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The name of Stanis law  Lojasiewicz has been associated in my mind with mathematical re-
search since early on in my career, because it was through his work that I experienced for the first
time in my life the thrill of studying in depth a major piece of new mathematics and following
the thoughts of a creative mind.

This happened thirty years ago, in 1966, when I reached the last semester of my undergraduate
studies in mathematics in Buenos Aires, Argentina. The final requirement was a “trabajo de
seminario superior,” for which the student was expected to write a detailed expository monograph
based on an important recent research article. My topic was S.  Lojasiewicz’s theorem on the
division of distributions by real-analytic functions.

Subsequently, my path diverged from his until 1977, when I learned from the work of Pavol
Brunovsky —[1, 2]— about the possibility of using subanalytic sets in control theory. This was new
to me but, thanks to my own previous exposure to semianalytic sets and stratifications through
 Lojasiewicz’s work, it was something I was ready for.

Much later, the name “ Lojasiewicz” entered my life again in a different way, when I collabo-
rated with Prof.  Lojasiewicz’s son S.  Lojasiewicz Jr. in 1983–84 in [4]. More recently, a brilliant
idea of S.  Lojasiewicz Jr. has played a decisive role in my own work [11, 12, 13, 14] on the
maximum principle of optimal control.

So the celebration of Professor  Lojasiewicz’s 70th birthday has a special meaning to me, and
this paper is dedicated to him with deep admiration and gratitude.

1. Introduction. Real analyticity has important consequences in control theory, and
real-analytic control systems have much nicer properties than smooth systems. In this
paper we describe some of these properties, classifying them into two kinds: in Section 4
we focus on elementary consequences of real analyticity, i.e. results that follow by using no
more than the analytic continuation property for functions of one real variable. Although
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at this point nothing deep about real analyticity is used, we choose to include these
elementary results for two reasons, namely,

(a) that they already show that real-analytic systems are strikingly different from
smooth ones,

(b) that they are needed for our subsequent discussion of more sophisticated uses of
real analyticity.

In Section 5 we look at a result on trajectory structure whose proof uses real-analytic
desingularization. Since the proof of this result has only been presented in a very rough
outline in a proceedings paper of an engineering conference, we give a fairly detailed proof.
We also present, in Section 6, some curious applications of the result to observability
theory, related to ideas of J.-P. Gauthier and I. Kupka. As a preliminary, in Section 2
we present some general definitions and introduce notations, and in Section 3 we define
smooth control systems and present some of their basic properties.

In addition to the applications presented here, there are many others that we will not
discuss for lack of space. For example, there are results on subanalyticity of reachable
sets and piecewise analyticity of value functions, and there is also a theory of universal
inputs. Some of these other applications are discussed in [10].

2. Basic definitions and notations.

2.1. Smoothness, manifolds, tangent and cotangent spaces and bundles, vector fields,
flows. In this paper, “smooth” means “of class C∞,” and “manifold” means “smooth,
finite-dimensional, paracompact manifold without boundary, not necessarily of pure di-
mension.” (Paracompactness is of course equivalent to the property that every connected
component is σ-compact, and also to the existence of a smooth Riemannian metric on M .)
In particular, a manifold can have components of arbitrarily high dimension. (The fact
that manifolds are not assumed to be of pure dimension will play a crucial role in Section 5
below.)

We use TxM , T ∗xM , TM , T ∗M , T#M to denote, respectively, the tangent and cotan-
gent spaces of a manifold M at a point x ∈M , the tangent and cotangent bundles of M ,
and the cotangent bundle of M with the zero section removed. We use C∞(M) and
V∞(M) to denote, respectively, the set of all smooth functions and that of all smooth
vector fields on M , so V∞(M) is a Lie algebra, if the Lie bracket [f, g] of f, g ∈ V∞(M)
is defined in the usual way, by regarding f and g as first-order differential operators on
C∞(M) and letting [f, g] = fg − gf . Given any smooth vector bundle E, we use πE to
denote the projection map from E onto its base space. If M is a real-analytic manifold,
then we use Cω(M), V ω(M) to denote the subsets of C∞(M), V∞(M) whose members
are real-analytic. Then V ω(M) is a Lie subalgebra of V∞(M).

If f ∈ V∞(M), we use exponential notation for the flow of f , so t 7→ x etf is the
integral curve of f that goes through x at time t = 0. (Having the map etf act on the right
rather than on the left is convenient in many applications. For example, if f , g are smooth
vector fields, then the first t-derivative of xetfetge−tfe−tg at t = 0 vanishes, and the
second derivative is 2x(fg−gf), i.e. [f, g](x), so xetfetge−tfe−tg = x+ t2[f, g](x)+o(t2),
which is the correct Campbell-Hausdorff formula. Had we insisted on having the maps act
on the left, we would have found the wrong formula.) Each map x 7→ x etf , t ∈ R, is then
a smooth diffeomorphism, defined on a —possibly empty— open subset Dom(etf ) of M ,
and mapping Dom(etf ) onto Dom(e−tf ). The set ∆(f) = {(x, t) : t ∈ R, x ∈ Dom(etf )}
is then open in M × R, and M × {0} ⊆ ∆(f).
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2.2. Submanifolds and leaves. A submanifold of a manifold M is a subset S of M
endowed with a manifold structure such that the inclusion map from S to M is a smooth
immersion. (If M is paracompact then S is automatically paracompact as well.) A sub-
manifold of M is embedded if it is a topological subspace of M .

An important class of submanifolds, intermediate between that of all submanifolds
and that of embedded submanifolds, is that of “leaves,” defined as follows. First, recall
that a topological subspace of a topological space X is a subset S of X endowed with
a topology such that, if µ is an arbitrary map from a topological space Y to X such
that µ(Y ) ⊆ S, then µ is continuous as a map into X iff it is continuous as map into S.
By analogy with this, we define —following P. Stefan, cf. [6], Section 1, Part I, p. 2— a
leaf in a smooth manifold M to be a submanifold S of M such that, if µ : N → M is
an arbitrary map from a manifold N to M such that µ(N) ⊆ S, then µ is smooth as a
map into M iff it is smooth as a map into S. It is easy to see that if a subset S admits
a manifold structure σ with respect to which it is a leaf, then this structure is unique.
(If σ1, σ2 are two such structures, then the inclusion ι : S → M is smooth from (S, σ1)
to M , and ι(S) ⊆ S, so ι is smooth from (S, σ1) to (S, σ2). Similarly, ι is also smooth
from (S, σ2) to (S, σ1). So the identity map from (S, σ1) to (S, σ2) is a diffeomorphism,
and then σ1 = σ2.) So we can talk without ambiguity about a subset —rather than a
submanifold— of M being a leaf.

It is clear that an embedded submanifold is a leaf, but there are examples of leaves
that are not embedded submanifolds. (For example, if f is a smooth vector field, then
every maximal integral curve of f is a leaf. Clearly, such a curve need not be embedded,
since M could be a torus, and f a vector field on M whose orbits are dense.) On the
other hand, not every submanifold is a leaf. (For example, a figure eight in the plane is
not.) Actually, a sufficient condition for a subset S of M to be a leaf is the following:

(L) For every s ∈ S there exists a smooth diffeomorphism Φ from a neighborhood V of s
in M to a product C1 × C2 of open cubes in Euclidean spaces, such that

(a) for each c2 ∈ C2 the set Φ−1(C1 × {c2}) is a subset either of S or of M\S,

(b) the set {c2 ∈ C2 : Φ−1(C1 × {c2}) ⊆ S} does not contain a nonconstant smooth
curve.

Condition (L) is obviously verified when S is an embedded submanifold, and also
when S is an orbit of a vector field, in which case (L) is trivial if S is a single point, and
follows from the flow-box theorem if S is not a point. The fact that orbits of vector fields
have property (L) can be generalized to orbits of sets of vector fields, as we now explain.

2.3. Orbits. If F is a set of smooth vector fields on a manifold M , an F -invariant
set is a subset S of M having the property that, whenever f ∈ F , t ∈ R, and x belongs
to S ∩ Dom(etf ), it follows that x etf ∈ S. (If S only satisfies the weaker conclusion
that x etfS if t ≥ 0, then S will be called forward F -invariant. There is an obvious
analogous definition of “backward invariance.”) A nonempty minimal F -invariant set is
said to be an F -orbit. Then two points x, x′ lie in the same orbit iff for some m there
exist f1, . . . , fm ∈ F and t1, . . . , tm ∈ R such that x′ = x et1f1et2f2 . . . etmfm . So “x and x′

are in the same F -orbit” is an equivalence relation. It follows that the set of all F -orbits
is a partition of M .

We will repeatedly use the following “orbit theorem” (Sussmann [7]):
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Theorem 1. Let M be a smooth manifold and let F be a set of smooth vector fields
on M . Let S be an F -orbit. Then S satisfies condition (L), so in particular S is a leaf
in M . Endowed with its unique leaf structure, S is connected and has the property that
the tangent space TxS at a point x ∈ S is the linear span of the set of all vectors

v =
d

dε

∣∣∣∣∣
ε=0

x′ et1f1et2f2 . . . e(ti+ε)fi . . . etmfm , (1)

ranging over all possible choices of the positive integer m, the vector fields f1, . . . , fm ∈ F ,
the numbers t1, . . . , tm ∈ R, the point x′ ∈ S, and the index i ∈ {1, . . . ,m}, such that
x′ et1f1et2f2 . . . etmfm = x.

It is clear that every f ∈ F is tangent to all the F -orbits. So, if L(F ) is the Lie
algebra of vector fields generated by F , it follows that every g ∈ L(F ) is tangent to all
the F -orbits.

2.4. Hamiltonian vector fields and momentum functions. If M is a smooth manifold,
then every smooth function H : T ∗M → R gives rise in a well known way —using the
canonical symplectic structure of T ∗M— to a Hamilton vector field

−→
H ∈ V∞(T ∗M). The

space C∞(T ∗M), endowed with the Poisson bracket (H,K) 7→ {H,K}, is a Lie algebra,

and the map H 7→ −→H is a Lie algebra homomorphism from C∞(T ∗M) to V∞(T ∗M). If

f ∈ V∞(M), then the real-valued function T ∗M 3 (x, z) 7→ hf (x, z)
def
= 〈z, f(x)〉 is the

momentum function —or switching function— corresponding to f .

The map V∞(M) 3 f 7→ hf ∈ C∞(T ∗M) is a Lie algebra homomorphism. Therefore

the map V∞(M) 3 f 7→ −→hf ∈ V∞(T ∗M) is a Lie algebra homomorphism as well. We

will write f∗
def
=
−→
hf , and call f∗ the Hamiltonian lift of f . It is clear that the projection

ξ = πT∗M ◦Ξ of an integral curve Ξ of f∗ is an integral curve of f . Conversely, if I is an
interval, ξ : I → M is an integral curve of f , t ∈ I, and z ∈ T ∗ξ(t)M , then there exists

a unique integral curve Ξ : I → T ∗M such that Ξ(t) = (ξ(t), z) and ξ = πT∗M ◦Ξ. The
curve Ξ is entirely contained in T#M iff z 6= 0.

3. Smooth control systems. A control system is a triple Σ = (M,U, f) such that
M is a smooth manifold, U is a compact metric space, and f : M × U → TM is a
continuous map such that each partial map M 3 x 7→ f(x, u) ∈ TM is a vector field
on M . Often, we will use the notation fu(x) as an alternative for f(x, u), to emphasize
the fact that fu is a vector field. Also, we will use the expression “the control system
ẋ = f(x, u), x ∈ M , u ∈ U” as an alternative name for the system (M,U, f). We use
F (Σ) to denote the set {fu : u ∈ U}, so F (Σ) is a set of continuous vector fields on M .

We will be interested in control systems having extra regularity properties. Suppose
that k, ` ∈ {0, 1, . . .} ∪ {+∞} and ` ≤ k. We say that a control system Σ = (M,U, f) is
of type Ck,` if

(a) every vector field fu is of class Ck,

(b) all the partial derivatives of order ≤ ` of f(x, u) with respect to x are jointly
continuous with respect to x and u.

(The meaning of the last condition is obvious in terms of local coordinates. Alterna-
tively, it can be stated invariantly as follows: for every ϕ ∈ C∞(M) and every `-tuple
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(X1, . . . , X`) in V∞(M), the function M × U 3 (x, u) 7→ X1X2 . . . X`fuϕ(x) ∈ R is
continuous.)

Of special interest to us will be the systems Σ of type C∞,0, because for such systems
F (Σ) ⊆ V∞(M), and then the iterated Lie brackets of all orders of the members of F (Σ)
are defined. We will call such systems smooth.

R e m a r k 1. The hypotheses made here are much more restrictive than is custom-
ary in control theory. For example, one often has to consider systems where f is time-
dependent, and the set U is a more general metric space, not necessarily compact. Actu-
ally, the best general setting is one where U is a general abstract set with no additional
structure, in which case continuity with respect to u is not a meaningful requirement,
but one has to be more careful when defining “admissible control.” We have chosen the
above definitions, and we will be paying special attention to the class of smooth systems,
because the purpose of this paper is to explore the consequences of real analyticity. In
order to do that, we want to talk about real-analytic systems, defined below, and com-
pare them with smooth systems that need not be real-analytic, to see which new features
occur because of real analyticity. In view of this limited objective, we choose to use a
narrowly defined class of “smooth systems” for comparison purposes, so we can focus on
the “Cω as opposed to C∞” distinction.

3.1. Controls, trajectories, reachability. A control for a control system Σ = (M,U, f)
is a measurable U -valued function η defined on an interval I. If η : I → U is a control, a
trajectory for η (or “generated by η”) is a locally absolutely continuous map ξ : I → M
such that ξ̇(t) = f(ξ(t), η(t)) for almost all t ∈ I. A trajectory-control pair of a control
system Σ is a pair (ξ, η) such that η is a control and ξ is a trajectory generated by η.

Given a control η : I → U , a t ∈ I, and an x ∈ M , then a trajectory ξ : I → M of η
such that ξ(t) = x always exists locally. (More precisely: there always exists an ε > 0
such that there is a ξ : I∩ ]t− ε, t+ ε[→M which is a trajectory of the restriction of η to
I ∩ ]t− ε, t+ ε[ and satisfies ξ(t) = x.) If the system is of class C1,1, then the trajectory
ξ : I →M generated by a control η and satisfying an initial condition ξ(t) = x, if it exists,
is necessarily unique. This uniqueness property does not necessarily hold for C1,0 systems,
or even for C∞,0 systems. (Consider, for example, the system ẋ = 3u sin x

u2 , −1 ≤ u ≤ 1,
the control η(t) = t, and the initial condition ξ(0) = 0. Then ξ(t) ≡ 0 is a solution. To find
another solution, write x = t3y, so ẋ = 3t2y + t3ẏ, and then 3t2y + t3ẏ = 3t sin ty. Write
sin z = z + z3h(z), where h is a smooth function. Then 3t sin ty = 3t2y + 3t4y3h(ty), so
ẏ = 3ty3h(ty), which has solutions with any nonzero initial condition y(0).) However, the
uniqueness property holds for some Ck,0 systems, so we give them a name: we say that
system is of class Ck,u if it is of class Ck,0 and the uniqueness property of trajectories
holds. (For example, the system ẋ = u, ẏ = u sin x

u2 is of class C∞,u but not of class
C∞,1.)

A curve ξ : I → M is a trajectory of a control system Σ = (M,U, f) if there is a
control η : I → U such that ξ is a trajectory for η.

R e m a r k 2. If ξ : I →M is a locally absolutely continuous curve for which there is
a function I 3 t 7→ η(t) ∈ U such that ξ̇(t) = f(ξ(t), η(t)) for almost every t, then ξ is a
trajectory of Σ. In other words, if ξ is “almost a trajectory,” in the sense that it satisfies
all the conditions for being a trajectory, except for the fact that the “control” η is not
necessarily measurable, then one can always choose a measurable control η′ such that
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f(ξ(t), η′(t)) = f(ξ(t), η(t)) for almost every t, so ξ is a true trajectory. This fact follows
from standard measurable selection theorems.

We say that a point x′ is Σ-reachable from x in time t if there exists a trajectory-
control pair (ξ, η) of Σ such that ξ(0) = x and ξ(t) = x′. (In that case, we also say that ξ
goes from x to x′ in time t, or that η steers x to x′.) We use RΣ,t(x) to denote the set of
all x′ that are reachable from x in time t, and write RΣ,I(x), if I is an arbitrary subset of
[0,∞[, to denote the set

⋃
t∈I RΣ,t(x). When I = [0,∞[, we just write RΣ(x), and refer

to this set as the reachable set from x.
We can also consider reachable sets using restricted classes of controls. For example,

RpcΣ,t(x), RpcΣ,I(x), RpcΣ (x) are defined exactly like the sets without the superscript, except
that only piecewise constant controls are allowed.

3.2. The orbits of a smooth control system. If we are given a smooth control system
Σ = (M,U, f), then the F (Σ)-orbits will be referred to as the Σ-orbits, or the orbits
of Σ. It is clear that if S is a Σ-orbit then each vector field fu has a well defined and
smooth restriction fudS, and the map from S × U to TS that sends (x, u) to f(x, u) is
continuous. Therefore Σ has a well defined restriction ΣdS to each Σ-orbit S, which is
also a smooth control system. Clearly, if Σ is of class C∞,` for ` > 0, or of class C∞,u,
then the same is true of ΣdS.

Every trajectory of ΣdS is a trajectory of Σ. Moreover,

Lemma 1. Every trajectory of a C∞,u system Σ is entirely contained in an orbit.

P r o o f. To see this, we let ξ : I → M be a trajectory corresponding to a control η.
For each t ∈ I, let S(t) be the orbit that contains ξ(t). We show that the map t 7→ S(t) is
locally constant. If t ∈ I and S = S(t), then there is a well defined trajectory ζ of ΣdS on
some interval ]t− ε, t+ ε[∩I, corresponding to the restriction ηt,ε of η to ]t− ε, t+ ε[∩I,
and such that ζ(t) = ξ(t). Then ζ is a trajectory of Σ for ηt,ε. By the uniqueness property,
ζ = ξ on ]t− ε, t+ ε[ ∩ I. This shows that ξ(t′) ∈ S for t′ ∈ I, t′ near t.

So t 7→ S(t) is locally constant. Since I is connected, S(t) is independent of t, and our
conclusion is proved.

R e m a r k 3. The above result need not be true for C∞,0 systems. For example, for
the system ẋ = u sin x

u2 , −1 ≤ u ≤ 1 there are three orbits, namely, ] −∞, 0[, {0}, and
]0,+∞[, but we have already seen how to construct a trajectory that starts at 0 but does
not stay in the set {0} .

3.3. The accessibility Lie algebra. Let Σ be a smooth control system. We write L(Σ)
for L(F (Σ)), so L(Σ) is the Lie algebra of vector fields generated by F (Σ). We refer to
L(Σ) as the accessibility Lie algebra of Σ.

3.4. Algebraic accessibility and Lie bracket relations. Given an arbitrary set U , we
use Λ(U) to denote the free Lie algebra over R with generators Fu, u ∈ U . For a smooth
control system Σ = (M,U, f), there is a unique Lie algebra homomorphism PΣ from Λ(U)
to L(Σ) —“plugging in the fu for the indeterminates Fu”— that maps each generator Fu
to the corresponding vector field fu. Clearly, PΣ is onto. Given a point x ∈ M , we can
consider the evaluation map Ex,Σ : L(Σ)→ TxM given by Ex,Σ(g) = g(x), for g ∈ L(Σ).

We say that the system Σ has the algebraic accessibility property at the point x if
Ex,Σ(L(Σ)) = TxM .
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We write REL(x,Σ) to denote the kernel of the map PΣ ◦Ex,Σ. Then REL(x,Σ) is a
Lie subalgebra of Λ(U). We refer to REL(x,Σ) as the set of Lie bracket relations at x
for Σ. For example, if u, v, w ∈ U , then the expression Fu + [Fv, Fw]− 3[Fu, [Fv, Fu]] is a
Lie bracket relation at x for Σ if and only if fu(x) + [fv, fw](x)− 3[fu, [fv, fu]](x) = 0.

3.5. The positive form of Chow’s theorem. Let Σ = (M,U, f) be a smooth control
system. We say that Σ has the accessibility property (resp. the piecewise constant accessi-
bility property) from a point x ∈M if the set RΣ,[a,b](x) (resp. RpcΣ,[a,b](x)) has nonempty

interior in M whenever 0 ≤ a < b.

Theorem 2. If a smooth control system Σ = (M,U, f) has the algebraic accessibility
property at a point x, then it has the piecewise constant accessibility property from x.

P r o o f. To prove this, we use an argument essentially due to A. Krener. Notice first
that we can assume that U is finite and the algebraic accessibility condition holds at
every x′ ∈M .

Fix a, b such that 0 ≤ a < b. For each m, use Am(a, b) to denote the set of those
τ = (τ1, . . . , τm) ∈ ]0,+∞[m such that a < τ1 + . . .+ τm < b. Then Am(a, b) is an open
subset of ]0,∞[m.

Let Q be the set of all possible triples (m, τ,u) such that m is a nonnegative integer,
τ = (τ1, . . . , τm) ∈ Am(a, b), and u = (u1, . . . , um) ∈ Um. For (m, τ,u) ∈ Q as before, let

Z(m, τ,u) = xeτ1fu1 eτ2fu2 . . . eτmfum . (2)

Let Q0 be the set of all (m, τ,u) ∈ Q such that Z(m, τ,u) exists. For (m, τ,u) ∈ Q0,
let ρ(m, τ,u) be the rank of the differential at τ of the map τ ′ 7→ Z(m, τ ′,u). Choose
(m, τ,u) ∈ Q0 such that ρ(m, τ,u) has the largest possible value, and let ν be this value.
Then the map B = Z(m, ·,u) has constant rank near τ , so by the implicit function
theorem there exists a neighborhood W of τ in Am(a, b) such that the set B(W ) is an
embedded ν-dimensional submanifold of M . We show that every fu is tangent to S. If
this were not so, there would exist y ∈ S and u ∈ U such that fu(y) 6∈ TyS. Let y = B(τ̃),
τ̃ ∈W . Then the map ψ : (τ ′, θ)→ B(τ ′)eθfu has rank ν+1 at (τ̃ , 0). So ψ has rank m+1
at (τ̃ , θ) if θ > 0 is small enough. Clearly, (τ̃ , θ) ∈ Am+1(a, b) if θ > 0 is small enough.
Then, if θ > 0 is small, we have (m+ 1, (τ̃ , θ),u∗) ∈ Q0 and ρ(m+ 1, (τ̃ , θ),u∗) = ν + 1,
if u∗ = (u, u). This contradicts the maximality of ν.

Since every fu is tangent to S, it follows that every g ∈ L(Σ) is tangent to S. The
algebraic accessibility condition then implies that S is open in M , and this proves our
conclusion, since S ⊆ RpcΣ,]a,b[(x).

Theorem 2 has two important consequences, for systems Σ = (M,U, f) of class C∞,u

that have the algebraic accessibility property at every point.
First, let x ∈ M , 0 ≤ a < b, x′ ∈ RΣ,[a,b](x). Let W be an open neighborhood

of x′. We claim that RpcΣ,[a,b[(x) ∩W 6= ∅. To see this, suppose x′ ∈ RΣ,t(x), t ∈ [a, b].

Let η : [0, t] → U be a control that steers x to x′, and let ξ : [0, t] → M be the
corresponding trajectory. Find a sequence of piecewise constant controls ηj : [0, t] → U
such that ηj(t

′) → η(t′) for almost all t′ ∈ [0, t]. (The existence of such a sequence is
easily proved.) A simple application of Ascoli’s theorem shows that for large enough j
there are trajectories ξj : [0, t] → M generated by ηj such that ξj(0) = x and ξj → ξ
uniformly on [0, t]. If t < b, then ξj(t) ∈ RpcΣ,[a,b[(x) ∩W 6= ∅ for large enough t. If t = b

then ξj(s) ∈ RpcΣ,[a,b[(x) ∩W 6= ∅ if j is large enough, and s < b is sufficiently close to b.
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Pick x′′ ∈ Rpc
Σ,t̂

(x) ∩W , t̂ ∈ [a, b[. Applying Theorem 2 to x′′ and the time θ, where

θ > 0 is chosen so that RΣ,[0,θ](x
′′) ⊆ W and θ < b − t̂, we find that the interior of

RpcΣ,[0,θ](x
′′) is a nonempty subset of W . Since it is clear that RpcΣ,[0,θ](x

′′) ⊆ RpcΣ,[a,b](x),

we conclude that W contains an interior point of RpcΣ,[a,b](x). Since W is an arbitrary

open neighborhood of x′, which is an arbitrary point of RΣ,[a,b](x), we have shown that

RΣ,[a,b](x) ⊆ Clos

(
Int
(
RpcΣ,[a,b](x)

))
whenever x ∈M, 0 ≤ a < b. (3)

Next, suppose that x′ ∈ Int
(
RΣ,[a,b](x)

)
, where 0 ≤ a ≤ b. Then we can pick an open

neighborhood W of x′ such that W ⊆ RΣ,[a,b](x). We can then apply Theorem 2 to the
system Σr = (M,U,−f) —i.e. “Σ ran in reverse”— and a sufficiently small time θ > 0,
and conclude that RpcΣr,[0,θ](x

′)∩W contains a nonempty open set Ω. Then Ω ⊆ RΣ,[a,b](x).

Pick y ∈ Ω. Then y can be reached from x, at some time t̂ ∈ [a, b], by means of a control
η : [0, t̂] → U and a corresponding trajectory ξ. Let {ηj}∞j=1 be a sequence of piecewise

constant controls defined on [0, t̂] such that ηj(t
′) → η(t′) for almost all t′ ∈ [0, t̂]. Once

again, it follows from standard properties of ordinary differential equations that, if our
system is of class C1,u, then the trajectories ξj : [0, t̂] → M for ηj such that ξj(0) = x
exist for large j, and converge uniformly to ξ. Let yj = ξj(t̂). Then there is a j such that
yj ∈ Ω. Since yj ∈ RpcΣ,[a,b](x) and x′ ∈ RpcΣ,[0,θ](yj) —because yj ∈ Ω ⊆ RΣr,[0,θ](x

′)— we

see that x′ ∈ RΣ,[a,b+θ](x). Since θ is arbitrarily small, we have shown that

Int
(
RΣ,[a,b](x)

)
⊆
⋂
θ>0

RpcΣ,[a,b+θ](x) whenever x ∈M, 0 ≤ a ≤ b. (4)

In other words, every point in the interior of the reachable set from x in some time
belonging to [a, b] can be reached from x by means of a piecewise constant control in
time belonging to [a, b+ θ], for any θ > 0.

So we have proved:

Theorem 3. If Σ = (M,U, f) is a control system of class C∞,u that has the algebraic
accessibility property at every point, then (3) and (4) hold.

R e m a r k 4. It is easy to give examples where the number θ of (4) cannot be taken
to be equal to 0. For example, consider the system Σ = (M,U, f) whose dynamics is
given by ρ̇ = u(1 − 1

4 (v − cos ρ)2), where ρ ∈ S1 = M and the controls u, v satisfy
|u| ≤ 1, |v| ≤ 1, so U = [−1, 1] × [−1, 1]. Let the initial condition be ρ(0) = 0. Then
RΣ,[0,π](0) = RΣ,π(0) = M , so π is an interior point of RΣ,[0,π](0). However, the only
controls that steer 0 to π in time ≤ π are the ones given by u(t) = α, v = cos t —where
α = 1 or α = −1— which are not piecewise constant.

3.6. The maximum principle. If Σ = (M,U, f) is a control system of class Ck,`, with
k ≥ ` ≥ 1, then each vector field fu, u ∈ U , has a Hamiltonian lift f∗u ∈ V∞(T ∗M),
which is a vector field of class Ck−1. If we define f∗(z, u) = f∗u(z) for z ∈ T ∗M , then
Σ∗ = (T ∗M,U, f∗) is a control system of class Ck−1,`−1. Moreover, when ` = 1, Σ∗

is of class Ck−1,u. (In coordinates, if Σ is a system ẋ = f(x, u), then Σ∗ is the system
ẋ = f(x, u), ż = −z · ∂f∂x (x, u). Given a control η and initial conditions x(0) = x̄, z(0) = z̄,
the equation ẋ = f(x, η(t)) has a unique solution ξ because Σ is of class C1,1, and then
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ż = −z · ∂f∂x (ξ(t), η(t)) also has a unique solution because it is of the form ż = z · A(t)
with A(·) bounded and measurable.)

The control system Σ∗ defined above is the Hamiltonian lift of Σ. The projection
ξ = πT∗M ◦Ξ of a trajectory Ξ of Σ∗ generated by a control η is a trajectory of Σ
generated by η. Conversely, if I is an interval, ξ : I → M is a trajectory of Σ generated
by η, t ∈ I, and z ∈ T ∗ξ(t)M , then there exists a unique trajectory Ξ : I → T ∗M of

Σ∗ generated by η such that Ξ(t) = (ξ(t), z) and ξ = πT∗M ◦Ξ. The curve Ξ is entirely
contained in T#M iff z 6= 0. If γ = (ξ, η) is a trajectory-control pair of Σ, and Ξ is a
trajectory of Σ∗ generated by η and such that πT∗M ◦Ξ = ξ, then the trajectory-control
pair Γ = (Ξ, η) of Σ∗ is called a Hamiltonian lift of γ. If in addition Ξ is contained in
T#M , then Γ is a nontrivial Hamiltonian lift of γ.

The function HΣ : T ∗M × U → R given by HΣ(x, z, u) = z · f(x, u) is called the
Hamiltonian of Σ.

A trajectory-control pair Γ = (Ξ, η) of Σ∗ is said to be Hamiltonian minimizing if

HΣ(Ξ(t), η(t)) = min{HΣ(Ξ(t), u) : u ∈ U} for almost every t. (5)

If in addition HΣ(Ξ(t), η(t)) = 0 for almost every t, then Γ is null-minimizing.
An extremal of Σ is a trajectory-control pair that admits a nontrivial null-minimizing

Hamiltonian lift.
The following result is one version of the maximum principle of optimal control theory.

Theorem 4. Let Σ be a control system of class C1,1. Let γ = (ξ, η) be a trajectory-
control pair of Σ such that the domain of η is an interval [0, T ]. Then either

ξ(T ) ∈
⋂
ε>0

Int
(
RΣ,]T−ε,T+ε[(ξ(0))

)
, (6)

or γ is an extremal.

The maximum principle says, roughly, that if a point x̂ = ξ(T ) is reachable in time T
from another point x̄ = ξ(0) by means of a trajectory ξ : [0, T ]→ M and corresponding
control η, then a necessary condition for x̂ to belong to the boundary of the reachable
set from x̄ is that the pair γ = (ξ, η) be an extremal. The statement we have presented
gives more precise information, since it says that, if γ is not an extremal, then not only
is x̂ an interior point of RΣ(x̄), but in fact it is an interior point of RΣ,]T−ε,T+ε[(x̄) for
every ε > 0. (In other words, given any ε > 0 one can fill up some neighborhood Wε of
x̂ with points that are reachable from x̄ in times between T − ε and T + ε.)

4. Real-analytic control systems: elementary properties. A real-analytic con-
trol system is a smooth control system Σ = (M,U, f) such that M is a real-analytic
manifold, U is a compact subanalytic subset of some other real-analytic manifold N ,
and f : M × U → TM is jointly real-analytic. (For simplicity, the reader can choose to
interpret the last condition in the most obvious way, namely, that f is the restriction to
M ×U of some real-analytic map on an open subset Ω of M ×N such that M ×U ⊆ Ω.
What we actually need for all the results of this paper is the weaker assumption that, for
some compact real-analytic manifold V and surjective real-analytic map Φ : V → U , the
composite map M ×V 3 (x, v) 7→ f(x,Φ(v)) is real-analytic. So, for example, the control
system ẋ =

√
u, u ∈ U = [0, 1], is real-analytic in our sense, since we can desingularize U

by taking, e.g., V = S1, Φ(θ) = sin4 θ.)
It is clear that a real-analytic control system is of class C∞,∞.
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4.1. Integral manifolds. In the real-analytic case, Theorem 1 can be strengthened by
giving a much more precise characterization of the tangent spaces to the orbits. Precisely:

Theorem 5. If M is a real-analytic manifold and F ⊆ V ω(M), then the tangent
space TxS of an F -orbit S at a point x ∈ S is

TxS = L(F )(x)
def
= {g(x) : g ∈ L(F )}. (7)

P r o o f. We present the complete proof, because it is very short —modulo the orbit
theorem— and shows exactly where and how analyticity is used. As will become clear
shortly, the only fact about analyticity used in the proof is the analytic continuation
theorem for functions of one real variable.

We have to show that every vector v of the form (1) is in L(F )(x). For this purpose,
it suffices to show that, if x ∈ M , w ∈ L(F )(x) and f ∈ F , then wetf ∈ L(F )(xetf ).
(Here we are using wetf to denote the object usually called (etf )∗w, i.e. the tangent

vector d
dε

∣∣∣
ε=0

ξ(ε)etf , if ξ is a C1 curve such that ξ(0) = x and ξ̇(0) = w.) To prove this,

pick W ∈ L(F ) such that W (x) = w. Then wetf = d
dε

∣∣∣
ε=0

xeεW etf . Letting ξ(t) = xetf ,

we have wetf = d
dε

∣∣∣
ε=0

ξ(t)e−tfeεW etf . Let z(s) = d
dε

∣∣∣
ε=0

ξ(t)e−sfeεW esf . Then z(s) is a

tangent vector at ξ(t) for all s such that ξ(t)e−sf is defined, and in particular for all s
between 0 and t. Clearly, z(s) = ξ(t)e−sfWesf . Then

dz

ds
(s) = ξ(t)e−sf [W, f ]esf , (8)

and, more generally,

z(k)(s) = ξ(t)e−sfW kesf , (9)

where W 0 = W and W k+1 = [W k, f ]. It follows that z(k)(0) ∈ L(F )(ξ(t)) for every k.
Since z is analytic, we conclude that z(s) ∈ L(F )(ξ(t)) for all s between 0 and t. (This
is the only place where analyticity is used.) In particular, wetf = z(t) ∈ L(F )(ξ(t)), and
the proof is complete.

So, if M is real-analytic and F ⊆ V ω(M), then M is partitioned into leaves S —the
F -orbits— such that each S is an integral manifold of L(F ), i.e. a connected Cω leaf in
M such that TxS = L(F )(x) for all x ∈ S. These manifolds are obviously maximal, in the
sense that if S′ is an integral manifold of L(F ), then S′ is an open submanifold of one of
the sets S. When F is itself a Lie algebra of vector fields, this yields the Hermann-Nagano
theorem (cf. Hermann [3], Nagano [5]):

Theorem 6. If M is a real-analytic manifold and L is a Lie subalgebra of V ω(M),
then M is partitioned into maximal integral submanifolds of L.

4.2. The equivalence theorem. An important corollary of the Hermann-Nagano theo-
rem is the following equivalence theorem:

Theorem 7. Let Σi = (M i, U, f i), i = 1, 2, be smooth control systems such that
M1 and M2 are real-analytic manifolds and the vector fields f1

u, f2
u are real-analytic for

every u(1). Let x1 ∈M1, x2 ∈M2 be such that the algebraic accessibility condition holds

(1) In particular, the systems could be real-analytic in the sense of our definition, but for
Theorem 7 there is no need to require analyticity or even smoothness of the dependence with
respect to u.
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for Σi at xi for i = 1, 2. Then the following two conditions are equivalent :

(i) REL(x1,Σ1) = REL(x2,Σ2),
(ii) there exists a real-analytic diffeomorphism Φ from a neighborhood U1 of x1 in M1

onto a neighborhood U2 of x2 in M2 such that DΦ(x) · f1(x, u) = f2(Φ(x), u) for every
x ∈ U1.

P r o o f. The implication (ii)⇒ (i) is trivial. The fact that (i)⇒ (ii) is proved by an el-
ementary application of the well known graph method of E. Cartan: we let M = M1×M2,
and construct the graph G of the map Φ by letting G be the maximal integral manifold
of L(Σ), where Σ is the system (M,U, f), and f(y1, y2, u) = (f1(y1, u), f2(y2, u)), us-
ing the obvious identification T(y1,y2)M ∼ Ty1M

1 × Ty2M
2. Let x = (x1, x2). Then

the accessibility property for each system Σi implies that the corresponding projec-
tion πi : G 3 (y1, y2) 7→ yi ∈ M i is a submersion near x. Then (i) implies that
kerDπ1(x) = kerDπ2(x) = {0}, because

PΣi(V )(xi) = 0⇔ V ∈ REL(xi,Σi), (10)

so

Dπ1(x)(v1, v2) = 0⇔ v1 = 0⇔ v = 0⇔ v2 = 0⇔ Dπ2(x)(v1, v2) = 0 (11)

if v = (v1, v2) ∈ TxG, since v is of the form (PΣ1(V )(x1), PΣ2(V )(x2)) for some V ∈ Λ(U).
So the maps πi are in fact local diffeomorphisms near x. We then define

Φ = π2 ◦ (π1)−1,

and it is easy to verify that Φ has the desired properties.

Theorem 7 is important because it says that, for a real-analytic control system
Σ = (M,U, f) having the algebraic accessibility property at a point x, all the Cω-
diffeomorphism-invariant properties of the system near the point x are determined, in
principle, by the Lie bracket relations at x. (Examples of local properties that are not de-
termined by the Lie bracket relations: (1) whether or not Σ has the algebraic accessibility
property at x, (2) whether or not the reachable sets RΣ,t(x) are convex for small t.)

In other words, for systems having the algebraic accessibility property, the Lie bracket
relations of Σ at x form a complete set of invariants under the pseudogroup of local
real-analytic diffeomorphisms. This is one of several reasons why Lie brackets play such
an significant role in control theory.

4.3. An elementary property of reachable sets. Theorems 3 and 5, together with
Lemma 1, imply that reachable sets for real-analytic systems have some special prop-
erties that are not true in general for smooth systems.

Theorem 8. Suppose that Σ = (M,U, f) is a real-analytic control system, x ∈M ,
and 0 ≤ a < b. Let R = RΣ,[a,b](x). Then there exists a real-analytic leaf S in M such
that R ⊆ S and R is in fact contained in the closure, relative to S, of its interior relative
to S. In particular, R has integer Hausdorff dimension.

P r o o f. Let S be the Σ-orbit through x. By Lemma 1, R ⊆ S. By Theorem 5, S is
an integral manifold of L(Σ). Then the restriction ΣdS of Σ to S is an analytic system
having the algebraic accessibility property at every point. Clearly, R = RΣdS,[a,b](x). By
Theorem 3, R, regarded as a subset of S, is contained in the closure of its interior.

R e m a r k 5. The property of Theorem 8 can definitely fail for smooth systems. For
example, let Σ be the system ẋ = f(x) + ug(x) in R2, where u ∈ U = [−1, 1], f = ∂

∂x1
,
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g = ϕ(x1) ∂
∂x2

, and ϕ : R → R is a smooth function such that ϕ(s) = 0 for s ≤ 1 and
ϕ(s) > 0 for s > 1. Let x̄ = (0, 0). Then for any time T > 1, the reachable set RΣ,[0,T ](x̄)
has nonempty interior but is not contained in the closure of its interior.

4.4. An open problem. Is it true for general smooth systems Σ = (M,U, f) that every
reachable set RΣ,[0,T ](x̄) has integer Hausdorff dimension? The answer is not known.

5. A weak regularity theorem, using desingularization. We now present an
example of a much more delicate property of real-analytic systems, whose proof uses the
desingularization theorem in a crucial way. A simpler version of this result, for the case
when the control space U is the interval [−1, 1] (in which case desingularization is not
needed), has appeared in Sussmann [9].

Theorem 9. Let Σ = (M,U, f) be a real-analytic control system, and let x̄ ∈ M ,
x̂ ∈M , T > 0 be such that x̂ can be reached from x̄ in time T . Then there exists a control
η : [0, T ] → U that steers x̄ to x̂ and is analytic on an open dense subset of the interval
[0, T ].

P r o o f. We will first prove a weaker result:

(WR) Under our hypotheses, if ε > 0 is arbitrary, then there exist a time T ′ ∈ [T−ε, T+ε]
and a control η : [0, T ′] → U that steers x̄ to x̂ and is analytic on an open dense subset
of the interval [0, T ′].

We prove that (WR) implies the desired conclusion. To show this, we apply (WR) to
the system Σ̌ given by ẋ = f(x, u), ẏ = 1, on the manifold M × R. It is clear that x′ is
Σ-reachable from x in time t iff (x′, t) is Σ̌-reachable from (x, 0). Under our hypothesis,
(x̂, T ) is Σ̂-reachable from (x̄, 0). It then follows from (WR) that (x̂, T ) is Σ̂-reachable
from (x̄, 0) in some time T ′ by means of a control which is analytic on an open dense
subset of [0, T ′]. If [0, T ′] 3 t 7→ (ξ(t), τ(t)) is the corresponding trajectory, then τ(0) = 0,
τ(T ′) = T , and τ̇ ≡ 1. So T ′ = T . Therefore (x̂, T ) is Σ̂-reachable from (x̄, 0) in time
T by means of a control which is analytic on an open dense subset of [0, T ]. So x̂ is
Σ-reachable from x̄ in time T by means of a control which is analytic on an open dense
subset of [0, T ].

So it suffices to prove (WR). Moreover, the desingularization theorem implies that it
suffices to assume that U is a real-analytic manifold which is a finite union of tori.

So from now on we assume that U is a finite union of tori, and try to prove (WR).
The proof will be “by induction on U ,” so our first task will be to assign to each possible
U an “index” ν(U) belonging to some well-ordered set, so as to be able to do induction.

We let νk(U) be the number of k-dimensional connected components of U , and define
ν(U) to be the sequence (ν0(U), ν1(U), . . .). Then ν(U) ∈ N , where N is the set of all
sequences (n0, n1, n2, . . .) of nonnegative integers such that nk = 0 for all but finitely
many k’s.

The set N is well ordered by the binary relation � where, by definition,

(n0, n1, n2, . . .) � (m0,m1,m2, . . .)

iff there does not exist a k ∈ {0, 1, . . .} with the property that nk > mk and nj = mj for
j > k. If n = (n0, n1, n2, . . .) and m = (m0,m1,m2, . . .), we write n ≺ m if n � m and
n 6= m.
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We will prove our conclusion by induction on ν(U). That is, we will assume from now
on that (WR) is true for all systems Σ′ = (M ′, U ′, f ′) with ν(U ′) ≺ ν(U), and will prove
(WR) for Σ = (M,f, U).

We now fix ε > 0, pick two points x̄, x̂ in M , and choose a trajectory ξ : [0, T ]→M
of Σ, corresponding to a control η : [0, T ]→ U , and such that ξ(0) = x̄, ξ(T ) = x̂. We let
κ = 1 + ε

T , and observe that T
κ > T − ε. The trajectory ξ is then entirely contained in a

maximal integral submanifold M̃ of L(Σ), so we may as well assume that M̃ = M , i.e.
that Σ has the algebraic accessibility property at each point and M is connected.

It is clear that our desired conclusion is local, in the sense that, if it holds on
all members of an open covering M of M , then it holds on M . (This is trivial: pick
t0, . . . , tm ∈ [0, T ] such that 0 = t0 < t1 < . . . < tm = T , with the property that
ξ([ti−1, ti]) is contained in a member ofM for each i. We can then find a curve ξ′i : [ai, bi],
defined on an interval of length Li = bi − ai, such that ti−ti−1

κ ≤ Li ≤ κ(ti − ti−1),
ξ′i(ai) = ξ(ti−1), ξ′i(bi) = ξ(ti), and ξ′i is generated by a control η′i which is analytic on
an open dense subset of [ai, bi]. After suitably translating the time intervals [ai, bi], and
concatenating the curves ξ′i and the controls η′i, we get a trajectory ξ′ : [0, T ′] → M
generated by a control η′ : [0, T ]→ U such that η′ is analytic on an open dense subset of
[0, T ′], ξ′(0) = ξ(0), ξ′(T ′) = ξ(T ), and T

κ ≤ T ′ ≤ κT . So T − ε ≤ T ′ ≤ T + ε, and then
(WR) holds.)

It follows from the above that we can assume that M is an open subset of Rn for
some n, so that in particular T ∗M is naturally identified with M × Rn, and T#M with
M × (Rn\{0}). We make this assumption from now on.

We let R denote the Σ-reachable set RΣ,]T− ε
2 ,T+ ε

2 [(x̄). We will treat separately the
cases x̂ ∈ Int(R), x̂ 6∈ Int(R). The former case is easily disposed of. Indeed, Theorem 3
tells us that x̂ is reachable from x̄ in time t for some t ∈ [T − ε, T + ε] by means of a
piecewise constant control, so our conclusion follows.

We now look at the case x̂ 6∈ Int(R). Let γ = (ξ, η). Then the maximum principle
tells us that γ is an extremal, so it has a null-minimizing nontrivial Hamiltonian lift
Γ = (Ξ, η). This means that Ξ is a trajectory of the Hamiltonian lift Σ∗ = (T ∗M,U, f∗),
generated by η, contained in T#M , projecting down to ξ, and such that

0 = HΣ(Ξ(t), η(t)) = min{HΣ(Ξ(t), u) : u ∈ U} for almost all t. (12)

(The minimization part of (12) is not going to be used in what follows.) We then let

C = {(z, u) ∈ T#M : HΣ(z, u) = 0}. (13)

Then C is a real-analytic subset of T#M × U .

If S is a submanifold of T#M , we use Ctan
S to denote the set of all pairs (s, u) ∈ C

such that s ∈ S and f∗(s, u) is tangent to S at s. It is clear that if S is subanalytic then
Ctan
S is a subanalytic subset of T#M × U and a real-analytic subset of S × U .

We now construct a stratification S of T#M such that the following is true for each
stratum S of S:

(I) S is a relatively compact subanalytic subset and a real-analytic embedded subman-
ifold of T#M , and there exist a compact real-analytic manifold DS and a real-analytic
map ΦS : S ×DS → T#M × U , such that DS is a finite union of tori, and

(I.a) ΦS(S ×DS) = Ctan
S and ΦS(s, y) ∈ {s} × U for every (s, y) ∈ S ×DS,

(I.b) ν(DS) ≺ ν(U).
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We will first prove that if S exists then our conclusion follows, and then we will show
how to construct S. Let us call a subset S of T#M “good” if it satisfies (I), and let us
call a stratification S of T#M “good” if every stratum of S is good. Let S be a good
stratification of T#M .

Let S(t) denote, for t ∈ [0, T ], the stratum that contains Ξ(t). Define

µ(t) = dimS(t).

Let I be set of t ∈ [0, T ] such that µ is constant on some neighborhood of t in [0, T ].
Then I is relatively open and dense in [0, T ]. (Openness is trivial. Density follows from
the frontier and dimension axioms: if t ∈ [0, T ] and ε > 0, pick t′ ∈ [0, T ] ∩ ]t− ε, t+ ε[
that maximizes µ(t′). If µ was not constant near t′, then there would exist tj such that
tj → t′ and µ(tj) < µ(t′). But then we can assume, by passing to a subsequence, that all
the Ξ(tj) belong to the same stratum S, whose dimension is smaller than that of S(t′).
Since Ξ(tj) → Ξ(t′), this says that Ξ(t′) is in the closure of S, which is a contradiction,
since Ξ(t) ∈ S(t′) and dimS(t′) > dimS.)

Let J be the set of connected components of I, so J is finite or countably infinite, the
members of J are pairwise disjoint relatively open subintervals of [0, T ], and I =

⋃
J∈J J .

If J ∈ J , then the restriction ΞJ of Ξ to J is entirely contained in a stratum SJ of S.
(This follows from the connectedness of J and the fact that the map t 7→ S(t) has to
be locally constant on J . To prove this last fact, pick t ∈ J and assume that there are
tj converging to t and such that S(tj) 6= S(t). Then we can pass to a subsequence and
assume that all the S(tj) are equal to a fixed stratum S′, and from the dimension and
frontier axioms we get µ(t) = dimS(t) < dimS′ = µ(tj), contradicting the fact that
t ∈ I.)

Let gJ(s, v) = f∗(s,ΦSJ
(v)), for s ∈ SJ , v ∈ DSJ

. It is then clear that the vector
Ξ̇J(t) = f∗(ΞJ(t), η(t)) is tangent to SJ for almost all t ∈ J . We know that η(t) belongs
to {u : (Ξ(t), u) ∈ C} for almost every t ∈ J . So η(t) ∈ {u : (Ξ(t), u) ∈ Ctan

SJ
} for almost

every t ∈ J . This means that for almost every t ∈ J there exists a v(t) belonging to DSJ

such that η(t) = ΦSJ
(v(t)). Then Ξ̇J(t) = gJ(ΞJ(t), v(t)). As explained in Remark 2, the

function v can be chosen to be measurable. It then follows that ΞJ is a trajectory of the
control system ΣJ = (SJ , DSJ

, gJ), which is exactly like our original system Σ, but with a
control spaceDSJ

such that ν(DSJ
) ≺ ν(U). So the inductive hypothesis can be applied to

ΣJ and the restriction ΞK of Ξ to any nontrivial compact subinterval K = [aK , bK ] of J ,
yielding the conclusion that there exist a trajectory-control pair (Ξ′K , η

′
K) of ΣJ , defined

on a compact interval K ′ = [a′K , b
′
K ], such that Ξ′K(a′K) = ΞK(aK), Ξ′K(b′K) = Ξ(bK),

and η′K is analytic on an open dense subset of K ′. Moreover, the length LK′ = b′K − a′K
of K ′ can be chosen so that |LK′−LK | < θ, where LK = bK−aK , and θ > 0 is arbitrary.

We choose θ = θK for each K so that 1
κLK < LK′ < κLK . We also choose a′K = aK ,

as we certainly can given that our system is autonomous. Then Ξ′K is defined on the
interval [aK , aK + LK′ ]. We let Ξ∗K : [aK , bK ] → SJ , η∗K : [aK , bK ] → DSJ

be the maps
given by

Ξ∗K(t) = Ξ′K

(
aK +

LK′

LK
(t− aK)

)
, η∗K(t) = η′K

(
aK +

LK′

LK
(t− aK)

)
. (14)

Then Ξ∗K(aK) = Ξ(aK), Ξ∗K(bK) = Ξ′K(aK + LK′) = Ξ(bK), and Ξ∗K satisfies the differ-
ential equation Ξ̇∗K(t) = ωKf

∗
J (Ξ∗K(t), η′K(t)) on K, where the constant ωK lies between

1
κ and κ.
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We now pick, for each J ∈ J , a discrete subset EJ of J whose closure contains both
endpoints of J . We then let K(J) be the set of all compact subintervals K = [aK , bK ] such
that aK < bK , aK ∈ EJ , bK ∈ EJ , and EJ ∩ ]aK , bK [ = ∅. We construct Ξ∗K : K → SJ
and η∗K : K → DSJ

as above for each K ∈ K(J), and do this for all J ∈ J . We then
define a curve Ξ′ : [0, T ] → T#M by first letting Ξ′(t) = Ξ(t) if t ∈ [0, T ]\I and then, if
t ∈ I, picking the unique J ∈ J such that t ∈ J , and a K ∈ K(J) such that t ∈ K, and
letting Ξ′(t) = Ξ∗K(t). The set K is unique unless t ∈ EJ , in which case there are two
possible choices of K, both of which give Ξ′(t) = Ξ(t). So Ξ′ is well defined. Similarly, we
define η′(t) = ΦS(t)(η

∗
K(t)) for t ∈ K ∈ K(J), J ∈ J , and η′(t) = η(t) for t 6∈ I. We also

define ω(t) = ωK(t) for t ∈ K ∈ K(J), J ∈ J , and ω(t) = 1 for t 6∈ I.
We now show that the curve Ξ′ is Lipschitz, and satisfies the differential equation

Ξ̇′(t) = ω(t)f∗(Ξ′(t), η′(t)) for almost all t ∈ [0, T ]. (15)

To see this, we first let S(Ξ) be the set of strata S ∈ S such that Ξ([0, T ]) intersects S.
Then S(Ξ) is finite, because the set Ξ([0, T ]) is compact. Let Q =

⋃
{S : S ∈ S(Ξ)}. Then

‖f∗(x, z, u)‖ is bounded by a constant c > 0 as long as (x, z) ∈ Q. So Ξ is Lipschitz with
constant c. Also, Ξ′ is contained in Q by construction, and each curve Ξ∗K , for K ∈ K(J),
J ∈ J , is a solution of the equation Ξ̇∗K(t) = ωK(t)f∗(Ξ∗K(t), η′(t)) on K. So each Ξ∗K is
Lipschitz with constant κc. If 0 ≤ t1 < t2 ≤ T , we will show that

‖Ξ′(t2)− Ξ′(t1)‖ ≤ κc(t2 − t1). (16)

Suppose first that Ξ′(t1) = Ξ(t1) and Ξ′(t2) = Ξ(t2). Then the inequality

‖Ξ′(t2)− Ξ′(t1)‖ ≤ c(t2 − t1)

holds, because ‖Ξ(t2)− Ξ(t1)‖ ≤ c(t2 − t1). So (16) holds.
Next suppose that Ξ′(t1) = Ξ(t1) but Ξ′(t2) 6= Ξ(t2). Then t2 ∈ I, so t2 ∈ J for some

J ∈ J . Therefore t2 ∈ K = [aK , bK ] for some K ∈ K(J). If t1 ≥ aK , then both t1 and t2
are in K, so Ξ′(t1) = Ξ∗K(t1) and Ξ′(t2) = Ξ∗K(t2), and then ‖Ξ′(t2)−Ξ′(t1)‖ ≤ κc(t2−t1),
because Ξ∗K is Lipschitz with constant κc. If t1 < aK , then

‖Ξ′(t2)− Ξ′(t1)‖ ≤ ‖Ξ′(t2)− Ξ′(aK)‖+ ‖Ξ′(aK)− Ξ′(t1)‖
≤ κc(t2 − aK) + ‖Ξ(aK)− Ξ(t1)‖ ≤ κc(t2 − t1),

so (16) holds.
A similar argument shows that (16) is true if Ξ′(t1) 6= Ξ(t1) and Ξ′(t2) = Ξ(t2).

Finally, if Ξ′(t1) 6= Ξ(t1) and Ξ′(t2) 6= Ξ(t2), then both t1 and t2 are in I. If both belong
to the same interval K ∈ K(J), for a J ∈ J , then (16) follows because Ξ∗K is Lipschitz
with constant κc. If they do not, then there is a t such that t1 < t < t2 and Ξ′(t) = Ξ(t),
in which case the results for the previous cases apply, and

‖Ξ′(t2)− Ξ′(t1)‖ ≤ ‖Ξ′(t2)− Ξ′(t)‖+ ‖Ξ′(t)− Ξ′(t1)‖
= ‖Ξ′(t2)− Ξ(t)‖+ ‖Ξ(t)− Ξ′(t1)‖ ≤ κc(t2 − t1),

so (16) holds as well. So Ξ′ is Lipschitz with constant κc.
To prove that equation (15) holds, we first observe that the derivative Ξ̇′(t) is clearly

equal to ω(t)f∗(Ξ′(t), η′(t)) for almost every t ∈ J , if J ∈ J . So it suffices to prove that
Ξ̇′(t) = f∗(Ξ′(t), η′(t)) for almost all t ∈ [0, T ]\I. Now, if t ∈ [0, T ]\I, then Ξ′(t) = Ξ(t)
and η′(t) = η(t). So we have to prove that Ξ̇′(t) = f∗(Ξ(t), η(t)) for almost all t ∈ [0, T ]\I.
We know that almost every point of [0, T ]\I is a point of density of [0, T ]\I, and Ξ̇(t)
exists and is equal to f∗(Ξ(t), η(t)) for almost all t ∈ [0, T ]. We also know that Ξ̇′(t)
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exists for almost all t ∈ [0, T ], because Ξ is Lipschitz. So there is a subset B of [0, T ]\I of
measure zero such that, if t ∈ [0, T ]\I but t 6∈ B, then t is a point of density of [0, T ]\I,
Ξ̇(t) = f∗(Ξ(t), η(t)), and Ξ̇′(t) exists. Any such t is an accumulation point of [0, T ]\I,

so the limit Ξ̇′(t) = limh→0,h6=0
Ξ′(t+h)−Ξ′(t)

h can be computed by just letting t + h vary

in [0, T ]\I. Since Ξ′ ≡ Ξ on [0, T ]\I, we conclude that Ξ̇′(t) = Ξ̇(t) = f∗(Ξ(t), η(t)), as
desired.

So we have shown that the curve Ξ′ satisfies (15). We now eliminate the multiplicative
factor ω(t) by reparametrizing the time interval. To do this, we define a reparametriza-

tion map τ : [0, T ] → [0, T ′] by letting τ(r) =
∫ r

0
ω(s) ds. (Here we let T ′

def
= τ(T ) =∫ T

0
ω(s) ds.) Then 1

κ ≤
dτ
dt ≤ κ, so τ is a homeomorphism.

We then define Ξ′′(t) = Ξ′(r) and η′′(t) = η′(r), if t = τ(r). Then

dΞ′′

dt
(t) = f∗(Ξ′′(t), η′′(t)) for almost all t ∈ [0, T ′]. (17)

Then Ξ′′ is a trajectory of Σ∗ generated by η′′. Clearly, Ξ′′(T ′) = Ξ(T ) and Ξ′′(0) = Ξ(0).
So, if we define ξ′′ = πT∗M ◦Ξ

′′, it follows that ξ′′ is a trajectory of Σ such that ξ′′(T ′) = x̂
and ξ′′(0) = x̄, and ξ′′ is also generated by η′′. Moreover, η′′ is analytic on an open dense
subset of [0, T ′]. Finally, T ′ satisfies T

κ ≤ T
′ ≤ κT , so T − ε ≤ T ′ ≤ T + ε. Therefore the

proof of (WR) is complete, modulo the assumption that S exists.

We now prove the existence of a good stratification S. Recall that M is assumed to
be an open subset of Rn. For k ∈ {0, . . . , 2n + 1}, call a stratification S “k-good” if all
the strata of S of dimension ≥ k are good. We need to prove the existence of a 0-good
stratification. We do this by proving the existence, for every k ∈ {0, . . . , 2n + 1}, of a
k-good stratification Sk with real-analytic subanalytic relatively compact strata. This is
done by induction with respect to k′ = 2n+ 1− k. When k′ = 0, i.e. k = 2n+ 1, we let
S2n+1 be any stratification of T#M (i.e. of M × (Rn\{0})) with real-analytic relatively
compact subanalytic strata.

We now assume that k ∈ {1, 2, . . . , 2n + 1} and a k-good stratification Sk with real-
analytic subanalytic relatively compact strata exists. We want to construct a (k−1)-good
stratification Sk−1, also with real-analytic subanalytic relatively compact strata.

Let A be the set of all strata of Sk of dimension k− 1. Let U be the set of connected
components of U . For each S ∈ A, and each U ′ ∈ U , we let C(S,U ′) be the set of all s ∈ S
such that {s} × U ′ ⊆ Ctan

S . It is easy to see that each set C(S,U ′) is subanalytic. Since
U is finite, the family of sets C(S,U ′), for all S ∈ A, U ′ ∈ U , is locally finite in T#M .
So by standard stratification theorems there exists a stratification S̃ with real-analytic
subanalytic strata which is a refinement of Sk and is compatible with every set C(S,U ′),
S ∈ A, U ′ ∈ U . (We say that a set H of sets is compatible with a set L if every member
of H either disjoint from or a subset of L.)

Let Ã be the set of all (k−1)-dimensional strata of S̃ that are contained in an S ∈ A.
If S ∈ Ã and U ′ ∈ U , then either {s} × U ′ ⊆ Ctan

S for all s ∈ S, or {s} × U ′ 6⊆ Ctan
S for

all s ∈ S. (Notice that if s ∈ S, S ∈ Ã, S ⊆ S′ ∈ A, then (s, u) ∈ Ctan
S ⇔ (s, u) ∈ Ctan

S′ .)

For a stratum S ∈ Ã, we let U(S) be the set of those U ′ ∈ U having the property
that {s} × U ′ ⊆ Ctan

S for all s ∈ S.

We now make use of the assumption that Σ has the algebraic accessibility property
at every point, to prove the following crucial fact:

(*) If S ∈ Ã, then U(S) 6= U .
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To prove (*), we assume that S ∈ Ã is such that U(S) = U , and try to derive a
contradiction. Our assumption says that the vector f∗(s, u) is tangent to S for every
s ∈ S, u ∈ U , and in addition HΣ(s, u) = 0 for s ∈ S, u ∈ U . Let hu : T#M → R be the
function (x, z) 7→ HΣ(x, z, u). Then hu is the momentum function corresponding to the

vector field fu, and f∗u is the Hamiltonian vector field
−→
hu. Let L be the subset of L(Σ)

consisting of all vector fields X ∈ L(Σ) such that the momentum function hX vanishes
identically on S. Then L is obviously a linear space. Moreover, fu ∈ L for all u ∈ U , since
hu vanishes on S. Suppose that, for some `, L contains all the brackets of the form

Y = [fu1 , [fu2 , [. . . , [fu`−1
, fu`

] . . .]]]. (18)

Let X = [fu, Y ], where Y is of the form (18). Then hX = h[fu,Y ] = {hu, hY }. Moreover,

the Poisson bracket {hu, hY } is the directional derivative
−→
h
u
hY , i.e. f∗uhY . Since hY ≡ 0

on S, and f∗u is tangent to S, we conclude that hX ≡ 0 on S, so X ∈ L. This proves
that L contains all the brackets of the form (18), for all `. Therefore L = L(Σ). Given
s = (x, z) ∈ S, the accessibility condition tells us that TxM = L(Σ)(x) = L(x). So
every vector v ∈ TxM is of the form X(x) for some X ∈ L. Therefore hX ≡ 0 on S,
so hX(x, z) = 0. But this says that z(v) = 0. So z annihilates TxM . Therefore z = 0,
contradicting the fact that (x, z) ∈ T#M . This completes the proof of (*).

Now let S ∈ Ã and pick U ′ ∈ U such that U ′ 6∈ U(S). For s ∈ S, let ZS,U ′(s) be the
set of those u ∈ U ′ such that (s, u) ∈ Ctan

S . We then know that ZS,U ′(s) is a proper subset
of U ′. Moreover, u ∈ ZS,U ′(s) iff f∗(s, u) is tangent to S and HΣ(s, u) = 0. This clearly
implies that ZS,U ′(s) is an analytic subset of U ′. Since U ′ is connected, and ZS,U ′(s) 6= U ′,
we conclude that ZS,U ′ is an analytic subset of U ′ of positive codimension.

With S, U ′ as before, we now let ZS,U ′ = {(s, u) : u ∈ ZS,U ′(s)}. Then ZS,U ′ is an
analytic subset of S ×U ′ and a subanalytic relatively compact subset of T#M ×U ′. We
let Z̄S,U ′ be the closure of ZS,U ′ in T#M × U ′. Then Z̄S,U ′ is subanalytic and compact.
Since the dimension of each fiber ZS,U ′(s) is < dimU ′, we can conclude that, if we write
∆S,U ′ = dim Z̄S,U ′ , then ∆S,U ′ < dimS + dimU ′.

We now use the desingularization theorem to find, for each S ∈ Ã and each U ′ ∈ U
such that U ′ 6∈ U(S), a compact analytic manifold NS,U ′ of dimension ∆S,U ′ and a real-
analytic map ΨS,U ′ from NS,U ′ onto Z̄S,U ′ . Let ψS,U ′ be the composite of ΨS,U ′ with the
projection (x, z, u) 7→ (x, z) from T#M × U onto T#M . Then ψS,U ′ is a real-analytic
map such that ψS,U ′(NS,U ′) is the closure S̄ of S.

Let N̂S,U ′ = ψ−1
S,U ′(S). Then N̂S,U ′ is open in NS,U ′ . Let Ψ̂S,U ′ , ψ̂S,U ′ be the restric-

tions of ΨS,U ′ , ψS,U ′ to N̂S,U ′ . Then ψ̂S,U ′ , regarded as a map into S, is proper and

surjective. Moreover, the graph of ψ̂S,U ′ is a subanalytic subset of T#M ×NS,U ′ .
Let Scrit,U ′ be the set of critical values of ψ̂S,U ′ . Then Scrit,U ′ is a subanalytic subset

of T#M , which is relatively closed as a subset of S, and has dimension less than dimS.

Let S∗ be a real-analytic subanalytic stratification of T#M which is a refinement of
S̃, is compatible with all the sets Scrit,U ′ for all S ∈ Ã and all U ′ ∈ U\U(S), and consists
of strata that are analytically diffeomorphic to balls.

We then let Sk−1 be the union of

(a) the set of all strata of Sk of dimension ≥ k,

(b) the set of all strata of S∗ that are contained in a stratum of Sk of dimension < k.

Then Sk−1 is a stratification.
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We now prove that Sk−1 is (k − 1)-good. It is clear that every stratum of Sk−1 is
relatively compact, subanalytic, and a real-analytic submanifold of T#M . The strata of
dimension ≥ k are in Sk, so they are good.

Let S ∈ Sk−1 be such that dimS = k − 1. Then S ⊆ S′ for some S′ ∈ S̃ such that
dimS′ = k − 1. Therefore S′ ⊆ S′′ for some S′′ ∈ Sk. Clearly, S′′ must be (k − 1)-
dimensional, so S′′ ∈ A, and then S′ ∈ Ã. From the fact that S̃ is compatible with the
sets C(S′′, U ′) for all U ′ ∈ U it follows that for each U ′ ∈ U either

(i) (s, u) ∈ Ctan
S′′ for all s ∈ S′, u ∈ U ′,

or

(ii) for every s ∈ S′ the set {u ∈ U ′ : (s, u) ∈ Ctan
S′′ } is a proper real-analytic subset

of U ′ of positive codimension.

The set of components u′ ∈ U for which (i) holds is precisely what we called U(S′).
For U ′ 6∈ U(S′), we have constructed a manifold N̂S′,U ′ and a real-analytic map Ψ̂S′,U ′ :

NS′,U ′ → S′ such that Ψ̂S′,U ′(N̂S′,U ′) = ZS′,U ′ , and dim N̂S′,U ′ = dimZS′,U ′ < dimU ′ +

k − 1. The composite ψ̂S′,U ′ of Ψ̂S′,U ′ with the projection (s, u) 7→ s is a proper real-

analytic map from N̂S′,U ′ onto S′. Since S ∈ S∗, the set S′crit,U ′ either contains S or is
disjoint from S. The possibility that S ⊆ S′crit,U ′ is excluded because dimS = dimS′ =
k − 1. So S ∩ S′crit,U ′ = ∅.

Let N∗S,U ′ = ψ̂−1
S′,U ′(S), for U ′ ∈ U(S′). Let Ψ∗S,U ′ , ψ

∗
S,U ′ be the restrictions of Ψ̂S′,U ′ ,

ψ̂S′,U ′ to N∗S,U ′ . Then ψ∗S,U ′ is a proper real-analytic submersion from N∗S,U ′ onto S.
Since S is analytically diffeomorphic to a ball, ψ∗S,U ′ is globally analytically trivial, in
the sense that there exist a real-analytic manifold D∗S,U ′ and a Cω diffeomorphism YS,U ′

from S ×D∗S,U ′ onto N∗S,U ′ such that ψ∗S,U ′ ◦YS,U ′(s, r) = s for all s ∈ S, r ∈ D∗S,U ′ . (To
prove this, it suffices to assume that S is a ball. Put a real-analytic Riemannian metric
on N∗S,U ′ (

2). Using this metric, the vector fields Xi = ∂
∂xi

can be lifted to vector fields

X̃i on N∗S,U ′ that are orthogonal to the fibers. If s̄ = (0, . . . , 0) is the center of S, and we

let DS,U ′ = (ψ∗S,U ′)
−1(s̄), then we can define

YS,U ′((s1, . . . , sk−1), r) = r es1X̃1 . . . esk−1X̃k−1 . (19)

It is clear that this choice of D∗S,U ′ and YS,U ′ satisfies our requirements.)

We now apply the desingularization theorem again and find, for each component
U ′ ∈ U\U(S′), a pair (D∗∗S,U ′ ,WS,U ′), such that

(i) D∗∗S,U ′ is a compact manifold of the same dimension as D∗S,U ′ ,

(ii) D∗∗S,U ′ is a finite union of tori,

(iii) WS,U ′ is a real-analytic map from D∗∗S,U ′ onto D∗S,U ′ .

Finally, we define DS to be the disjoint union of the connected components of U
that belong to U(S′), and the manifolds D∗∗S,U ′ , for U ′ ∈ U\U(S′). We then define maps

ΦS : S ×DS → T#M × U by letting ΦS(s, r) = (s, r) if r ∈ U ′ ∈ U(S′), and

ΦS(s, r) = Ψ∗S,U ′

(
YS,U ′

(
(s,WS,U ′(r))

))
(20)

if r ∈ U ′ ∈ U\U(S′).

(2) Such a metric exists on an arbitrary real-analytic manifold by Grauert’s theorem, but
here the existence is trivial because our manifold is an open subset of a finite union of tori.
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Then condition (I.a) holds. To conclude our proof, we have to show that (I.b) holds,
i.e. that ν(DS) ≺ ν(U).

To see that ν(DS) ≺ ν(U), observe that DS was constructed by taking the union
of certain components of U , and replacing each remaining component U ′ by a manifold
of strictly smaller dimension(3). We know from (*) that at least one component of U
is replaced by a manifold of smaller dimension. Let ` be the largest of the dimensions
of the components of U that are so replaced. Then νj(DS) = νj(U) for j > `, and
ν`(DS) < ν`(U). So ν(DS) ≺ ν(U), and our proof is complete.

R e m a r k 6. The analogue of Theorem 9 for smooth systems is false. For simplicity,
we just explain the situation for the case when U = [−1, 1]. It is easy to show that given
any T > 0 and a completely arbitrary measurable function η : [0, T ]→ [−1, 1], there exist
a control system in R3 of the special form ẋ = f(x)+ug(x), u ∈ [−1, 1], with vector fields
f , g of class C∞, and a pair (x̄, x̂) of points in R3, such that

(a) η steers x̄ to x̂,

(b) no other control does.

The construction of f , g, x̄ and x̂ is rather simple, so we review it. Let h(t) =
∫ t

0
η(s) ds,

for t ∈ [0, T ]. Let K be the graph of h, i.e. K = {(x, y) ∈ R2 : x ∈ [0, T ], y = h(x)}. Let
ψ : R2 → R be a function of class C∞ such that ψ(x, y) ≥ 0 for all (x, y), and ψ(x, y) = 0
iff (x, y) ∈ K. We then take our system to be the one given by ẋ = 1, ẏ = u, ż = ψ(x, y),
and we let x̄ = (0, 0, 0), x̂ = (T, h(T ), 0). The proof that this works is trivial.

R e m a r k 7. Theorem 9, together with Remark 6, show that the regularity properties
of trajectories for real-analytic systems are fundamentally different from those that hold
in the smooth case. To be precise, let us define, for a given control set U , a sufficient
class of controls, for a given class Σ of systems, to be a subset U of the class M(U) of all
measurable U -valued controls defined on intervals of the form [0, T ], having the property
that, whenever Σ ∈ Σ and a control η steers a state x̄ to a state x̂, then there is a control
η′ belonging to U that steers x̄ to x̂.

What we have in mind is classes U characterized by “regularity properties.” For
example, if it was true —as is often implicitly assumed in many nonrigorous books and
papers on optimal control— that whenever two points can be connected by a trajectory
arising from a general control, then the points can also be joined by a trajectory generated
by a piecewise continuous control, then the class of piecewise continuous controls would be
sufficient. Such a simple statement is not true, however, for the class of smooth systems.
In fact, Remark 6 says that for the class of smooth systems there is no sufficient class
smaller than the class of all controls, i.e. that every conceivable pathology does occur.
Theorem 9 says that for the class of all real-analytic systems there is a proper subset of
M(U) which is sufficient, namely, the class of all controls η such that η is real-analytic
on Dom(η). This is still a very large class, but Theorem 9 at least shows that something
special happens for real-analytic systems that has no counterpart for smooth systems.

5.1. Open problems. It is not known if any of the following stronger versions of The-
orem 9 are true:

(3) The components of U are of course of pure dimension, but the manifolds that replace
them need not be. The dimension of a manifold that is not of pure dimension is the maximum
of the dimensions of its components. The dimension of a compact manifold is finite.
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(I) same statement as in Theorem 9, except that η is analytic on an open dense
subset of the interval [0, T ] whose complement has measure zero.

(II) same statement as in Theorem 9, except that η is analytic on an open dense
subset of the interval [0, T ] whose complement is countable.

The answers to these questions are unknown even for control-affine systems in R3 of
the form ẋ = f(x) + ug(x), u ∈ [−1, 1], with f , g real-analytic vector fields. It is known
that the even stronger version in which the set of points of nonanalyticity is finite can
fail, as shown by a famous example due to Fuller. (There is an entire book [15] devoted
to variations on the Fuller problem.)

R e m a r k 8. The regularity problem is often stated as a question about the regu-
larity of optimal trajectories. Suppose a trajectory-control pair (ξ, η) minimizes an

integral
∫ T

0
L(ξ(t), η(t)) dt among all trajectory-control pairs that go from x̄ to x̂. Can one

infer from this that η must have some extra regularity property? To get a good problem,
one must exclude degenerate cases where pathological optimal controls exist for trivial
reasons, e.g. because every control steering x̄ to x̂ is optimal. (For example, take any
control system, and let L ≡ 0.) The best way to do this is to reformulate the problem
as a question about “regularity of sufficient classes”: can one identify, for a given class P
of optimal control problems (i.e. of 4-tuples (Σ, L, x̄, x̂)), a class U of controls with the
property that, whenever a problem in P has a solution, then it has a solution in U? (No-
tice that in the special case when a problem in P has a unique solution it will follow that
this solution is in U, so for these problems we get a “regularity property of solutions” in
the ordinary sense.) Theorem 9 implies that, for the class of real-analytic problems (i.e.
problems where Σ and L are real-analytic), one can take U to be the class of controls
that are analytic on an open dense subset of their domain. (The proof is trivial: apply
Theorem 9 to the “augmented system” ẋ = f(x, u), ẏ = L(x, u).) Remark 6 implies that
no such class exists for smooth problems. (The control η constructed in the remark is
optimal —for any choice of L— because it is the only control that steers x̄ to x̂.)

The open questions stated above for the reachability problem are also open for optimal
control.

6. Visibility and observability. We now consider real-analytic control systems Σ =
(M,U, f) with a real-analytic “output map” h : M×U → Rm. Given a control η : [0, T ]→
U and a point x ∈M , we can define the output ρx,η corresponding to x and η to be the
function t 7→ h(ξ(t), η(t)), where ξ is the trajectory generated by η such that ξ(0) = x.
(If ξ is not defined on the whole interval [0, T ] then ρx,η(t) will not be defined for all t.)

Let us say that a control η sees(4) a state x if the output ρx,η is not almost everywhere
zero wherever it is defined.

Theorem 10. For a real-analytic system, if every real-analytic control sees every
state, then every measurable control sees every state.

P r o o f. Let Σ′ be the new system ẋ = f(x, u), ẏ = ‖h(x, u)‖2, on M × R. Suppose
η : [0, T ] → U is a measurable control that fails to see a state x. This means that
—after restricting η to a smaller interval if necessary— there exists a trajectory ξ :
[0, T ] → M generated by η, such that ξ(0) = x and h(ξ(t), η(t)) = 0 for almost every

(4) A better word would be “detects,” but the term “detectability” already has a different,
established meaning in control theory.
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t ∈ [0, T ]. Using the same control η for Σ′, with the initial condition (x, 0), we see that
(ξ(T ), 0) is reachable from (x, 0). Therefore there exists a control η′ : [0, T ′] → U which
is analytic on an open dense subset of [0, T ′] and steers (x, 0) to (ξ(T ), 0). Let ξ′ be
the corresponding trajectory, and write ξ′(t) = (ξ′0(t), y(t)). Then y(0) = y(T ′) = 0,

and y(T ′) =
∫ T ′

0
‖h(ξ′(t), η′(t))‖2 dt. So h(ξ′(t), η′(t)) = 0 for almost every t. Now pick a

nontrivial subinterval J = [a, b] of [0, T ′] such that η′ is real-analytic on J . Let x∗ = ξ′(a).
Then the control [0, b − a] 3 t 7→ η′(t + a) ∈ U is real-analytic and does not see the
state x∗.

J.-P. Gauthier and I. Kupka call a control system Σ = (M,U, f) with an output h as
before strongly observable with respect to a class C of controls if for every pair of distinct
initial states x1, x2 and every control in C the corresponding outputs are not identical.
They proved the following:

Theorem 11. If a real-analytic system is strongly observable with respect to the class
of all real-analytic controls, then it is strongly observable with respect to the class of all
measurable controls.

Let us show that the Gauthier-Kupka result follows from Theorem 10.
Consider the system ẋ1 = f(x1, u), ẋ2 = f(x2, u), on the manifold

M̃ =
(
M ×M

)
\∆, (21)

where ∆ = {(x, x) : x ∈ M}, and take the output to be h(x1, u) − h(x2, u). Then the
hypothesis of Theorem 11 says that every analytic control sees every state of the new
system, and the desired conclusion says that every measurable control sees every state.
Theorem 10 then applies and yields Theorem 11 as a corollary.

R e m a r k 9. It is easy to construct counterexamples showing that the obvious smooth
analogues of Theorems 10 and 11 are false. For a counterexample to Theorem 10 we pick
a function ϕ : [0, 1] → R which is continuous, nowhere differentiable, and such that
|ϕ(t)| ≤ 1 for all t ∈ [0, 1]. We let K be the graph of the indefinite integral of ϕ, i.e.
the set of all (x, y) ∈ R2 such that 0 ≤ x ≤ 1 and y =

∫ x
0
ϕ(t) dt. Then K is a compact

subset of R2, so there is a function ψ : R2 → R whose set of zeros is exactly K. We then
consider the system ẋ = 1, ẏ = u, u ∈ [−1, 1], with output ψ(x, y). Then a control η fails
to see a state (x̄, ȳ) iff the trajectory for η that starts at (x̄, ȳ) is entirely contained in K.
So every control of class C1 sees every state, but the continuous control ϕ does not see
the state (0, 0).

A similar, though slightly more complicated, construction gives a counterexample to
the smooth analogue of Theorem 11.
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[11] H. J. Sussmann, A strong version of the  Lojasiewicz Maximum Principle, in: Optimal
Control of Differential Equations, N. H. Pavel (ed.), Lecture Notes in Pure and Appl.
Math. 160, M. Dekker, New York, 1994, 293–309.

[12] H. J. Sussmann, A strong version of the Maximum Principle under weak hypotheses, in:
Proc. 33rd IEEE Conf. Decision and Control, Orlando, FL, 1994, IEEE Publications, 1994,
1950–1956.

[13] H. J. Sussmann, A strong maximum principle for systems of differential inclusions, in:
Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, Dec. 1996, IEEE Publications,
1996, 1809–1814.

[14] H. J. Sussmann, Multidifferential calculus: chain rule, open mapping and transversal in-
tersection theorems, to appear in: Optimal Control: Theory, Algorithms, and Applications,
W. W. Hager and P. M. Pardalos (eds.), Kluwer Academic Publishers, 1997.

[15] M. I. Zel ik in and V. F. Borisov, Theory of Chattering Control, with Applications to
Astronautics, Robotics, Economics and Engineering , Birkhäuser, Boston, 1994.


