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Université de Grenoble I, Institut Fourier, UMR 5582, UFR de Mathématiques
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À S.  Lojasiewicz , en témoignage d’une longue amitié

This note answers a question posed to me by B. Jakubczyk.

Theorem. Given m holomorphic functions f1, . . . , fm at 0 of 2n + 1 variables

(x, y1, . . . , yn, z1, . . . , zn), suppose that the formal power series yi =
∑
j≥2 yi,jx

j satisfy

fj(x, yi, y
′
i) = 0. Then, given a direction θ at 0 ∈ C, there exist ε > 0 and y = (y1, . . . , yn),

holomorphic in (arg x− θ) < ε, 0 < |x| < ε, having y as asymptotic expansion at 0, and

satisfying fj(x, yi(x), y′i(x)) = 0.

Note that here m and n are arbitrary.

P r o o f. We can replace the equations fj = 0 by d
dxfj = 0 (since fj(0) = 0). Adding

the y′i as new unknown functions and changing a little bit the notation, we are reduced

to the quasi-linear case:∑
aij(x, y)y′j = bi(x, y) (1 ≤ i ≤ m; 1 ≤ j ≤ n),

aij and bi holomorphic at 0 ∈ Cn+1.

Let p be the kernel of the map C{x, y1, . . . , yn}
ϕ→ C[[x]] given by ϕ(f) = f(x, y(x)).

Obviously, p is a prime ideal.

Case 1. Suppose p = 0, i.e., ϕ is injective. Let r be the rank of the matrix
(
aij(x, y)

)
in

the germs at 0 ∈ Cn+1, and suppose for instance det(aij(x, y)) 6= 0, 1 ≤ i ≤ r, 1 ≤ j ≤ r.
I claim that we can forget the m − r last equations; to prove this, it is sufficient to

prove the following result: if we have ci(x, y) holomorphic at 0, satisfying
∑
i ciaij = 0

(1 ≤ j ≤ n), then
∑
cibi = 0. But this is true, since we have a formal solution of the

system, and ϕ is injective.
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To solve the r first equations, we choose first yr+1, . . . , yn arbitrarily, by the classical

theorem of Borel-Ritt. Then we are reduced to the “determined” case, treated by Ramis-

Sibuya [R-S].

Actually they state their results in the case xr+1y′ = f(x, y); but the reduction to

this case is easy: one has just to substitute y = a+ x`ỹ, a polynomial in x, `� 0; cf. for

instance [M].

General case. One reduces it to the preceding case by desingularization. Let Y ⊂
(Cn+1, 0) be the germ defined by p; according to Hironaka, there is a proper map Z

π→
(Cn+1, 0), with Z \π−1(Y ) ' (Cn+1 \Y, 0), such that the strict transform Ỹ of Y is non-

singular; and (Z, π) is built-up by a sequence of blowing-up of smooth center. One verifies

that the formal curve x 7→ (x, y(x)) can be lifted at each step of the desingularization,

and is finally lifted to a formal curve x 7→ ỹ(x) with values in Ỹ .

Let p be the projection Ỹ → C composed of Ỹ → Cn+1, and of the projection

(x, y) 7→ x : Cn+1 → C; the composition C ỹ→ Ỹ
p→ C is the identity; therefore p is

smooth at ỹ(0), and p (or “x”) can be chosen as one of the local coordinates at ỹ(0) ∈ Ỹ .

Now, we add to our equations a system of generators of p : fk(x, y1, . . . , yn) = 0. If

we denote by ωi the form
∑
aij(x, y)dyj − bi(x, y)dx, and by ωi its restriction to Y (i.e.

the class of ωi modulo p and dp), our system is equivalent to ωi = 0 (1 ≤ i ≤ m). As in

Case 1, one sees that one can restrict oneself to the case where the ωi are independent.

Now, by desingularization, we are reduced to the case where Y is non-singular, and we

end as in Case 1.

I also mention, without giving details, that one can eliminate the use of desingular-

ization by a more careful study of the situation.
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