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1. Residue form. We begin with recalling the construction of the Leray residue

form [Le]. Let K be a smooth hypersurface of a complex manifold M . Suppose that K

is locally given by an equation f = 0 where f is holomorphic and df does not vanish

along K. Let ω ∈ Ωk+1(M \K) be a complex valued C∞-form with the first order pole

on K, i.e. f ω extends to a smooth form on M . If ω is closed then it can be written

(locally) in the form

ω =
df

f
∧ r + θ,

where r and θ are C∞-forms on M . A tool to obtain this decomposition is the Division

Property:

Definition. Suppose df 6= 0 at x ∈M . The differential df is said to have a Division

Property if for every smooth form α satisfying df ∧ α = 0, there exists a smooth form β

defined on a neighbourhood of x such that α = df ∧ β.

The Leray residue form of ω is defined by

Resω = r|K .

The form r|K does not depend on f nor on the decomposition of ω, thus Resω ∈ Ωk(K)

is defined globally. The form Resω is closed. Its class in Hk(K) depends only on the class

of ω in Hk+1(M \K).

Consider now a singular hypersurface K = {f = 0}. To construct the residue form we

have to use the Division Property of a singular differential df . Suppose ω is a meromorphic

(k + 1)-form with the first order pole on K. To decompose ω and obtain a residue form
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(as in the smooth case) we have to use the Division Property twice: for holomorphic

(k + 2)- and (k + 1)-forms. The differential df has the Division Property for holomor-

phic l-forms α, provided that l is not greater than the codimension of singularities

ΣK = {f = 0, df = 0} in K as proved in [Sa] (see also [dR] for isolated singularities).

For example, if K has isolated singularities then the division is possible for l-forms with

l ≤ n where n = dimCK. Thus one can construct the residue form for ω of degree smaller

than n. The residue forms are well defined on the nonsingular part of K. In general they

have poles at singular points ΣK . Consider an example:

Example 1.1. Let M = C3, f(x, y, z) = x3 + y3 + z3, ω = 1
f dx ∧ dy ∧ dz, then

Resω =


1

3x2 dy ∧ dz for x 6= 0

− 1
3y2 dx ∧ dz for y 6= 0

1
3z2 dx ∧ dy for z 6= 0.

A possibility to find a residue class in H∗(K) from the integration point of view means

to give a meaning to the symbol ∫
ξ

Resω

for a cycle ξ which is allowed to intersect singularities. A question how to give a meaning

to this symbol was asked by Prof. Bogdan Ziemian. It arises in a natural way from his

calculation [Zi].

We are mainly interested in the residues of holomorphic (n + 1)-forms. The purpose

of this paper is to show a sequence of local conditions for the singularities of K which

allow to lift the homological residue to cohomology or to intersection homology. We will

proceed as follows. After discussion on the topological point of view in Section 2 we

investigate K with isolated singularities. We consider a sequence of singularity types.

Each one is worse than the preceding one. We begin with rational homology manifolds

in Section 3, next we describe a condition on the oscillation index in Section 4 and in

Section 5 we give a condition for the spectrum of a singular point. Finally we find in

Section 6 the obstruction to lift, called the second residue. Later we discuss nonisolated

singularities: line singularities in Section 7 and the case when K is a sum of smooth

components with normal crossings in Section 8. We finish with a remark for the general

case in Section 9.

This paper was stimulated by discussions with Prof. Bogdan Ziemian, who investi-

gated residues by means of hyperfunctions. Prof. Bogdan Ziemian died tragically in the

spring of 1997. First of all I would like to thank him for setting the problem and for the

help with finding the solution. There are other people who influenced my work. They are

Professors G. Barthel, J-P. Brasselet, B. Jakubczyk, P. Jaworski and H. Żo la̧dek. The

detailed discussion and complete proofs of the presented theorems will appear in [We2].

2. Topological point of view. Suppose Mn+1 is a complex manifold and Kn is a

hypersurface. Let c ∈ Hk+1(M \K) be a cohomology class. Suppose for a moment that K

is nonsingular. Consider a diagram of cohomology and homology groups with coefficients
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in C:

Hk+1(M \K)
δ−−−−→ Hk+2(M,M \K) Hk+2(TubK,TubK \K)

Poincaré duality

y∩[M ] τ

xThom isomorphism

HBM
2n−k(K)

∩[K]←−−−−−−−−−−
Poincaré duality

Hk(K).

In the diagram HBM
∗ denotes Borel-Moore homology, i.e. homology with closed supports.

For simplicity we will assume that K is compact, then HBM
∗ is ordinary homology. Using

Thom isomorphism we can construct the residue of the class c:

res c = 2πi τ−1δc = 2πi(∩[K])−1(δc ∩ [M ]) ∈ Hk(K).

If c is represented by ω ∈ Ωk+1(M \K) with the first order pole on K then

[Resω] = res c

by [Le]. If K is singular then the Poincaré duality map

PD : Hk(K)
∩[K]−−−→ H2n−k(K)

does not have to be an isomorphism. We can still define a residue class of c, but this time

in homology

res c := 2πi δc ∩ [M ] ∈ H2n−k(K).

We call it the homological residue. If K is singular then not every class res c lies in the

image of PD.

For K with isolated singularities (for dimCK = n > 1) the image of the Poincaré

duality map is the intersection homology group (with middle perversity) IHn(K). In

general this is not true, the definition of this group is more sophisticated (see [GM]). In

any case the map PD factors through intersection homology:

IH2n−k(K)
α ↗ ↘ β

Hk(K)
PD−−−−−−→ H2n−k(K).

We will ask about the existence of a lift β−1(res c) of the homological residue to inter-

section homology. This question seems to be more natural and a positive answer is more

often possible.

Let K◦ be a manifold with boundary obtained from K by removing small balls centred

at singular points. The boundary ∂K◦ is the sum of links of the singular points. Suppose

n > 1. In the middle dimension we have

Hn(K) ' Hn(K◦, ∂K◦)

and by Poincaré duality for K◦

Hn(K) ' Hn(K◦, ∂K◦) ' Hn(K◦).

The Poincaré duality map PD coincides with the natural map of cohomology induced by

the inclusion (K◦, ∅) ⊂ (K◦, ∂K◦). Consider the cohomology long exact sequence of the

second pair. We have

im(PD) = im (Hn(K◦, ∂K◦) −→ Hn(K◦)) = ker (Hn(K◦) −→ Hn(∂K◦)) ,
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where the maps are the natural ones induced by inclusions. To show that the homological

residue

res[ω] = [Resω] ∈ Hn(K◦) ' Hn(K)

lies in the image of PD it is necessary and sufficient to show that[
Resω|Lx

]
= 0

for the link Lx of any singular point x ∈ K. By the de Rham theorem we obtain a

criterion:

Proposition 2.1. If
∫
ξ

Resω = 0 for any cycle ξ contained in the link Lx, then [Resω]

belongs to the image of PD.

Note that the integral is well defined since ξ does not intersect singularities.

3. Rational homology manifolds. We remind that a rational homology manifold is

a space such that the link of any point is a rational homology sphere. From the homological

point of view such spaces possess properties of the ordinary manifolds.

We want to invert the Poincaré duality map

PD : Hk(K)
∩[K]−−−→ H2n−k(K)

or at least to show that an element res c ∈ H2n−k(K) lies in the image. Obviously if K

is a rational homology manifold then the map PD is an isomorphism.

Suppose K has isolated singularities, then there is a criterion examining if K is a ra-

tional manifold. Consider the Milnor fibration of each singular point and the monodromy

acting on the vanishing cycles (i.e. on the homology of the Milnor fibre).

Theorem 3.1 [Mi]. A variety K is a rational homology manifold if and only if 1 is

not an eigenvalue of the monodromy of any singular point.

Among K with simple singularities the rational homology manifolds are those with

the following singularities: A2k, A2k+1 (n odd), Dk (n even), E6, E7 (n even), E8.

4. Positive oscillation index. Let K be a hypersurface with isolated singularities.

For simplicity we assume that dimCK = n > 1. In Sections 4–7 we consider only the

holomorphic forms of the type (n+1, 0) with a first order pole on K. Then the homological

residue belongs to the middle dimension group Hn(K).

Suppose that K is described by a function f . Fix δ � ε � 1 such that f restricted

to Bε ∩ f−1(Ḋδ) is a fibration over Ḋδ (here Bε is the ball centred in a singular point x

and Ḋδ is the punctured disk around 0). The intersection Sε ∩ f−1(0) = ∂Bε ∩ f−1(0) is

the link Lx of the singular point.

We will recall a construction of oscillating integrals. Let η be a holomorphic (n+ 1)-

form. For any (possibly multivalued) continuous family of cycles ζt ⊂ Bε∩f−1(t), t ∈ Ḋδ

consider the integral

I(t) =

∫
ζt

η/df.
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The function I(t) is (multivalued) holomorphic and expands as ([AGV, §11])

I(t) =
∑

α∈Q, k∈N
aα,kt

α(ln t)k.

Consider the set of exponents in the expansions of I(t) for any η and ζt. Some of the

exponents that are not greater than 0 coincide with the spectral numbers of the singularity.

References for the spectrum are [AGV, §13.3] and [St]. The numbers exp(2πiα), where

α is in the spectrum, are the eigenvalues of the monodromy. Note that if K is a rational

homology manifold then 1 is not an eigenvalue and thus no integer is a spectral number.

The spectral numbers which are not greater than 0 can be read from the Newton diagram

for nondegenerated function f ([AGV, p. 273]).

Let αmin be the smallest number occurring among all exponents of the expansions

of I(t) for families ζt and forms η. It is a rational number greater than −1, called the

oscillation index of the critical point.

Now we come back to our problem. Let ξ ⊂ Lx be a cycle. Note that the function f

restricted to Sε ∩ f−1(Dδ) is a trivial fibration over the whole disk. Thus the cycle ξ can

be contained in a continuous family of cycles ξt ⊂ Sε ∩ f−1(t), t ∈ Dδ with ξ0 = ξ. The

form ω can be written as ω = η
f with η holomorphic. (This exactly means that the order

of pole of ω is not greater than 1.) Then

Resω = (η/df)|{f=0}

and the form η/df is well defined after restriction to each level set. We will examine when∫
ξ

Resω = 0 according to the Proposition 2.1. Let us move the cycle ξ slightly away

from K and see what is the asymptotic of the integral

I(t) =

∫
ξt

η/df

as the cycle ξt approaches ξ. This integral converges to
∫
ξ

Resω. The family ξt is single

valued and extends over the whole disk, thus the function I(t) is holomorphic. If all the

exponents are positive in the expansion of I(t) then I(0) = 0. We obtain:

Proposition 4.1. Suppose αmin > 0, then for any cycle ξ ⊂ Lx we have∫
ξ

Resω =

∫
ξ0

η/df = I(0) = 0.

Corollary 4.2. Suppose the oscillation indices of each singular point of K are posi-

tive, then the homological residue of any form lifts to cohomology.

Let us consider a special type of singularities, namely quasihomogeneous singularities.

We assume that in a neighbourhood of each singular point of K there exists a coordinate

system such that K is defined by a function fx which is homogeneous with respect to the

weights a0, a1, . . . an. We may assume that deg fx = 1. Then the oscillation index is

αmin = a0 + a1 + . . .+ an − 1.

Let us introduce the canonical metric on the cone over a manifold Lx. It is defined

on the nonsingular part cLx \ {vertex} = Lx × (0, 1) by the formula

t2dx⊗ dx+ dt⊗ dt,
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where x is the coordinate in the base and t is the parameter of (0, 1). We say that a

Riemannian metric on K \ΣK is conelike if K is locally isometric to the metric cone over

the link. This means that we assume that there are homeomorphism of neighbourhoods

of singular points with the cones over links: Ux ' cLx which are isometries on the

nonsingular parts. Under assumption that K has quasihomogeneous singularities with

positive oscillation indices we can prove

Theorem 4.3 [We2]. Suppose that K is described in the neighbourhoods of the singular

points by quasihomogeneous functions with αmin > 0. Let p ≥ 2 be a real number. Then

there exists a conelike metric on K such that the norm of the residue form is a function

integrable in the p-th power , i.e.

|Resω| ∈ Lp(K \ ΣK).

This way we see that [Resω] defines an element in Lp-cohomology of K \ ΣK . This

group is isomorphic to intersection homology for p ∈ [2, 2 + 2
n−1 ) and to cohomology for

p ≥ 2 + 2
n−1 ([We1]).

Practically this means that the residue form is integrable on the cycles which enter

singularities in a regular way, i.e. along cone lines.

5. Negative oscillation index. Suppose now that the condition αmin > 0 is not

fulfilled. We can still formulate a condition allowing to lift the homological residue to

cohomology.

Theorem 5.1. The condition “0 is not a spectral number of any singular point of K”

is a necessary condition for the existence of lifting of homological residue to cohomology.

It is also sufficient for K with quasihomogeneous singularities.

Theorem 5.1 follows from the observation that∫
ξ

Resω =

∫
ξ0

η/df = I(0) = a0,0.

For quasihomogeneous singularities the considered spectral numbers are of the form
n∑
i=0

kiai − 1, where each ki > 0 is a natural number.

The example of a singularity with 0 in the spectrum is any homogeneous singularity with

deg f ≥ n + 1. If deg f = n + 1 then αmin = 0. On the other hand we have numerous

examples of polynomials with αmin < 0 for which 0 is not in the spectrum, e.g.

f = z2
0 + z4

1 + z5
2

with the set of exponents − 1
20 = αmin, 3

20 , 4
20 , . . . .

For quasihomogeneous singularities there is an elementary proof of the Theorem 5.1

which does not involve the theory of oscillating integrals. It can be found in [We2].

6. The second residue. Suppose that 0 is a spectral number. Then a local ob-

struction to lift occurs. This is the element
[
Resω|Lx

]
∈ Hn(Lx). If the singularity is

quasihomogeneous then we have an action of S1 on the link. The quotient Lx/S
1 is a
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subset of the weighted projective space. It is a V -manifold ([St]), it behaves like a smooth

projective variety from the point of view of Hodge theory. Integrating the residue form

over the orbits of the S1 action we obtain a holomorphic (n− 1)-form on Lx/S
1. We call

it the second residue.

Theorem 6.1 [We2]. Suppose ω = g
f dz0 ∧ · · · ∧ dzn. Let res2 ω ∈ Hn−1(Lx/S

1) be the

second residue of ω. Then the following conditions are equivalent :

1) res2 ω = 0 ∈ Hn−1(Lx/S
1);

2) [Resω|Lx
] = 0 ∈ Hn(Lx);

3) the quasihomogeneous component of g with weight −αmin vanishes.

Of course if all local obstructions vanish then the homological residue lifts to inter-

section homology.

Consider the P8 singularity (Example 1.1): f = z3
0 +z3

1 +z3
2 . The affine part of L0/S

1 is

{1 + u3
1 + u3

2 = 0} ⊂ C2 ⊂ P2.

We have

res2

( 1

f
dz0 ∧ dz1 ∧ dz2

)
= [u1du2 − u2du1] .

Its class in H1(L0/S
1) is nontrivial.

7. Line singularities. Suppose now that the singular locus of K is of dimension

one. Taking a transversal slice of ΣK in each generic point we obtain a family of isolated

singularities. The cohomology of the link is a local system over ΣK minus a discrete set

of points. In each slice we obtain a second residue—the obstruction to lift. Instead of

describing the general situation we consider some examples.

Example 7.1. The degeneration of self-intersections:

f = x2(x+ z2)− y2.

We treat z as a parameter. The singular locus is ΣK = {x = y = 0}. Let

ω =
1

f
dx ∧ dy ∧ dz =

df

f
∧ dx ∧ dz

2y
.

We have y = ±x
√
x+ z2 on K. Thus

Resω =
dx

x
∧ dz

±2
√
x+ z2

.

The residue form has a pole in the self-intersection point x = y = 0. The second residue

is

Res2 ω = ± dz

2
√
x+ z2

= ±dz
2z

.

This form again has a pole. The resulting residue may be called the third residue. In

general we can build the whole sequence of residues supported by the strata of a strati-

fication.

Example 7.2. A family of intersecting lines—Whitney umbrella:

f = zx2 − y2.
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Again ΣK = {x = y = 0}, ω = 1
f dx ∧ dy ∧ dz. Then y = ±x

√
z on K and

Resω =
dx

x
∧ dz

2y
=
dx

x
∧ dz

±2
√
z
.

We obtain the second residue Res2 ω = ± dz
2
√
z

which is an essentially multivalued form.

Indeed the bundle of the cohomology of the links for z 6= 0 is twisted. We take a double

covering of C \ {0} by substitution z = z̃2. We obtain a nonsingular second residue dz̃.

8. Smooth divisor with normal crossings. Suppose K is locally described by the

function

f = z0z1 · · · zl l ≤ n.
Then K is a sum of irreducible Ki’s. If we assume (as we do) that each Ki has no

self-intersection then Ki is smooth.

One defines the subcomplex of Ω∗(M \K) consisting of the forms having only loga-

rithmic singularities on K. It is denoted by Ω∗(M, log〈K〉). Locally it is spanned by
dz0
z0
, . . . dzlzl over Ω∗(M). It has the same cohomology as Ω∗(M \K). There is an increasing

filtration of Ω∗(M, log〈K〉) introduced by Deligne [De], [GS]:

Wi = Ω∗−i(M) ∧ Ωi(M, log〈K〉).
In fact the Deligne weight filtration W∗ is slightly translated: Wi+kΩk(M, log〈K〉) =Wi,

but for us the notation W∗ (as in [GS]) is more convenient.

Let K [i] be the disjoined union of i-fold intersections of Kj ’s:

K [i] =
⊔

j1<...<ji

Kj1 ∩ . . . ∩Kji .

The iterated residue defines a map

Resi :Wi/Wi−1 −→ Ω∗−i(K [i])

which passes to an isomorphism of cohomology ([GS])

resi : H∗(Wi/Wi−1)
'−→ H∗−i(K [i]).

In particular if ω ∈ W0 then ω has no pole along K and Resω = 0. If ω ∈ W1 is a

(k + 1)-form then we obtain the first residue, which is a k-form on each component:

res1[ω] ∈
⊕
j

Hk(Kj) = IH2n−k(K).

Example 8.1. Let M = C2, f = xy, ω = ax+by
xy dx ∧ dy = dx ∧ adyy + bdxx ∧ dy ∈ W1.

Then

Resω =

{
b dy for x = 0

−a dx for y = 0.

In general if ω ∈ Wi \ Wi−1, then all the residue forms Resk ω are singular for k < i

and Resi ω is nonsingular on K [i].

Example 8.2. Let M = C2, f(x, y) = xy, ω = 1
f dx ∧ dy ∈ W2, then

Resω =

{
dy
y for x = 0, y 6= 0

−dxx for y = 0, x 6= 0.
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We obtain the second residue res2[ω] = ±1 ∈ H0({0, 0}).

Suppose M is a projective manifold. Then H∗(M \K) is equipped with a mixed Hodge

structure. Thus H∗(M \K) can be canonically decomposed ([GS, 1.12]):

H∗(M \K) =
⊕
j≥0

Wj

such that WWW i =
⊕

i≥j≥0Wj is the filtration induced by Wi on H∗(M, \K). This way we

can associate with a class c ∈ H∗(M \K) a sequence of residues in Wj . Unfortunately

Wj is only a quotient of a subspace in H∗(K [j]), so we cannot find a canonical element

in H∗(K [j]).

9. Remark for a general case. Suppose M is algebraic. To define weights on

M \ K we resolve K to obtain K̃ ⊂ M̃ , a smooth divisor with normal crossings. If

c ∈ Hk(M \ K) = Hk(M̃ \ K̃) belongs to W1 then we have res1 c ∈ IH2n−k+1(K̃).

Now we can use functoriality of intersection homology ([BBFGK], [We3]). There exists a

morphism µ (in general not unique) completing the diagram

IH∗(K̃) −−−−→ H∗(K̃)

µ

y p∗

y
IH∗(K) −−−−→ H∗(K),

where p : K̃ −→ K is a desingularization. The element µ(res c) ∈ IH2n−k+1(K) is the
desired lift of homological residue to intersection homology.
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