SINGULARITIES SYMPOSIUM — LOJASIEWICZ 70 BANACH CENTER PUBLICATIONS, VOLUME 44 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998

ON SECTORIAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

BERNARD MALGRANGE

Université de Grenoble I, Institut Fourier, UMR 5582, UFR de Mathématiques B.P. 74, 38402 St. Martin d'Hères Cedex, France E-mail: malgrang@fourier.ujf-grenoble.fr

À S. Lojasiewicz, en témoignage d'une longue amitié

This note answers a question posed to me by B. Jakubczyk.

THEOREM. Given *m* holomorphic functions f_1, \ldots, f_m at 0 of 2n + 1 variables $(x, y_1, \ldots, y_n, z_1, \ldots, z_n)$, suppose that the formal power series $\overline{y}_i = \sum_{j \ge 2} \overline{y}_{i,j} x^j$ satisfy $f_j(x, \overline{y}_i, \overline{y}'_i) = 0$. Then, given a direction θ at $0 \in \mathbb{C}$, there exist $\varepsilon > 0$ and $y = (y_1, \ldots, y_n)$, holomorphic in $(\arg x - \theta) < \varepsilon, 0 < |x| < \varepsilon$, having \overline{y} as asymptotic expansion at 0, and satisfying $f_j(x, y_i(x), y'_i(x)) = 0$.

Note that here m and n are arbitrary.

Proof. We can replace the equations $f_j = 0$ by $\frac{d}{dx}f_j = 0$ (since $f_j(0) = 0$). Adding the y'_i as new unknown functions and changing a little bit the notation, we are reduced to the quasi-linear case:

$$\sum a_{ij}(x,y)y'_j = b_i(x,y) \qquad (1 \le i \le m; \ 1 \le j \le n),$$

 a_{ij} and b_i holomorphic at $0 \in \mathbb{C}^{n+1}$.

Let \mathfrak{p} be the kernel of the map $\mathbb{C}\{x, y_1, \dots, y_n\} \xrightarrow{\varphi} \mathbb{C}[[x]]$ given by $\varphi(f) = f(x, \overline{y}(x))$. Obviously, \mathfrak{p} is a prime ideal.

Case 1. Suppose $\mathfrak{p} = 0$, i.e., φ is injective. Let r be the rank of the matrix $(a_{ij}(x, y))$ in the germs at $0 \in \mathbb{C}^{n+1}$, and suppose for instance $\det(a_{ij}(x, y)) \neq 0, 1 \leq i \leq r, 1 \leq j \leq r$. I claim that we can forget the m - r last equations; to prove this, it is sufficient to prove the following result: if we have $c_i(x, y)$ holomorphic at 0, satisfying $\sum_i c_i a_{ij} = 0$ $(1 \leq j \leq n)$, then $\sum c_i b_i = 0$. But this is true, since we have a formal solution of the system, and φ is injective.

Received by the editors: February 21, 1998.

The paper is in final form and no version of it will be published elsewhere.

^[173]

To solve the r first equations, we choose first y_{r+1}, \ldots, y_n arbitrarily, by the classical theorem of Borel-Ritt. Then we are reduced to the "determined" case, treated by Ramis-Sibuya [R-S].

Actually they state their results in the case $x^{r+1}y' = f(x, y)$; but the reduction to this case is easy: one has just to substitute $y = a + x^{\ell} \tilde{y}$, a polynomial in $x, \ell \gg 0$; cf. for instance [M].

General case. One reduces it to the preceding case by desingularization. Let $Y \subset (\mathbb{C}^{n+1}, 0)$ be the germ defined by \mathfrak{p} ; according to Hironaka, there is a proper map $Z \xrightarrow{\pi} (\mathbb{C}^{n+1}, 0)$, with $Z \setminus \pi^{-1}(Y) \simeq (\mathbb{C}^{n+1} \setminus Y, 0)$, such that the strict transform \widetilde{Y} of Y is non-singular; and (Z, π) is built-up by a sequence of blowing-up of smooth center. One verifies that the formal curve $x \mapsto (x, \overline{y}(x))$ can be lifted at each step of the desingularization, and is finally lifted to a formal curve $x \mapsto \widetilde{y}(x)$ with values in \widetilde{Y} .

Let p be the projection $\widetilde{Y} \to \mathbb{C}$ composed of $\widetilde{Y} \to \mathbb{C}^{n+1}$, and of the projection $(x, y) \mapsto x : \mathbb{C}^{n+1} \to \mathbb{C}$; the composition $\mathbb{C} \xrightarrow{\widetilde{y}} \widetilde{Y} \xrightarrow{p} \mathbb{C}$ is the identity; therefore p is smooth at $\widetilde{y}(0)$, and p (or "x") can be chosen as one of the local coordinates at $\widetilde{y}(0) \in \widetilde{Y}$.

Now, we add to our equations a system of generators of \mathfrak{p} : $f_k(x, y_1, \ldots, y_n) = 0$. If we denote by ω_i the form $\sum a_{ij}(x, y)dy_j - b_i(x, y)dx$, and by $\overline{\omega}_i$ its restriction to Y (i.e. the class of ω_i modulo \mathfrak{p} and $d\mathfrak{p}$), our system is equivalent to $\overline{\omega}_i = 0$ ($1 \le i \le m$). As in Case 1, one sees that one can restrict oneself to the case where the $\overline{\omega}_i$ are independent. Now, by desingularization, we are reduced to the case where Y is non-singular, and we end as in Case 1.

I also mention, without giving details, that one can eliminate the use of desingularization by a more careful study of the situation.

References

- [M] B. Malgrange, Sur les points singuliers des équations différentielles, Enseign. Math.
 (2) 20 (1974), 147–176.
- [R-S] J.-P. Ramis, Y. Sibuya, Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymptotic Anal. 2 (1989), 39–94.