fulton-MacPherson’s Todd class of the coherent sheaf F .
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Theorem 9. Let K0(X)[y] := K0(X)⊗Z[y] and let the pushforward f! : K0(X)[y]→
K0(Y )[y] be defined by extending f! : K0(X) → K0(Y ) linearly with respect to the poly-
nomial ring Z[y]. Define τBFM

(1+y) : K0(X)[y] → H∗(X : Q)[y] by τBFM
(1+y)(

∑
fi[Fi]) :=∑

fiτ
BFM
(1+y)(Fi), where fi ∈ Z[y] and Fi ∈ K0(X). Then for a morphism f : X → Y the

following diagram commutes:

K0(X)[y]

f!
��

(1 + y)− dimX τBFM
(1+y) // H∗(X;Q)[y, y−1]

f∗
��

K0(Y )[y]
(1 + y)− dimY τBFM

(1+y)

// H∗(Y ;Q)[y, y−1]

When y = 0, this gives us the original BFM-RR. This theorem shall be provisionally
called a generalized Baum-Fulton-MacPherson’s Riemann-Roch (g-BFM-RR).

R e m a r k 4. Consider the diagram in Theorem 9 in the case when X is smooth,
f : X → pt is a mapping to a point pt and E ⊗ λyT∨X ∈ K0(X)[y]. Then we have

f!(E ⊗ λyT∨X) = χ(X,E ⊗ λyT∨X)

and

f∗(1 + y)− dimXτBFM
(1+y)(E ⊗ λyT

∨
X)

= (1 + y)− dimX

∫
X

td(1+y)(TX) ch(1+y)(E ⊗ λyT∨X) ∩ [X].

The above theorem is a slight modification of the following theorem.

Theorem 10 ([Y-1, Theorem (3.10)]). Let K0(X)[q, q−1] :=K0(X)⊗Z[q, q−1] and for

a morphism f : X → Y the “twisted” pushforward f
(q)
! : K0(X)[q, q−1]→ K0(Y )[q, q−1]

be defined by

f
(q)
! := qdimX−dimY f!,

where f! : K0(X) → K0(Y ) is the original Grothendieck pushforward. (Obviously
K0( )[q, q−1] is a covariant functor with this “twisted” pushforward.) Let the homo-
morphism τBFM

(q) : K0(X)[q, q−1] → H∗(X;Q)[q, q−1] be defined by τBFM
(q) (

∑
fi[Fi]) :=∑

fiτ
BFM
(q) (Fi), where fi ∈ Z[q, q−1] and Fi ∈ K0(X). Then τBFM

(q) is a natural transfor-
mation, i.e., for any morphism f : X → Y

τBFM
(q) f

(q)
! = f∗τ

BFM
(q) .

R e m a r k 5. There is a simple relationship between τBFM
(q) and τ : For a coherent

sheaf F on X we have

τBFM
(q) (F) =

∑
i≥0

qdimX−iτi(F),

where τi(F) is the 2i-dimensional component of the total homology class τ(F). The-
orem 10 was originally obtained from a motivation of trying to get a “twisted ver-
sion” τBFM

(q) : K0(X)[q, q−1] → H∗(X;Q)[q, q−1] of τ : K0(X) → H∗(X;Q), satis-

fying that τBFM
(q) is the unique natural transformation so that if X is smooth then

τBFM
(q) (OX) = td(q)(TX) ∩ [X].
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Now, using Theorem 9 and introducing the following definitions, we can capture and

understand the total homology class t̃d(y)(i
∗
MTM )∩ ch(1+y)

M
X

(F) (depending on the em-
bedding of X into a smooth variety M) much clearer as follows.

Definition 5. Let iM : X → M be an embedding of X into a smooth variety M .
The isomorphism

ΛM : K0(X)[y]→ K0(X)[y]

defined by extending the following linearly with respect to Z[y]

ΛM (F) := F ⊗ λy(i∗MT
∨
M )

is called the twisting isomorphism via the embedding iM .

Definition 6. For a morphism f : X → Y and embeddings iM : X → M and
iN : Y → N of X and Y into smooth varieties, the homomorphism

(f
[y]
! )NM : K0(X)[y]→ K0(Y )[y]

defined by extending the following linearly with respect to Z[y]

(f
[y]
! )NM (F) = f!

(
F ⊗ λy(i∗MT

∨
M − f∗i∗NT∨N )

)
is called the twisted homomorphism with respect to the embeddings iM and iN .

Lemma 1. The following diagram commutes:

K0(X)[y]

f
[y]

!

��

ΛM // K0(X)[y]

f∗

��
K0(Y )[y]

ΛN

// K0(Y )[y]

P r o o f. It suffices to show that for a coherent sheaf F

ΛN (f
[y]
! )NM (F) = f∗ΛM (F).

Then by the projection formula and the multiplicativity of λy we have that

ΛN (f
[y]
! )NM (F) = f!

(
F ⊗ λy(i∗MT

∨
M − f∗i∗NT∨N )

)
⊗ λy(i∗NT

∨
N )

= f!

(
F ⊗ λy(i∗MT

∨
M − f∗i∗NT∨N )⊗ λy(f∗i∗NT

∨
N )
)

= f!

(
F ⊗ λy(i∗MT

∨
M − f∗i∗NT∨N + f∗i∗NT

∨
N )
)

= f!(F ⊗ λy(i∗MT
∨
M ))

= f∗ΛM (F).

Theorem 11 (g-BFM-RR’s associated to embeddings). For an embedding iM :X→M
we define the homomorphism

τ
[y]
M : K0(X)[y]→ H∗(X;Q)[y]

by (for a coherent sheaf F)

τ
[y]
M (F) = (1 + y)dimM−dimX t̃d(y)(i

∗
MTM ) ∩ ch(1+y)

M
X

(F)



A SINGULAR RIEMANN-ROCH FOR HIRZEBRUCH CHARACTERISTICS 265

and extend it linearly with respect to the polynomial ring Z[y]. Then for a morphism
f : X → Y and embeddings iM : X → M and iN : Y → N of X and Y into smooth
varieties the following diagram commutes:

K0(X)[y]

f
[y]

!

��

τ
[y]

M // H∗(X;Q)[y]

f∗

��
K0(Y )[y]

τ
[y]

N

// H∗(Y ;Q)[y]

P r o o f. First we observe the following key lemma (cf. the proof of [BFM, Proposition
(3.3)]):

Lemma 2. For a coherent sheaf F and a vector bundle E the following equality holds:

ch(1+y)
M
X

(F ⊗ E) = ch(1+y)(E) ∩ ch(1+y)
M
X

(F).

The proof of the theorem goes as follows:

τ
[y]
M (F)

= (1 + y)dimM−dimX t̃d(y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F)

= (1 + y)dimM−dimX((1 + y)− dimM td(1+y)(i
∗
MTM ) ch(1+y)(λyi

∗
MT

∨
M ) ∩ ch(1+y)

M
X

(F))

= (1 + y)− dimX td(1+y)(i
∗
MTM ) ∩ ch(1+y)

M
X

(F ⊗ λyi∗MT∨M )

= (1 + y)− dimXτBFM
(1+y)(ΛM (F)).

Hence the assertion follows from the two commutative diagrams in Theorem 9 and

Lemma 1. Since the homology class τ
[y]
M (F) = (1 + y)dimM−dimX t̃d(y)(i

∗
MTM ) ∩

ch(1+y)
M
X

(F) does not involve y−1 at all, as the target of the homomorphism τ
[y]
M we

can take H∗(X;Q)[y] instead of H∗(X;Q)[y, y−1].

The above theorem means that our g-BFM-RR gives rise to infinitely many com-
mutative diagrams as in the theorem according to the embeddings of the target and
source varieties via the commutative diagrams in Lemma 1. In particular, when X and Y
are smooth, g-BFM-RR gives rise to the following special case, which is the generalized
Grothendieck-Riemann-Roch (abbr. g-GRR) given in [Y-2] and the proof of which is now
much more compact and clearer than that in [Y-2].

Theorem 12 ([Y-2, Theorem (2.1) and Theorem (2.3)]).

(i) For a morphism f : X → Y , the pushforward f
[y]
! : K0(X)[y] → K0(Y )[y] is

defined as follows:

f
[y]
! (F) :=

∞∑
p=0

f!(F ⊗ ΛpT∨f )yp = f!(F ⊗ λyT∨f )

where f! : K0(X) → K0(Y ) is the original Grothendieck pushforward and T∨f := T∨X −
f∗T∨Y is a virtual “relative cotangent bundle” as an element of K0(X), and this push-
forward is extended linearly with respect to the polynomial ring Z[y]. Then K0( )[y] is
a covariant functor with the above pushforward, i.e., for morphisms f : X → Y and

g : Y → Z, g
[y]
! ◦ f

[y]
! = (g ◦ f)

[y]
! .
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(ii) If we define the homomorphism τ [y] : K0(X)[y]→ H∗(X;Q)[y] by

τ [y](F) := t̃d(y)(TX) ch(1+y)(F) ∩ [X],

which is extended linearly with respect to the polynomial ring Z[y], then τ [y] : K0( )[y]→
H∗( ;Q)[y] is a natural transformation, i.e., for any morphism f : X → Y the following
diagram commutes:

K0(X)[y]

f
[y]

!

��

τ [y]
// H∗(X;Q)[y]

f∗

��
K0(Y )[y]

τ [y]

// H∗(Y ;Q)[y]

i.e.,

t̃d(y)(TY ) ch(1+y)(f
[y]
! F) ∩ [Y ] = f∗

(
t̃d(y)(TX) ch(1+y)(F) ∩ [X]

)
.

P r o o f. Take M = X and Y = N in the proof of Theorem 11.

Note that our g-GRR specializes to GRR when y = 0 and that g-HRR follows from
g-GRR by considering a mapping of a variety to a point.

5. An open problem. Summing up compactly what we have seen so far we have
the following “commutative” diagram:

HRR GRR
“mapping to a point”oo BFM-RR

“smooth”oo

g-HRR

“y=0”

OO

g-GRR

“y=0”

OO

“mapping to a point”
oo g-BFM-RR

“y=0”

OO

“smooth”
oo

One of the motivations for this present work is based on the following two facts.

F a c t 1. The generalized Hirzebruch-Riemann-Roch g-HRR unifies the three im-
portant and distinguished characteristics (or genera):

(−1): topological Euler-Poincaré characteristic

e(X) =

∫
X

c(X) ∩ [X],

(0): arithmetic genus

χ(X) =

∫
X

td(TX) ∩ [X],

(1): signature

σ(X) =

∫
X

L(TX) ∩ [X].

F a c t 2. There are three distinguished characteristic homology classes of possi-
bly singular varieties, corresponding to the above three important invariants, which are
respectively,

(−1): Chern-Schwartz-MacPherson’s class C(X) ([BrSc], [Mac]), and

e(X) =

∫
X

C(X),
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(0): Baum-Fulton-MacPherson’s Todd class τ(X) (i.e., BFM-RR) [BFM], and

χ(X) =

∫
X

τ(X),

(1): Goresky-MacPherson’s homology L-class L(X) [GM]; and

σ(X) =

∫
X

L(X).

Thus we pose the following very naive problem:

Problem. Is there a theory of characteristic homology classes unifying the above
three characteristic homology classes of possibly singular varieties? In particular, can we
find an ideal theory g-BFM-RR in the above commutative diagram?

R e m a r k 6. Chern-Schwartz-MacPherson classes and Baum-Fulton-MacPherson’s
Todd classes are both formulated as natural transformations from certain covariant func-
tors to the homology functor. But this is not the case for the Goresky-MacPherson’s
homology L-class. However Cappell and Shaneson [CS-1] have recently developed a the-
ory of homology L-class, extending Goresky-MacPherson’s homology L-classes, by using
the sheaf-theoretic methods to define intersection homology and also by using the founda-
tional topological aspects of the theory of perverse sheaves. Their homology L-class turns
out to be formulated as a natural transformation from a certain covariant cobordism
functor to the homology functor [Y-3]. In passing, it is noteworthy to remark that the
relationship between Cappell-Shaneson’s homology L-class and Goresky-MacPherson’s
homology L-class is just like that between Chern-Schwartz-MacPherson class and Chern-
Mather class.

R e m a r k 7. Cappell and Shaneson ([CS-2], [Sh]) have also recently announced their
results about formulae relating the genera of algebraic varieties under a morphism. In
which they claimed to have defined the characteristic classes TyX and ITyX parametrized
by y such that when y = −1, T−1X becomes the Chern-Schwartz-MacPherson class C(X),
and when y = 0, T0X becomes the Baum-Fulton-MacPherson’s Todd class τ(X), and
when y = 1, IT1(X) becomes Goresky-Macpherson’s L-class L(X). At the moment their
detailed version is not available yet (in particular their definitions of TyX and ITyX are
not given in either of their papers ([CS-2], [Sh])) and also we do not know the naturality
of TyX and ITyX, i.e., whether they can be redefined as natural transformations from
certain covariant functors to the homology functor. Incidentally we do not know what
T1X is.
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