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Introduction. Let X be a compact real algebraic variety (essentially, a compact real

algebraic set, see Section 1). Denote by Halg
k (X,Z/2) the subgroup of Hk(X,Z/2) gen-

erated by the homology classes represented by Zariski closed k-dimensional subvarieties
of X. If X is nonsingular and d = dimX, let Hk

alg(X,Z/2) be the subgroup of Hk(X,Z/2)
consisting of all the cohomology classes that are sent via the Poincaré duality isomorphism
Hk(X,Z/2)→ Hd−k(X,Z/2) into Halg

d−k(X,Z/2).

In this short paper we survey certain results concerning the groups Halg
k and Hk

alg,
and their applications. Section 1 contains the precise definitions of these groups (based
on a construction of the fundamental homology class of a compact real algebraic variety)
and theorems establishing their functorial properties and relating them to the Stiefel-
Whitney classes of algebraic vector bundles. With the exception of Theorem 1.7 (ii), all
the results (modulo minor modifications) come from the classical source [15]. In Section 2

we adopt a scheme-theoretic point of view and discuss how the groups Halg
k are related to

the theory of algebraic cycles, especially rational and algebraic equivalence. In particular,
we give a purely algebraic geometric description of Halg

k . Our main references are [15, 17,
25, 28]. In Section 3 we study how the groups Hk

alg(X,Z/2), for k = 1, 2, vary as X runs
through the class of nonsingular real algebraic varieties diffeomorphic to a given closed
C∞ manifold. We rely mostly on [9, 11, 37], but the reader may also wish to consult
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[1, 2, 3, 4, 6, 13, 14, 26, 31, 33, 35, 36] to see other results and the history of the subject
and motivation for its development. It is, in general, very hard to compute Hk

alg(X,Z/2)
for a given X. In Section 4 we explain what is known for k = 1 and X = VR, where V is a
nonsingular complex projective variety and VR is its underlying real algebraic structure.
The results are very satisfactory when V is a complex elliptic curve. Our exposition
follows [7, 12, 19, 22, 23]. We do not present computation of H1

alg for other classes of real
algebraic varieties; for this some good reference are [29, 30, 31, 35, 36]. In Section 5 we

describe various applications of the groups Halg
k and Hk

alg contained in [2, 6, 8, 9, 10, 14].
For other applications the reader may refer to [2, 4, 6, 13, 14, 26, 32].

We do not strive to present the theory in its maximal generality. For example, we use
the singular homology instead of the Borel-Moore homology and therefore have to assume
compactness in the construction of the fundamental homology class of a real algebraic
variety. Furthermore, few proofs are given since a complete exposition “from scratch”
would require too much space.

1. Main general results. Throughout this paper the term real algebraic variety
designates a locally ringed space isomorphic to a Zariski locally closed subset of Pn(R), for
some n, endowed with the Zariski topology and the sheaf of real-valued regular functions.
It is well known that every real algebraic variety is isomorphic (as a locally ringed space)
to a Zariski closed subvariety of Rn for some n [6, Proposition 3.2.10, Theorem 3.4.4]
(note that real algebraic varieties defined above are called affine real algebraic varieties
in [6]). Morphisms between real algebraic varieties will be called regular maps. Every real
algebraic variety carries also the Euclidean topology, that is, the topology induced by
the usual metric topology on R. Unless explicitly stated otherwise, all topological notions
related to real algebraic varieties will refer to the Euclidean topology.

Given a d-dimensional real algebraic variety X with structure sheaf RX , a point x
of X is said to be nonsingular if the local ring RX,x is regular of Krull dimension d; if
every point of X is nonsingular, then X is called nonsingular. The set X0 of nonsingular
points of X is Zariski open in X and dim(X\X0) < d. Furthermore, X0 is a d-dimensional
C∞ manifold and hence it follows from the excision property that

Hd(X,X\{x};Z/2) ∼= Z/2 for every x ∈ X0.

Theorem 1.1. Let X be a compact d-dimensional real algebraic variety. Then there
exists a unique homology class [X] in Hd(X,Z/2) such that for every nonsingular point x
of X the image of [X] in Hd(X,X\{x};Z/2), under the canonical homomorphism
Hd(X,Z/2) −→ Hd(X,X\{x};Z/2), is a generator of Hd(X,X\{x};Z/2).

P r o o f. The quickest proof is via resolution of singularities. By [5, 20], there exist
a compact nonsingular d-dimensional real algebraic variety X̃ and a regular map π :
X̃ −→ X such that π : X̃\π−1(X\X0) −→ X0 is a biregular isomorphism. Denote by
[X̃] the fundamental Z/2 homology class of the closed C∞ manifold X̃. Obviously, the
homology class [X] = Hd(π)([X̃]) has the required property. The uniqueness of [X] is an
easy exercise.

We call [X] the fundamental homology class of X.

Resolution of singularities is not necessary for the proof of Theorem 1.1, cf. [15] and [6]
for other two completely different proofs.



ON HOMOLOGY CLASSES 23

Given a Zariski closed k-dimensional subvariety Y of X (for X as in Theorem 1.1),
we call the element Hk(iY )([Y ]) of Hk(X,Z/2), where iY : Y ↪→ X is the inclusion map,
the homology class of X represented by Y . Denote by

Halg
k (X,Z/2)

the subgroup of Hk(X,Z/2) generated by all homology classes of X represented by Zariski
closed k-dimensional subvarieties of X and set

Halg
∗ (X,Z/2) =

⊕
k≥0H

alg
k (X,Z/2).

If X is nonsingular, we set

Hk
alg(X,Z/2) = D−1(Halg

d−k(X,Z/2)),

H∗alg(X,Z/2) =
⊕

k≥0H
k
alg(X,Z/2),

where D : H∗(X,Z/2) −→ H∗(X,Z/2) is the Poincaré duality isomorphism, D(u) =
u ∩ [X] for u in H∗(X,Z/2).

Example 1.2. It is obvious that Halg
∗ (Pn(R),Z/2) = H∗(Pn(R),Z/2). More generally,

let Gp,q(R) be the Grassmann variety of q-dimensional vector subspaces of Rp. A standard

argument involving the Schubert cycles on Gp,q(R) shows that Halg
∗ (Gp,q(R),Z/2) =

H∗(Gp,q(R),Z/2) (cf. [6, Proposition 11.3.3]).

Basic properties of Halg
k and H∗alg are stated in the following two theorems, which are

consequences of [15, Section 5].

Theorem 1.3. For every regular map f : X → Y between compact real algebraic
varieties

(i) H∗(f)(Halg
∗ (X,Z/2)) ⊆ Halg

∗ (Y,Z/2),
(ii) H∗(f)(H∗alg(Y,Z/2)) ⊆ H∗alg(X,Z/2), provided that X and Y are nonsingular.

Theorem 1.4. For every compact nonsingular real algebraic variety X the group
H∗alg(X,Z/2) is a subring of the cohomology ring H∗(X,Z/2).

We now proceed to discuss properties of the Stiefel-Whitney classes of algebraic vector
bundles.

An algebraic vector bundle on a real algebraic variety X is a triple ξ = (E, π,X), where
E is a real algebraic variety, π : E −→ X is a regular map, every fiber Ex = π−1(x)
is a real vector space for x in X, and the usual local triviality property is satisfied.
It is known that every algebraic vector bundle ξ on X is generated by global regular
sections (cf. [24] for a simple proof; the reader should keep in mind that algebraic vector
bundles considered here are often called strongly algebraic vector bundles in the literature
[2, 3, 4, 6, 13, 24]). As a consequence, if ξ is of constant rank q, then there exists a regular
map f : X −→ Gp,q(R), for some p > q, such that ξ is algebraically isomorphic to the
pullback vector bundle f∗γp,q of the universal vector bundle γp,q on Gp,q(R) [6, Theorem
12.1.7].

Theorem 1.5. If ξ is an algebraic vector bundle on a compact nonsingular real alge-
braic variety X, then the total Stiefel-Whitney class w(ξ) of ξ belongs to H∗alg(X,Z/2).

P r o o f. We may assume that ξ has constant rank q and is isomorphic to f∗γp,q for
some regular map f : X −→ Gp,q(R). Then w(ξ) = w(f∗γp,q) = H∗(f)(w(γp,q)) and
hence the conclusion follows in view of Example 1.2 and Theorem 1.3 (ii).
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A different proof, which contains additional useful information, can be found in [15].

Corollary 1.6. The total Stiefel-Whitney class w(X) of X is in H∗alg(X,Z/2) for

every compact nonsingular real algebraic variety X. In particular, H1
alg(X,Z/2) 6= 0 if X

is nonorientable as a C∞ manifold.

P r o o f. Since w(X) = w(TX), where TX is the tangent bundle to X, and since X
is orientable if and only if w1(X) = 0, the conclusions follow from Theorem 1.5.

The next result is very useful in the study of the groups Hk
alg for k = 1, 2.

Theorem 1.7. Let X be a compact nonsingular real algebraic variety and let u be an
element of Hk

alg(X,Z/2).

(i) If k = 1, then there exists a unique (up to algebraic isomorphism) algebraic line
bundle ξ on X with w1(ξ) = u.

(ii) If k = 2, then there exists an algebraic vector bundle ξ on X with w1(ξ) = 0 and
w2(ξ) = u.

A proof of (i) is given in [6, Proposition 12.4.5, Theorem 12.4.8] (cf. also [15, Sec-
tion 5]), while (ii), which is considerably harder, follows from [15, Section 5] and Grothen-
dieck’s formula [18, Example 15.3.6].

2. Rational, algebraic, and homological equivalence of real algebraic cycles.
Let V be a reduced quasiprojective scheme over R. The group Zk(V ) of algebraic k-cycles
on V is the free Abelian group generated by the prime k-cycles, that is, the closed integral
k-dimensional subschemes of V . We let Pk(V ) denote the subgroup of Zk(V ) of all k-cycles
rationally equivalent to 0 (cf. [18]). As usual, two cycles z1 and z2 in Zk(V ) are said to be
rationally equivalent if z1 − z2 is in Pk(V ). The quotient group CHk(V ) = Zk(V )/Pk(V )
is called the Chow group of V . Of course, if V is nonsingular of pure dimension d, then
Zd−1(V ) is the group of Weil divisors, Pd−1(V ) is the subgroup of principal divisors (for
divisors rational equivalence coincides with linear equivalence), and hence CHd−1(V ) is
the divisor class group of V .

Denote by V (R) the set of R-rational points of V . If V (R) is dense in V , then we regard
V (R) as a real algebraic variety with structure sheaf RV (R) = OV |V (R), where OV is the
structure sheaf of V (note that every real algebraic variety is biregularly isomorphic to
V (R) for some V as above).

Assume now that V (R) is dense in V , and V (R) is compact (in the Euclidean topol-
ogy). There exists a unique group homomorphism

clk : Zk(V ) −→ Hk(V (R),Z/2)

such that for every prime k-cycle W on V with W (R) dense in W the homology class
clk(W ) is represented by the k-dimensional subvariety W (R) of V (R), and clk(W ) = 0
for all other prime k-cycles W on V . By construction,

clk(Zk(V )) = Halg
k (V (R),Z/2).

Two cycles z1 and z2 in Zk(V ) are said to be homologically equivalent if clk(z1) = clk(z2).
It is known that

Pk(V ) ⊆ ker clk,

in other words, two rationally equivalent cycles are also homologically equivalent [15,
5.13] (this is intuitively clear since if z1 and z2 are rationally equivalent, then there exists
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an algebraic family wt of k-cycles on V , parametrized by the closed points t of PnR, such
that z1 = wt1 and z2 = wt2 for some t1 and t2 in PnR(R) = Pn(R)). The homomorphism
CHk(V ) −→ Hk(V (R),Z/2) induced by clk has nice functorial properties, which in fact
imply Theorems 1.3 and 1.4 (cf. [15] for details).

A cycle z in Zk(V ) is said to be thin if for every prime k-cycle W that appears in z
with a nonzero coefficient the set W (R) is not dense in W . By definition of clk, the group
Zth
k (V ) of all thin cycles on V satisfies

Zth
k (V ) ⊆ ker clk .

The main result of [25] is the following

Theorem 2.1. Let X be a nonsingular quasiprojective scheme over R of pure dimen-
sion d. If V (R) is dense in V and V (R) is compact, then

ker clk = Pk(V ) + Zth
k (V )

for every integer k satisfying 0 ≤ k ≤ d− 1.

Observe that Theorem 2.1 allows us to give a purely algebraic geometric description
of Halg

k (V (R),Z/2) as the quotient group Zk(V )/(Pk(V ) + Zth
k (V )).

Theorem 2.1 means precisely that an algebraic k-cycle on V is homologically equiva-
lent to 0 if an only if it is rationally equivalent to a thin cycle. For divisors this can be
strengthened as follows (cf. [17]).

Theorem 2.2. Let V be as in Theorem 2.1. A divisor on V is homologically equiv-
alent to 0 if and only if it is linearly equivalent to a divisor whose support is disjoint
from V (R).

Each of the two theorems above is a generalization of a classical result due to Witt [40].
We conclude this section with a brief discussion of algebraic equivalence. Let Qk(V )

denote the subgroup of Zk(V ) of all k-cycles algebraically equivalent to 0 (cf. [18]).
Two cycles z1 and z2 in Zk(V ) are said to be algebraically equivalent if z1 − z2 is
in Qk(V ). Roughly, this means that there exists an algebraic family wt of k-cycles on V ,
parametrized by the closed points t of an irreducible nonsingular quasiprojective scheme
T over R, such that z1 = wt1 and z2 = wt2 for some t1 and t2 in T (R). Since t1 and t2 can
be in different connected components of T (R), there is no obvious reason why z1 and z2
should be homologically equivalent and, in general, they are not. As demonstrated by
many examples in [28], clk(Qk(V )) 6= 0 can occur. The next result also comes from [28].

Theorem 2.3. Let V be as in Theorem 2.1. If dimZ/2 clk(Qk(V )) ≥ `, then

dimZ/2Hd−k(V (R),Z/2)/Halg
d−k(V (R),Z/2) ≥ ` .

3. Algebraic models of C∞ manifolds. Given a C∞ manifold M , we call a nonsin-
gular real algebraic variety X diffeomorphic to M an algebraic model of M . By Tognoli’s
theorem (cf. [39] or [6, Theorem 14.1.10]), every closed C∞ manifold M has an algebraic
model.

In this section we are concerned with algebraic models of closed C∞ manifolds with
some groups Hk

alg given in advance. We begin with an example to illustrate the occuring
phenomena (cf. [27] and [6, Theorem 11.3.6]).
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Example 3.1. Denote by Sp the unit sphere in Rp+1. Let M be a C∞ manifold which
is the connected sum of s copies of Sn×Sk, s ≥ 1, n ≥ 1, k ≥ 1 (note that, in particular,
every closed connected orientable C∞ surface of positive genus g can be obtained in this
fashion with s = g and n = k = 1). Below we construct an algebraic model X of M
satisfying Hk

alg(X,Z/2) 6= Hk(X,Z/2).

Let C = {(x1, . . . , xn+1) ∈ Rn+1 | x41 − 4x21 + 1 + x22 + . . .+ x2n+1 = 0}. Clearly, C is
a nonsingular irreducible algebraic subset of Rn+1 with two connected components C1

and C2, each of which is diffeomorphic to Sn. Set W = C ×Sk+1. Choose a compact C∞
submanifold B of Sk+1 whose boundary ∂B has s connected components, each of which
is diffeomorphic to Sk. Choose a point y in ∂B. By joining the connected components
of C1 × ∂B with “tubes” in W we can construct a compact C∞ submanifold V of W
with boundary ∂V = N diffeomorphic to M and containing C1 × {y}. Since N bounds
in W , there exists a C∞ function f : W −→ R such that 0 ∈ R is a regular value of f
and N = f−1(0). The classical Weierstrass approximation theorem allows us to find a
polynomial function p : W −→ R close to f in the C∞ topology. If p is sufficiently
close to f , then X = p−1(0) is a nonsingular algebraic subset of W and there exists
a C∞ diffeomorphism ϕ : W −→ W , close in the C∞ topology to the identity map
of W , with ϕ(N) = X (in particular, X is an algebraic model of M). Furthermore,
the C∞ submanifold D = ϕ(C1 × {y}) of X is mapped diffeomorphically onto C1 by the
canonical projection π : W −→ C. Let u be the homology class in Hn(X,Z/2) represented
by D. Then Hn(π)(u) is the homology class in Hn(C,Z/2) represented by C1, and hence
Hn(π)(u) is not in Halg

n (C,Z/2) (C is irreducible of dimension n). Thus, in view of
Theorem 1.3 (i), u is not in Halg

n (X,Z/2), which implies Hk
alg(X,Z/2) 6= Hk(X,Z/2).

The next two general results come from [9].

Theorem 3.2. Let M be a closed connected C∞ manifold of dimension at least 3 and
let G be a subgroup of H1(M,Z/2). Then the following conditions are equivalent :

(a) There exist an algebraic model X of M and a diffeomorphism ϕ : X −→M such
that H1(ϕ)(G) = H1

alg(X,Z/2);
(b) w1(M) ∈ G.

By Corollary 1.6, (a) implies (b), while the proof of (b) ⇒ (a) is rather involved.
For surfaces only a somewhat weaker result is known. Given a compact nonsingular

real algebraic surface X, we set

β(X) = dimZ/2H
1
alg(X,Z/2),

δ(X) = dimZ/2{v ∈ H1
alg(X,Z/2) | v ∪ v = 0}.

If X is connected and orientable (resp. nonorientable of odd topological genus), then
β(X) = δ(X) (resp. β(X) = δ(X)+1). For X connected nonorientable of even topological
genus one has either β(X) = δ(X) or β(X) = δ(X)+1. These statements are consequences
of elementary topological arguments and w1(X) ∈ H1

alg(X,Z/2). The next result shows
that all topologically possible cases can be realized algebraically.

Theorem 3.3.
(i) Let M be a closed connected C∞ surface of genus g and let β be an integer satis-

fying

0 ≤ β ≤ 2g for M orientable,

1 ≤ β ≤ g for M nonorientable.
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Then there exists an algebraic model Xβ of M with β(Xβ) = β.

(ii) Let M be a closed connected nonorientable C∞ surface of even genus g and let β
and δ be integers satisfying either

β = δ + 1, 2 ≤ β ≤ g

or

β = δ, 1 ≤ β ≤ g − 1.

Then there exists an algebraic model Xβ,δ of M such that β(Xβ,δ) = β and δ(Xβ,δ) = δ.

We shall now deal with H2
alg. Given a topological space M , denote by W 2(M) the

subset of H2(M,Z/2) consisting of all elements of the form w2(ξ) for some topological
real vector bundle ξ on M . One easily checks that if M is paracompact, then every
element of W 2(M) is of the form w2(ξ) with w1(ξ) = 0, and hence W 2(M) is a subgroup
of H2(M,Z/2). In [11] one finds the following

Theorem 3.4. Let M be a closed connected orientable C∞ manifold of dimension
at least 5 and let G be a subgroup of H2(M,Z/2). Then the following conditions are
equivalent :

(a) There exist an algebraic model X of M and a diffeomorphism ϕ : X −→M such
that H2(ϕ)(G) = H2

alg(X,Z/2);

(b) w2(M) ∈ G and G ⊆W 2(M).

We note that (a) ⇒ (b) follows from Corollary 1.6 and Theorem 1.7 (ii), and hence
the difficulty lies in showing (b) ⇒ (a).

Theorem 3.4 is nicely complemented by the following result of [37], in which |H|
denotes the order of a group H.

Theorem 3.5. Given an integer n ≥ 6, there exists a closed connected orientable C∞
manifold M of dimension n such that H2(M,Z/2) 6= 0 and for every algebraic model X
of M one has

|H2
alg(X,Z/2)| ≤ 1

2
|H2(X,Z/2)|.

It follows from Theorem 3.4 that W 2(M) 6= H2(M,Z/2) for M as in Theorem 3.5.

In dimensions less than 6 the situation is quite different.

Theorem 3.6. For every closed C∞ manifold M of dimension less than 6 there exists
an algebraic model X of M satisfying H∗alg(X,Z/2) = H∗(X,Z/2).

P r o o f. By Thom’s theorem [38, Theorem II.26], there exist closed C∞ submanifolds
M1, . . . ,Mk of M whose homology classes generate H∗(M,Z/2). We may assume that
the Mi are in general position. Then it follows from [2, Theorem 4] that there exist an
algebraic model X of M and a diffeomorphism h : M −→ X such that h(Mi) is a Zariski
closed nonsingular subvariety of X for i = 1, . . . , k. This implies the conclusion.

We close with a remark that no general result analogous to Theorems 3.2 and 3.4 is
known for Hk

alg, k ≥ 3.
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4. The group H1
alg of the underlying real algebraic structure of a complex

projective variety. Every complex projective variety V of dimension n can be regarded
as a real algebraic variety of dimension 2n, and as such will be denoted by VR. Assume
that V is nonsingular and irreducible. Due to [19, 22], a method for computing the group
H1

alg(VR,Z/2) is well understood. We shall now present the main results, concentrating
on comparison between the real algebraic geometry invariant

d(V ) = dimZ/2H
1
alg(VR,Z/2)

and the topological invariants

h(V ) = dimZ/2H
1(V,Z/2),

b1(V ) = the first Betti number of V = dimZ/2(H1(V,Z)⊗Z Z/2).

Recall first that to V we can attach functorially a complex Abelian variety, the Al-
banese variety Alb(V ) of V , and a regular map α : V −→ Alb(V ), the Albanese map.
For curves (dimV = 1), Alb(V ) is simply the Jacobian variety of V . The dimension of
Alb(V ) is equal to 1

2b1(V ) (it is well known that b1(V ) is even).

The following result of [19] plays an important role.

Theorem 4.1. The Albanese map α : V −→ Alb(V ) induces an isomorphism

H1(α) : H1
alg((Alb(V ))R,Z/2) −→ H1

alg(VR,Z/2).

The computation of H1
alg(VR,Z/2) is therefore reduced to the case of Abelian varieties,

which was earlier investigated in [22].

For a complex Abelian variety A the invariant d(A) can be computed in terms of a
period matrix of A (of course, b1(A) = h(A) = 2 dimA). We shall describe this method
in the case of 1-dimensional complex Abelian varieties, that is, elliptic curves.

Let Eτ = C/(Z + Zτ) be a complex elliptic curve, τ ∈ C\R. We shall express d(Eτ )
as an explicitly computable function of τ . Let Sτ and Tτ be the subgroups of Z2 defined
as follows:

Sτ =
{

(m,n) ∈ Z2 | m+ n|τ |2 ∈ 2 Re τZ
}
,

Tτ = Sτ ∩ 2Z2.

Theorem 4.2. With the notation as above, d(Eτ ) = dimZ/2 Sτ/Tτ .

This result is a consequence of [19, 22]. It allows us to deduce several interesting
corollaries (cf. [12, 22]).

Example 4.3.
(i) If τ = α

√
−1, where α ∈ R\{0}, then

d(Eτ ) =

{
1 if α2 ∈ Q
0 if α2 6∈ Q.

(ii) If τ = 1
2 (1 +

√
−d), where d is a positive integer satisfying d ≡ 3 (mod 4), then

d(Eτ ) = 2.

Recall that a complex elliptic curve E is said to have complex multiplication if the
ring End(E) of endomorphisms of E is not isomorphic to Z. In such a case End(E) ∼=
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Z+ fO(−d), where d and f are positive integers, d is square free, and O(−d) is the ring
of integers in the quadratic field Q(

√
−d). The integer

δ(E) =

{
−f2d if d ≡ 3 (mod 4)
−4f2d if d 6≡ 3 (mod 4)

is called the discriminant of E.

Corollary 4.4. Let E be a complex elliptic curve with complex multiplication. Then

d(E) =

{
1 if δ(E) is even
2 if δ(E) is odd.

P r o o f. Let F = C/(Z + τZ), where τ = 1
2

√
δ(E) if δ(E) is even, and

τ = 1
2

(
1 +

√
δ(E)

)
if δ(E) is odd. By Example 4.3 (i), one has d(F ) = 1 if δ(E) is

even. If δ(E) is odd, then −δ(E) ≡ 3 (mod 4) and hence d(F ) = 2 in view of Example
4.3 (ii). Since δ(E) = δ(F ), according to [23], the real algebraic varieties ER and FR are
isomorphic. The corollary follows.

A more precise description of the complex elliptic curves E satisfying H1
alg(ER,Z/2) =

H1(ER,Z/2) (equivalently, d(E) = 2) is provided by the next statement.

Theorem 4.5. Given a complex elliptic curve E, the following conditions are equiv-
alent :

(a) H1
alg(ER,Z/2) = H1(ER,Z/2);

(b) E has complex multiplication and δ(E) is odd ;
(c) ER is biregularly isomorphic to the product of real algebraic curves.

The implication (a)⇒ (b) follows from Theorem 4.2 and Corollary 4.4, while (b)⇒ (c)
is proved in [7]. The implication (c) ⇒ (a) is trivial.

Some results on elliptic curves generalize to higher dimensional complex Abelian va-
rieties. First recall that a simple complex Abelian variety A is said to have complex
multiplication if the rank of the ring End(A) is equal to 2 dimA. An arbitrary complex
Abelian variety is said to have complex multiplication if it is isogenous to the product of
simple Abelian varieties with complex multiplication.

The next result comes from [19] and is partially based on [22].

Theorem 4.6. If A is a complex Abelian variety satisfying

H1
alg(AR,Z/2) = H1(AR,Z/2),

then A has complex multiplication.

In particular, the set of isomorphism classes of complex Abelian varieties A with
H1

alg(AR,Z/2) = H1(AR,Z/2) is countable.
Let us return to Theorem 4.1. Observe that the homomorphism

H1(α) : H1(Alb(V ),Z/2) −→ H1(V,Z/2),

induced by the Albanese map α : V −→ Alb(V ), need not be surjective. In fact, it is
surjective if and only if H2(V,Z) has no 2-torsion. Therefore the topology of V imposes
strong restrictions on the existence of homology classes in codimension 1 represented by
real algebraic hypersurfaces of VR. Theorem 4.1 implies the next two corollaries, in which
V is a nonsingular irreducible complex projective variety.
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Corollary 4.7. The group H1
alg(VR,Z/2) is contained in the image of the canonical

monomorphism

H1(V,Z)⊗Z Z/2 −→ H1(V,Z/2).

In particular, d(V ) ≤ b1(V ).

Corollary 4.8. If the group H2(V,Z) has 2-torsion, then

H1
alg(VR,Z/2) 6= H1(VR,Z/2).

As a special case one obtains the following

Example 4.9. Each complex Enriques surface F has b1(F ) = 0 and hence
H1

alg(FR,Z/2) = 0. On the other hand, H1(F,Z/2) = Z/2.

More generally, a construction of complex algebraic varieties V with prescribed
dimV ≥ 2, d(V ), b1(V ), and h(V ) is given in [19].

Theorem 4.10. Given nonnegative integers n, a, g, h, n ≥ 2, the following condi-
tions are equivalent :

(a) There exists a nonsingular irreducible complex projective variety V such that
dimV = n, d(V ) = a, b1(V ) = 2g, and h(V ) = h;

(b) 0 ≤ a ≤ 2g ≤ h.

S k e t c h o f p r o o f . By Corollary 4.7, (a) implies (b).

Assume that (b) holds. We know that there exists a complex elliptic curve Ej with
d(Ej) = j for j = 0, 1, 2 (Example 4.3). Let F be a complex Enriques surface (cf.
Example 4.9). By taking the product of an appropriate number of E0, E1, E2, and F , we
can construct V ′ satisfying d(V ′) = a, b1(V ′) = 2g, and h(V ′) = h. If dimV ′ ≤ n, then
(a) holds for V = V ′×P`(C), where ` = n− dimV ′. If dimV ′ > n, then V satisfying (a)
can be obtained by embedding V ′ in PN (C) and intersecting it with dimV ′−n hyperplanes
(this can be deduced from the Lefschetz theorem on hyperplane sections).

No result analogous to Theorem 4.10 is known for complex curves. We can only
formulate the following

Conjecture 4.11. Let g and a be integers, 0 ≤ a ≤ 2g. Then there exists a nonsin-
gular irreducible complex projective curve V of genus g such that d(V ) = a (of course,
b1(V ) = h(V ) = 2g).

A discussion of some special cases of the conjecture is given in [12].

Observe that the equality H1
alg(VR,Z/2) = H1(VR,Z/2) imposes very severe restric-

tions on the curve V . Indeed, by Theorems 4.1 and 4.6, the Jacobian variety of each such
curve V has complex multiplication. It follows from Torelli’s theorem that the set Mg

CM

of isomorphism classes of nonsingular irreducible complex projective curves of genus g
whose Jacobians have complex multiplication is at most countable. Let us mention that
it is an open problem whether or not the set Mg

CM is infinite for all large g.

In particular, we obtain the following

Corollary 4.12. Up to isomorphism, there exist at most countably many nonsin-
gular irreducible complex projective curves V satisfying H1

alg(VR,Z/2) = H1(VR,Z/2).
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5. Applications. In this section we briefly describe applications of the groups Hk
alg

to five different types of problems.

A. Regular maps into the unit circle
Let X be a compact nonsingular real algebraic variety and let R(X,S1) denote the set

of all regular maps from X into the unit circle S1 = {(x, y) ∈ R2 | x2+y2 = 1}. We regard
R(X,S1) as a subset of the space C∞(X,S1) of all C∞ maps from X into S1, endowed
with the C∞ topology. The closure R(X,S1) of R(X,S1) in C∞(X,S1) is described in
the following result (cf. [8]).

Theorem 5.1. Given a C∞ map f in C∞(X,S1), the following conditions are equiv-
alent :

(a) f ∈ R(X,S1);
(b) f is homotopic to a regular map from X into S1;
(c) H1(f)(κ) ∈ H1

alg(X,Z/2), where κ is the generator of H1(S1,Z/2) ∼= Z/2.

It is convenient to consider S1 as a multiplicative group, S1 = {z ∈ C | |z| = 1},
which also allows us to regard C∞(X,S1) as a group. Obviously, R(X,S1) and R(X,S1)
are subgroups of C∞(X,S1). The quotient group

Γ(X) = C∞(X,S1)/R(X,S1)

measures the size ofR(X,S1) in C∞(X,S1); in particular,R(X,S1) is dense in C∞(X,S1)
if and only if Γ(X) = 0. After introducing some notation, we describe Γ(X) in terms of
H1

alg(X,Z/2) in the next result (cf. [9]).
Given a topological space M , we let

rM : H1(M,Z) −→ H1(M,Z/2)

denote the reduction modulo 2 homomorphism and set

A(M) = rM (H1(M,Z)).

Of course, A(M) is canonically isomorphic to H1(M,Z)⊗Z Z/2.

Theorem 5.2. With the notation as above, Γ(X) is canonically isomorphic to

A(X)/(A(X) ∩H1
alg(X,Z/2)).

P r o o f. Let λ be a generator of H1(S1,Z) ∼= Z and let Φ : C∞(X,S1) −→ H1(X,Z)
be the homomorphism defined by Φ(f) = H1(f)(λ) for all f in C∞(X,S1). The composite
homomorphism Ψ = rX ◦ Φ : C∞(X,S1) −→ H1(X,Z/2) does not depend on the choice
of λ. Furthermore, since Φ is surjective (cf. [21]), it follows that

Ψ(C∞(X,S1)) = A(X).

On the other hand, by Theorem 5.1,

Ψ−1(H1
alg(X,Z/2)) = R(X,S1).

Hence Ψ induces an isomorphism from Γ(X) onto A(X)/(A(X) ∩H1
alg(X,Z/2)).

Theorems 5.2, 3.2, and 3.3 imply the following (cf. [9])

Corollary 5.3. Let M be a closed connected C∞ manifold of dimension at least 2
and let

α(M) =

{
rankH1(M,Z)− 1 if M is nonorientable and w1(M) ∈ A(M)
rankH1(M,Z) otherwise.
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Then

(i) For every algebraic model X of M one has Γ(X) ∼= (Z/2)s for some integer s
satisfying 0 ≤ s ≤ α(M).

(ii) For each integer s satisfying 0 ≤ s ≤ α(M) there exists an algebraic model Xs

of M with Γ(Xs) ∼= (Z/2)s.

Using the invariant α(M), one immediately obtains the next two corollaries.

Corollary 5.4. Given a closed connected orientable C∞ manifold M , the following
conditions are equivalent :

(a) R(X,S1) is dense in C∞(X,S1) for every algebraic model X of M ;

(b) The first Betti number of M is equal to 0 or dimM = 1.

Corollary 5.5. Given a closed connected C∞ surface M , the following conditions
are equivalent :

(a) R(X,S1) is dense in C∞(X,S1) for every algebraic model X of M ;

(b) M is homeomorphic to S2 (2-sphere) or P2(R) (real projective plane) or the Klein
bottle.

B. Hypersurfaces in real algebraic varieties

The following result is contained in many papers, cf. for example [2, 6, 14].

Theorem 5.6. Let X be a compact nonsingular real algebraic variety of dimension d
and let M be a closed C∞ submanifold of X of dimension d−1. Assume that the homology
class represented by M belongs to Halg

d−1(X,Z/2). Then there exists a C∞ diffeomorphism
σ : X −→ X, arbitrarily close in the C∞ topology to the identity map of X, such that
σ(M) is a Zariski closed nonsingular subvariety of X.

C. Algebraicity of real analytic functions

Here we cite only one result of [14], which can be stated without introducing any new
definitions.

Theorem 5.7. Let X be a compact connected nonsingular real algebraic surface.
Then the following conditions are equivalent :

(a) Every real analytic function f : X −→ R is analytically equivalent to a regular
function (that is, there exist a regular function g : X −→ R and an analytic diffeomor-
phism σ : X −→ X such that g = f ◦ σ);

(b) H1
alg(X,Z/2) = H1(X,Z/2).

The group H1
alg intervenes also in the investigation of the problem of algebraicity of

real analytic sets (cf. [14]).

D. Factoriality of the ring of regular functions

The easiest to state is the following (cf. [6, Proposition 12.4.12])

Theorem 5.8. Let X be a compact nonsingular irreducible real algebraic variety.
The ring R(X) of regular functions on X is a unique factorization domain if and only if
H1

alg(X,Z/2) = 0.
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Recall that one associates with each Krull domain A the divisor class group Cl(A) (cf.
[16, Chapter 7, §1]). The main property of Cl(A) is that A is a unique factorization domain
if and only if Cl(A) = 0. One shows that for X as above, Cl(R(X)) is isomorphic to the
Picard group Pic(R(X)) of all invertible R(X)-modules, which in turn is isomorphic to
H1

alg(X,Z/2) [6, Sections 12.2–12.4].
By combining Theorem 5.8 and Theorems 3.2 and 3.3, we obtain the following

Corollary 5.9. Let M be a closed connected C∞ manifold of dimension at least 2.
Then the following conditions are equivalent :

(a) There exists an algebraic model X of M such that R(X) is a unique factorization
domain;

(b) M is orientable.

E. K-theory of real algebraic surfaces and threefolds
Let X be a real algebraic variety. It is known that the Grothendieck group K0(R(X))

of finitely generated projective R(X)-modules is canonically isomorphic to the
Grothendieck group of algebraic vector bundles on X [6, Theorem 12.1.7].

Under some restrictions on X, the group K0(R(X)) is computed in [10]. We cite this
result below.

Theorem 5.10. Let X be a compact nonsingular real algebraic variety of dimension
at most 3. Then

K0(R(X)) ∼= Zβ0(X) ⊕ (Z/4)β1(X)−δ(X) ⊕ (Z/2)β1(X)+β2(X)−δ(X),

where
βk(X) = dimZ/2H

k
alg(X,Z/2),

δ(X) = dimZ/2{v ∈ H1
alg(X,Z/2) | v ∪ v = 0}.

Probably it is now illuminating to have another look at Theorems 3.2 and 3.3.
Let us mention that, for X as in Theorem 5.10, the Grothendieck group KSp(R(X))

and the Witt group WSp(R(X)) of symplectic spaces over R(X) are also computed in
terms of Hk

alg in [10].
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