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1. Gaussian random band matrices. Let gkij , 1 ≤ i, j ≤ n, k = 1, . . . , r be inde-

pendent centered complex Gaussian random variables of covariance 1
n (1 + δij) (i.e., the

expectation E(gkijg
k
ij) = 1

n (1 + δij)), such that gkij = gkji. Let for each i, j, k, σn(i, j; k) be

a positive real number, such that σn(i, j; k) = σn(j, i; k). Consider the r-tuple of n × n
matrices Gn(k) = (σn(i, j; k)gkij)ij , k = 1, . . . , r. The family {Gn(k)}k is called a family of

independent Gaussian random band matrices. As an example, assume that σn(i, j; k) = 1

if |i − j| < cn, and is zero otherwise. In this case all entries of Gn(k) are zero outside

a band around the diagonal; this is the reason such matrices are called band matrices.

In the case that σn(i, j; k) is identically 1 one recovers the so-called Gaussian Unitary

Ensemble, see e.g. [9].

1.1. Let Rn = ∗-Alg(gkij , 1 ≤ i, j ≤ n, 1 ≤ k ≤ r) be the ∗-algebra generated by the

entries of Gn(k). Let An = Rn ⊗Mn×n be n × n matrices over Rn; hence Gn(k) ∈ An.

Note that 1⊗Mn×n ⊂ An as matrices with scalar entries. Let ∆n ⊂ 1⊗Mn×n ⊂ An be

the algebra of diagonal matrices with complex entries. The map En taking expectation of

each diagonal entry of a matrix in An and replacing off-diagonal entries by zeros defines

a conditional expectation from An onto ∆n, i.e, En satisfies En(dxd′) = dE(x)d′ for

all d, d′ ∈ ∆n, x ∈ An, and En(d) = d, d ∈ ∆n. Composing En with the normalized

trace τn = 1
nTr gives a linear functional φn on the non-commutative algebra An, with

φn(1) = 1. Therefore, (An, φn) is a non-commutative probability space [26]; and elements

of An (e.g., the matrices Gn(k)) are non-commutative random variables.
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1.2. Using φn one can define the joint distribution µf1,...,fk of any k-tuple of elements

in An. The joint distribution µf1,...,fk is a linear functional from the space C[X1, . . . , Xk]

of polynomials in k non-commutative indeterminants with coefficients in C, defined on

monomials by

µf1,...,fk(Xi1 . . . Xin) = φ(fi1 . . . fin).

Since the elements Gn(k) are self-adjoint, the functionals µGn(k) can be extended from

complex polynomials in one variable to functions on the real line, thus defining probability

measures. The measure µGn(k) is called the distribution of Gn(k).

1.3. Let ∆n ⊂ 1⊗Mn×n ⊂ An be the algebra of diagonal complex-valued matrices,

and let dn = d∗n ∈ ∆n be a choice of a diagonal matrix. For a variety of applications, one

is interested in the asymptotics as n→∞ of the measures µdn+Gn(1), under assumptions

that dn converge in some sense. For example, the random matrix Hn = dn + Gn(1)

can be used as a Hamiltonian operator, where dn models a “deterministic” interaction,

and Gn(k) models a “random” interaction. Since the scales of deterministic and random

interactions may be different, it may be necessary to arrange for the off-diagonal entries

of Gn(1) to decay sufficiently fast; this can be accomplished by the appropriate choice of

σn(i, j; 1). For a sample physical application, see [1].

2. Asymptotic scalar-valued freeness. The limits of the distribution of Hn have

been computed by ad hoc methods before (see e.g. [5, 4, 10, 3, 1]).

However, in the case σ = 1 identically, Voiculescu has connected asymptotic behavior

of matrices dn, Gn(1), . . . , Gn(r) with his free probability theory, and has given analytical

methods for computation of the spectrum of Hn (see [26, 21, 25, 24, 22, 23]). Recall that

if (A, φ) is a non-commutative probability space and Ai, i ∈ I are unital subalgebras of

A, then the algebras Ai are free, if

φ(x1 . . . xp) = 0,

whenever xj ∈ Ai(j), φ(xj) = 0 for all j, and i(j) 6= i(j + 1), j = 1, . . . , p − 1. Elements

f1, . . . , fn of A are free, if the algebras Alg(f1), . . . ,Alg(fn) are free.

2.1. Theorem (Voiculescu, [24]). Let Gn(k), dn be as before, and assume σn(i, j; k)

= 1, supn ‖dn‖ < ∞, and µdn converges weakly as n → ∞. Then there exists a non-

commutative probability space (A, φ), and elements d,G(1), . . . , G(r) ∈ A, such that in

the weak topology ,

lim
n→∞

µdn,Gn(1),...,Gn(r) = µd,G(1),...,G(r).

Furthermore, the family (d,G(1), . . . , G(r)) satisfies:

(1 ) d,G(1), . . . , G(r) are free,

(2 ) µG(k) is the linear functional of integration against the semicircular measure 1
π (1−

t2)1/2dt.

So in the case σ = 1 identically, the problem of computation of limn µHn becomes the

problem of computing µd+Z , where µd = limn µdn , µZ is the semicircular measure, and

d and Z are free. By analogy with the classical case, Voiculescu defined µd+Z to be the

free additive convolution of µd and µZ . The computation of this convolution, and so of
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µd+Z , can be done using the analytical machinery of the R-transform; see below and also

[26, 22].

2.2. It is natural to ask whether a similar theorem holds for general σ. The answer

is easily seen to be no: observe that Gn(k) satisfy

µ 1√
p
(Gn(1)+...+Gn(p)) = µGn(1),

since a sum of independent Gaussian random variables is Gaussian. Hence if in the limit

n→∞, Gn(1), . . . , Gn(p) become free, and have limit distributions µG(1),...,G(p), then one

also has µ 1√
p
(G(1)+...+G(p)) = µG(1). But by the free central limit theorem of Voiculescu

(see [26, 21]),

lim
p→∞

µ 1√
p
(G(1)+...+G(p))

is semicircular, so that µG(1) is semicircular as well. On the other hand, it is clear that

for certain choices of σ, Gn(k) will have a limit distribution that is not semicircular;

for example, take σn(i, j; k) = 1 if 1 ≤ i, j ≤ n/2, and zero otherwise. Then the limit

distribution of µGn(1) as n → ∞ is 1
2π (1 − t2)1/2dt + 1

2δ0, where δ0 is a point mass at

zero.

3. Asymptotic operator-valued freeness. It turns out that one can still recover

an analog of Theorem 2.1 about asymptotic freeness of random matrices Gn(k), at the

price of using operator-valued free probability theory.

3.1. A triple (B ⊂ A,E : A → B) is called a non-commutative B-valued probability

space ([26]), if B ⊂ A is a unital subalgebra, and E is a conditional expectation, i.e.,

E(bab′) = bE(a)b′, for all b, b′ ∈ B, a ∈ A, and E(b) = b, for all b ∈ B. We sometimes

require that A and B are C∗-algebras, and E : A→ B is positive (i.e., E(x∗x) ≥ 0 for all

x ∈ A); in this case we call the B-probability space A a C∗-B-probability space. Note that

a non-commutative C-valued probability space is just a non-commutative probability

space. More generally, if (B ⊂ M,E : M → B) is a B-valued probability space and

φ : B → C is a unital linear functional, then (M,φ◦E) is a non-commutative probability

space.

3.2. Elements of a non-commutative B-valued probability space are called B-valued

random variables. Given a family f1, . . . , fk of B-valued random variables, its joint B-

distribution µf1,...,fk;B is defined as a B-linear map from polynomials in k non-commuting

indeterminates with coefficients in B, B[X1, . . . , Xn], into B, given by

µf1,...,fk;B(b0Xi1b1 . . . Xinbn) = E(b0fi1b1 . . . finbn).

In particular, the maps b 7→ E(fibfj) are called the covariance of the family f1, . . . , fk.

3.3. Let the algebra of random matrices An, the algebra of diagonal matrices with

scalar entries ∆n, and En : An → ∆n be as in §1.1. Instead of viewing An as a non-

commutative scalar-valued probability space, we can view the triple (∆n ⊂ An, En :

An → ∆n) as a ∆n-valued non-commutative probability space, and elements of An as ∆n-

valued random variables. Our aim is to compute the (scalar-valued) limit distribution of

the family (dn, Gn(1), . . . , Gn(r)). But this information is encoded in the ∆n-distribution
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of Gn(1), . . . , Gn(r). Indeed, knowledge of the joint distribution of (dn, Gn(1), . . . , Gn(r))

is equivalent to knowing the numbers

φn(dj1n Gn(k1)dj1n Gn(k2) . . . Gn(kp)d
jp+1
n ). (3.1)

But φn(x) = τn(En(x)), so we know the number in (3.1) if we know the value of

En(dj1n Gn(k1)dj1n Gn(k2) . . . Gn(kp)d
jp+1
n ),

i.e., if we know the ∆n-distribution of the family Gn(1), . . . , Gn(r).

3.4. Given a B-valued probability space (B ⊂ A,E : A→ B), a family of subalgebras

B ⊂ Ai ⊂ A is said to be free with amalgamation over B ([26]), if

E(x1 . . . xp) = 0,

whenever xj ∈ Ai(j), E(xj) = 0, for all j, and i(j) 6= i(j + 1), j = 1, . . . , p− 1. A family

(f1, . . . , fr) of B-valued random variables in A are free with amalgamation over B, if the

family of subalgebras Alg(fi, B), i = 1, . . . , r, are free with amalgamation over B.

3.5. In order to describe the limit distribution of the family Gn(k) we need to intro-

duce the operator valued semicircular family of Speicher ([20]). Let B be a C∗-algebra, and

ηij : B → B, 1 ≤ i, j ≤ r be linear maps, such that the associated map η : B → B⊗Mr×r
is completely positive. Then there exists a Hilbert (B,B)-bimodule H (i.e., a (B,B)-

bimodule endowed with a B-valued inner product 〈·, ·〉, and which is complete in the

resulting norm, see e.g. [2] for details) and vectors ξi ∈ H, 1 ≤ i ≤ r, satisfying

〈ξi, bξj〉 = ηij(b), b ∈ B.
Consider the full Fock space

FB(H) = B ⊕H ⊕ (H ⊗B H)⊕ . . . .
Here ⊗B refers to the relative tensor product over B. Consider the free creation operators

Li : F (H) 3 ξ 7→ ξi ⊗ ξ ∈ F (H), 1 ≤ i ≤ r
(cf. [11]). Then one has the relation

L∗i bLj = ηij(b), b ∈ B, (3.2)

where b ∈ B is viewed as an operator acting on the left on FB(H). Let E : C∗(B,Li :

1 ≤ i ≤ r) → B be the map defined by E(b) = b, b ∈ B, and E(W ) = 0 if W is

a word in elements from B and Li, L
∗
j , 1 ≤ i, j ≤ r, which cannot be reduced to an

element of B using the relation (3.2). Let P be the orthogonal projection from F (H)

onto B ⊂ F (H). Then P commutes with the left action of B and E(x)P = PxP for all

x ∈ C∗(B,Li : 1 ≤ i ≤ r). From this it follows that E is well-defined and is a conditional

expectation (and is in fact positive, E(x∗x) ≥ 0). Let Zi = Li + L∗i . The family of

B-valued random variables Zi in the B-probability space (B ⊂ C∗(B,Zi : 1 ≤ i ≤ r), E)

is called a B-valued semicircular family of covariance η. The name comes from the fact

that the covariance (see §3.2) E(ZibZj) = ηij(b) for b ∈ B.

3.6. Theorem (Speicher, [20]). Let Zi be a B-semicircular family of covariance η.

Then Zi are free with amalgamation over B if and only if ηij = 0 for i 6= j.
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Speicher proved the following Theorem, which is a central limit theorem for B-valued

random variables, free with amalgamation over B. It shows that B-valued semicircular

variables play the role of Gaussian families in B-valued free probability theory. This

Theorem is stated in his paper for the case of identically distributed variables, but is true

more generally:

3.7. Theorem (Speicher, [20]). Let B be a C∗-algebra. Let Xn(1), . . . , Xn(r) be B-

valued random variables in a C∗-B-probability space (B ⊂ A,E : A → B), and assume

that the covariances η
(n)
ij (b) = E(Xn(i)bXn(j)), b ∈ B, converge pointwise in norm to

bounded maps ηij : B → B. Assume further that E(Xn(k)) = 0, 1 ≤ k ≤ r, and the maps

(b0, b1, . . . , bp) 7→ E(b0Xn(i1)b1 . . . bp−1Xn(p)bp)

are bounded (as maps from Bp to B each with operator norm) uniformly in n. Assume

that for each n, the algebras Alg(B,Xj(k) : 1 ≤ k ≤ r), k = 1, . . . , n, are free with

amalgamation over B. Let

Yn(k) =
1√
n

n∑
j=1

Xj(k), 1 ≤ k ≤ r.

Then as n→∞,

µYn(1),...,Yn(r);B → µZ(1),...,Z(r);B

weakly , where Z(1), . . . , Z(r) is a B-semicircular family with covariance η.

We can now state the result describing the asymptotics of the distributions of the

∆n-random variables Gn(k). We consider ∆n as a subalgebra of L∞[0, 1] consisting of

functions that are constant on each of the intervals [ kn ,
k+1
n ], 0 ≤ k < n.

3.8. Theorem ([16]). Let ηnij
: ∆n → ∆n be defined by

ηnij(d) = En(Gn(i)dGn(j)).

Assume there exist maps ηij : L∞[0, 1] → L∞[0, 1] such that whenever dn ∈ ∆n, dn →
d ∈ L∞[0, 1] in norm, then also limn ηnij(dn) = ηij(d). Then the family of ∆n-valued

non-commutative random variables Gn(1), . . . , Gn(r) converges in ∆n-distribution to a

family of L∞[0, 1] valued semicircular variables Z(1), . . . , Z(n) with covariance η, i.e.,

whenever dn(k) ∈ ∆n, 0 ≤ k ≤ p and dn(k)→ d(k) ∈ L∞[0, 1] in norm, then

lim
n→∞

En(dn(0)Gn(k1)dn(1) . . . dn(p− 1)Gn(kp)dn(p))

= EL∞[0,1](d(0)Zk1d(1) . . . d(p− 1)Z(kp)d(p)).

Since ηnij = 0 if i 6= j, from Theorem 3.8 and Theorem 3.6 we get an immediate

corollary:

3.9. Corollary. The ∆n-valued random variables Gn(1), . . . , Gn(r) are asymptoti-

cally free with amalgamation over L∞[0, 1] as n→∞.

If Z(1), . . . , Z(r) are B-semicircular with covariance η, and φ : B → C is a state, it

makes sense to ask what is the distribution of Z(1), . . . , Z(r) with respect to φ◦E. Using

the Fock space model for the operators Z(k), the remarks in §3.3 and Theorem 3.8 one

gets:
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3.10. Corollary. Assume in the notation of Theorem 3.8 that ηij(1) = δij1, where

1 denotes the constant function 1 in L∞[0, 1]. Then with respect to the functional φn (de-

fined in §1.1) Gn(1), . . . , Gn(r) converges in (scalar-valued) distribution to a free semicir-

cular family. In particular , the limit distribution of Gn(k), 1 ≤ k ≤ r is the semicircular

measure 1
π (1− t2)1/2.

Combining Voiculescu’s Theorem 2.1 and Theorem 3.8 in the case σ = 1 identically,

we get:

3.11. Corollary. Let Z(1), . . . , Z(r) be a family of L∞[0, 1]-semicircular variables

with covariance η. Let φ : L∞[0, 1] → C be integration against Lebesgue measure. Con-

sider the algebra C∗(L∞[0, 1], Z(k) : 1 ≤ k ≤ r) as a (scalar-valued) non-commutative

probability space with the functional φ ◦ EL∞[0,1]. If ηij(a) = cijφ(a), cij ∈ C, for all

a ∈ L∞[0, 1], then C∗(Z(1), . . . , Z(r)) are free from L∞[0, 1].

Motivated by this we proved:

3.12. Theorem ([17, 18]). Let Z(1), . . . , Z(r) be a B-semicircular family with covari-

ance η. If ηij(a) = cijφ(a), cij ∈ C, for all a ∈ B. Then C∗(Z(1), . . . , Z(r)) and B are

free in C∗(B,Z(k) : 1 ≤ k ≤ r) with respect to φ ◦ E.

4. Application: asymptotic distribution of Hn. Let Hn = dn + Gn(1) be as in

§1.3, and assume that dn → d ∈ L∞[0, 1] in norm. Let ηn : ∆n → ∆n be given by

ηn(d) = En(Gn(1)dGn(1)) = diag(y1, . . . , yn), d = diag(z1, . . . , zn) ∈ ∆n,

where

yi =
1

n

∑
j

σ2
n(i, j; 1)zj . (4.3)

Assume that there exists a map η : L∞[0, 1] → L∞[0, 1], such that whenever bn ∈ ∆n,

bn → b ∈ L∞[0, 1] in norm as n→∞, ηn(bn)→ η(b) in norm.

Using Theorem 3.8, we deduce that Hn converges in ∆n-valued distribution (in the

sense explained in Theorem 3.6) to an L∞[0, 1]-valued random variable H = d+Z, where

Z is an L∞[0, 1]-semicircular variable with covariance η. Therefore, by the discussion in

§3.3, we have that the distribution of Hn with respect to φn converges as n→∞ to the

distribution of H with respect to φ = ψ ◦ EL∞[0,1], where ψ denotes Lebesgue measure.

It is therefore only necessary to compute the latter distribution.

The technical tool for this computation is the R-transform of Voiculescu ([26, 25]),

later generalized for the many variable case by Speicher in [20]. We only consider the

one-variable case here.

4.1. Let X = X∗ be a B-valued random variable, where B is a C∗-algebra. Consider

for b ∈ B of small norm the power series

G(b) = b+
∑
k≥1

E(b(Xb)k) ∈ B. (4.4)

Note that in the case B 6= C, G(b) contains less information than the distribution of X

(for example, it contains no information about E(XbXb′X) for b, b′ ∈ B). However, if B
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has a linear functional φ, and we are interested in the distribution of X with respect to

φ ◦ E, then it is enough to know G(b), since

C(z) = φ(G(z1)) = zφ((1 +
∑
k≥1

E(Xk)zk)) = z(1 +
∑
k≥1

(φ ◦E)(Xk)zk), z ∈ C (4.5)

contains all information about the moments of X.

4.2. Consider the function R(b) defined for b of small norm by the equation

(G(b))−1 +R(G(b)) = b. (4.6)

The function R is called the R-transform of the distribution of X, written RX .

4.3. Theorem (Voiculescu, [25]). If B-valued random variables X and Y are free

with amalgamation over B, then

RX+Y (b) = RX(b) +RY (b), b ∈ B.
An analogous property in classical probability theory is possessed by the logarithm

of the Fourier transform.

4.4. Using Theorem 4.3 and the discussion of §4.1, we can now give an equation for

the distribution of H. Assume that η is given by an integral kernel σ2, i.e.,

η(f)(x) =

1\

0

f(y)σ2(x, y)dy.

Note that because of (4.3), for sufficiently nice σn(i, j; 1), σ(x, y) = limn σn([nx], [ny]; 1),

where [x] denotes the integral part of x. Recall that H = d + Z. Since d ∈ L∞[0, 1], Z

and d are free with amalgamation over L∞[0, 1]. Thus RH = Rd + RZ . It is easily seen

that Rd(b) = d for all b ∈ L∞[0, 1]. By a computation in [25], we know that RZ(b) = η(b).

Writing (4.6) for G(b) ∈ L∞[0, 1] gives for x ∈ [0, 1]

G(b)(x) =
[
b(x)− d(x)−

1\

0

σ2(x, y)G(b)(y)dy
]−1

.

Let a(z, x) = G(z1)(x). Then we get

a(z, x) =
[
z − d(x)−

1\

0

σ2(x, y)a(z, y)dy
]−1

,

so that C of equation (4.5) is given by

C(z) =

1\

0

a(z, x)dx,

which is the formula obtained by Girko and Casati in [4].

5. Applications to von Neumann algebras. Random matrix models have found

many applications in the theory of free group factors (i.e., the von Neumann algebras

generated in the left regular representation of free groups); see e.g. [26, 23, 6, 14, 15, 13].

The connection between Gaussian random band matrices and L∞[0, 1]-valued semicircu-

lar families allows one to rephrase many of the theorems from the papers listed above



366 D. SHLYAKHTENKO

in the language of operator-valued semicircular systems. This sometimes allows one to

extend the theorems (with essentially the same proofs) to situations involving B-valued

semicircular systems with arbitrary B (we already saw an instance of this, passing from

the L∞[0, 1]-valued case in Corollary 3.11 to Theorem 3.12). We give a few examples.

5.1. LetM be a II1 factor, i.e., a von Neumann algebra with a trivial center possessing

a normal faithful trace τ with τ(1) = 1. If p = p∗ = p2, q = q∗ = q2 are two projections

in M with τ(p) = τ(q), then there exists a unitary u ∈ M , u∗u = uu∗ = 1, such that

upu∗ = q. Therefore, the algebra pMp, p = p∗ = p2 ∈ M , depends only on t = τ(p) and

is denoted Mt. The fundamental group F (M) of M is the subgroup of positive reals R+,

generated by those t for which Mt
∼= M . This invariant of a II1 factor M is very hard to

compute.

We write L(F (n)) for the group von Neumann algebra of the free group with n genera-

tors. The following theorem was obtained by Rădulescu using random matrix techniques:

5.2. Theorem (Rădulescu, [13]). F (L(F (∞))) = R+.

Rephrasing the proof of Rădulescu in terms of operator-valued semicircular systems,

we obtained the following, writing ∗ for the free product of two von Neumann algebras:

5.3. Theorem ([17]). Let M be a II1 factor. Then F (M) ⊂ F (M ∗ L(F (∞))).

5.4. Recall that a subfactor of a II1 factor M (see [8, 7]) is a unital inclusion of a II1
factor N ⊂M . Given N ⊂M , Jones in [8] assigned to the inclusion a number, called the

index [M : N ]. Rephrasing the random matrix techniques of Rădulescu [14] and using a

construction of Popa [12], we obtained the following:

5.5. Theorem ([18]). Let N ⊂ M be a finite-index finite depth inclusion of II1 fac-

tors. Let P = M ∗ L(F (n)), n integer or infinity. Then there exists a finite index finite

depth subfactor Q ⊂ P , with [P : Q] = [M : N ].

Let

Ifd(M) = {[M : N ] : N ⊂M is a finite-depth subfactor}.
This is an invariant of M , cf. [8]. Then we immediately get

5.6. Corollary. Ifd(M) ⊂ Ifd(M ∗ L(F (n))), for n finite or an integer.

5.7. We have introduced in [19] a class of type III factors, called free Araki-Woods

factors. Any type III factor can be written as a crossed product of a II∞ von Neumann

algebra by an action of R. The II∞ von Neumann algebra is canonically associated to

the type III factor, and is called its core. We have shown

5.8. Theorem ([17]). Let M be a free Araki-Woods factor , and N be its core. Then

N is generated by L∞[0, 1] and an L∞[0, 1]-semicircular family Z(k), k = 1, 2, . . ..

Because of this, Gaussian random band matrices provide an intuitive picture for the

core of a free Araki-Woods factor. This has led to a number of results about the cores

and the free Araki-Woods factors themselves; we refer the reader to [17, 18].
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